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PREFACE TO THE SECOND EDITION

The many developments and clarifications in the theory of elasticity
and its applications which have occurred since the first edition was
written are reflected in numerous additions and emendations in the
present edition. The arrangement of the book remains the same for
the most part. )

The treatments of the photoelastic method, two-dimensional
problems in curvilinear coordinates, and thermal stress have been
rewritten and enlarged into separate new chapters which present many
methods and solutions not given in the former edition. An appendix
on the method of finite differences and its applications, including the
relaxation method, has been added. New articles and paragraphs
incorporated in the other chapters deal with the theory of the strain
gauge rosette, gravity stresses, Saint-Venant’s principle, the components
of rotation, the reciprocal theorem, general solutions, the approximate
character of the plane stress solutions, center of twist and center of
shear, torsional stress concentration at fillets, the approximate treat-
ment of slender (e.g., solid airfoil) sections in torsion and bending,
and the circular cylinder with a band of pressure.

Problems for the student have been added covering the text as far
as the end of the chapter on torsion.

It is a pleasure to make grateful acknowledment of the many helpful
suggestions which have been contributed by readers of the book.

S. TIMOSHENKO
J. N. GoobIER

Paro Avro, CALIF.
February, 1951



PREFACE TO THE FIRST EDITION

During recent years the theory of elasticity has found considerable
application in the solution of engineering problems. There are many
cases in which the elementary methods of strength of materials are
inadequate to furnish satisfactory information regarding stress distri-
bution in engineering structures, and recourse must be made to the
more powerful methods of the theory of elasticity. The elementary
theory is insufficient to give information regarding local stresses near
the loads and near the supports of beams. It fails also in the cases
when the stress distribution in bodies, all the dimensions of which
are of the same order, has to be investigated. The stresses in rollers
and in balls of bearings can be found only by using the methods of the
theory of elasticity. The elementary theory gives no means of
investigating stresses in regions of sharp variation in cross section of
beams or shafts. It is known that at reentrant corners a high stress
concentration occurs and as a result of this cracks are likely to start
at such corners, especially if the structure is submitted to a reversal of
stresses. The majority of fractures of machine parts in service can
be attributed to such cracks.

During recent years considerable progress has been made in solving
such practically important problems. In cases where a rigorous solu-
tion cannot be readily obtained, approximate methods have been
developed. In some cases solutions have been obtained by using
experimental methods. As an example of this the photoelastic
method of solving two-dimensional problems of elasticity may be
mentioned. The photoelastic equipment may be found now at
universities and also in many industrial research laboratories. The
results of photoelastic experiments have proved especially useful in
studying various cases of stress concentration at points of sharp
variation of cross-sectional dimensions and at sharp fillets of reentrant
corners. Without any doubt these results have considerably influ-
enced the modern design of machine parts and helped in many cases
to improve the construction by eliminating weak spots from which
cracks may start.

Another example of the successful application of experiments in
the solution of elasticity problems is the soap-film method for deter-
Mining stresses in torsion and bending of prismatical bars. The
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difficult problems of the solution of partial differential equations with
given boundary conditions are replaced in this case by measurements
of slopes and deflections of a properly stretched and loaded soap film.
The experiments show that in this way not only a visual picture of
the stress distribution but also the necessary information regarding
magnitude of stresses can be obtained with an accuracy sufficient for
practical application.

Again, the electrical analogy which gives a means of investigating
torsional stresses in shafts of variable diameter at the fillets and
grooves is interesting. The analogy between the problem of bending
of plates and the two-dimensional problem of elasticity has also been
successfully applied in the solution of important engineering problems.

In the preparation of this book the intention was to give to engi-
neers, in a simple form, the necessary fundamental knowledge of the
theory of elasticity. It was also intended to bring together solutions
of special problems which may be of practical importance and to
deseribe approximate and experimental methods of the solution of
elasticity problems.

Having in mind practical applications of the theory of elasticity,
matters of more theoretical interest and those which have not at
present any direct applications in engineering have been omitted in
favor of the discussion of specific cases. Only by studying such cases
with all the details and by comparing the results of exact investigations
with the approximate solutions usually given in the elementary books
on strength of materials can a designer acquire a thorough under-
standing of stress distribution in engineering structures, and learn to
use, to his advantage, the more rigorous methods of stress analysis.

In the discussion of special problems in most cases the method
of direct determination of stresses and the use of the compatibility
equations in terms of stress components has been applied. This
method is more familiar to engineers who are usually interested in the
magnitude of stresses. By a suitable introduction of stress functions
this method is also often simpler than that in which equations of
equilibrium in terms of displacements are used.

In many cases the energy method of solution of elasticity problems
has been used. In this way the integration of differential equations is
replaced by the investigation of minimum conditions of certain inte-
grals. Using Ritz’s method this problem of variational calculus is
reduced to a simple problem of finding a minimum of a function.
In this manner useful approximate solutions can be obtained in many

practically important cases.

PREFACE TO THE FIRST EDITION ix

To simplify the presentation, the book begins with the discussion of
two-dimensional problems and only later, when the reader has familiar-
ized himself with the various methods used in the solution of problems
of the theory of elasticity, are three-dimensional problems discussed
The portions of the book that, although of practical importance ar(;
such that they can be omitted during the first reading are put in s,mall
type. The reader may return to the study of such problems after
finishing with the most essential portions of the book.

The mathematical derivations are put in an elementary form and
usually do not require more mathematical knowledge than is given in
engineering schools. In the cases of more complicated problems all
necessary explanations and intermediate calculations are given so
that the reader can follow without difficulty through all the deriva-
tions. Only in a few cases are final results given without complete
derivations. Then the necessary references to the papers in which the
derivations can be found are always given.

In numerous footnotes references to papers and books on the theory
of elasticity which may be of practical importance are given. These
refer.ences may be of interest to engineers who wish to study some
special problems in more detail. They give also a picture of the
modern development of the theory of elasticity and may be of some
gscladto graduate students who are planning to take their work in this

eld.

“In the preparation of the book the contents of a previous book
(“Theory of Elasticity,” vol. I, St. Petersburg, Russia, 1914) on
the same subject, which represented a course of lectures on the theory
of elasticity given in several Russian engineering schools, were used
to a large extent. ’

The author was assisted in his work by Dr. L. H. Donnell and Dr.
J. N .Groodier, who read over the complete manuscript and to whom
he is indebted for many corrections and suggestions. The author
takes thi§ opportunity to thank also Prof. G. H. MacCullough, Dr.
E. E. Weibel, Prof. M. Sadowsky, and Mr. D. H. Young, who assisted
in the ﬁr.lal preparation of the book by reading some portions of the
manuscript. He is indebted also to Mr. L. S. Veenstra for the prep-

aration of drawings and to Mrs. E. D. Webster { i
. . . th
manuscript. or the typing of the

S. TIMOSHENKQ
UNIVERSITY OF MICHIGAN -

December, 1933
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NOTATION

Rectangular coordinates.

Polar coordinates.

Orthogonal curvilinear coordinates; sometimes rec-
tangular coordinates.

Spherical coordinates.

Outward normal to the surface of a body.
Direction cosines of the outward normal.
Cross-sectional area.

Moments of inertia of a cross section with respect
to z- and y-axes.

Polar moment of inertia of a cross section.
Gravitational acceleration.

Density.

Intensity of a continuously distributed load.
Pressure.

Components of a body force per unit volume.
Components of a distributed surface force per unit
area.

Bending moment,.

Torque.

Normal components of stress parallel to z-, ¥-, and
z-axes.

Normal component of stress parallel to n.

Radial and tangential normal stresses in polar
coordinates.

Normal stress components in curvilinear co-
ordinates.

Normal stress components in cylindrical co-
ordinates.
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Shearing stress.

Shearing-stress components in rectangular co-
ordinates.

Shearing stress in polar coordinates.

Shearing stress in curvilinear coordinates.
Shearing-stress components in cylindrical co-
ordinates.

Total stress on a plane.

Components of displacements.

Unit elongation.

Unit elongations in z-, y-, and z-directions.
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NOTATION

Radial and tangential unit elongations in polar
coordinates.

Volume expansion.

Unit shear.

Shearing-strain components in rectangular co-
ordinates. i

Shearing-strain components in cylindrical co-
ordinates. )
Modulus of elasticity in tension and compression.
Modulus of elasticity in shear. Modulus of
rigidity.

Poisson’s ratio.

Lamé’s constants.

Stress function.

Complex potentials; functions of the complex
variable z = z + ©y.

The conjugate complex variable z — 7.
Torsional rigidity.

Angle of twist per unit length.

Used in torsional problems.

Strain energy.

Strain energy per unit volume.

Time.

Certain interval of time. Temperature.
Coefficient of thermal expansion.

CHAPTER 1

s

INTRODUCTION

4

1. Elasticity. All structural materials possess to a certain extent
the property of elasticity, i.e., if external forces, producing deformation
of a structure, do not exceed a certain limit, the deformation disappears
with the removal of the forces. Throughout this book it will be
assumed that the bodies undergoing the action of external forces are
perfectly elastic, i.e., that they resume their initial form completely after
removal of forces. '

The molecular structure of elastic bodies will not be considered here.
It will be assumed that the matter of an elastic body is homogeneous and
continuously distributed over its volume so that the smallest element
cut from the body possesses the same specific physical properties as the
body. To simplify the discussion it will also be assumed that the body
is 1solropic, 1.e., that the elastic properties are the same in all directions.

Structural materials usually do not satisfy the above assumptions.
Such an important material as steel, for instance, when studied with a
microscope, is seen to consist of crystals of various kinds and various
orientations. The material is very far from being homogeneous; but
experience shows that solutions of the theory of elasticity based on the
assumptions of homogeneity and isotropy can be applied to steel struc-
tures with very great accuracy. The explanation of this is that the
crystals are very small; usually there are millions of them in one cubie
inch of steel. While the elastic properties of a single crystal may be
very different in different directions, the crystals are ordinarily dis-
tributed at random and the elastic properties of larger pieces of metal
represent averages of properties of the crystals. So long as the geo-
metrical dimensions defining the form of a body are large in comparison
with the dimensions of a single crystal the assumption of homogeneity
can be used with great accuracy, and if the crystals are orientated at
random the material can be treated as isotropic.

When, due to certain technological processes such as rolling, a cer-
tain orientation of the crystals in a metal prevails, the elastic properties
of the metal become different in different directions and the condition
of amstropy must be considered. We have such a cond1t10n, for
instance, in the case of cold-rolled copper,

1
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9. Stress. Let Fig. 1 represent a body in equilibrium. Under the
action of external forces Py, . . . , Pr, internal forces will be produced
between the parts of the body. To study the magnitude of these forces
at any point O, let us imagine the body divided into two parts 4 and B
by a cross section mm through this point. Considering one of these
parts, for instance, 4, it can be
stated that it is in equilibrium
under the action of external
forcesPy, . . . ,Prand theinner
forces distributed over the cross
section mm and representing the
actions of the material of the
part B on the material of the part
A. It will be assumed that
these forces are continuously dis-
tributed over the area mm in the
same way that hydrostatic pres-
sure or wind pressure is contin-
uously distributed over the sur-
face on which it acts. The magnitudes of such forces are usually
defined by their intensity, t.e., by the amount of force per unit area of
the surface on which they act. In discussing internal forces this
intensity is called stress.

In the simplest case of a prismatical bar submitted to tension by
forces uniformly distributed over the ends (Fig. 2), the internal forces
are also uniformly distributed over any cross section :
mm. Hence the intensity of this distribution, 1.e., the 1
stress, can be obtained by dividing the total tensile
force P by the cross-sectional area A.

In the case just considered the stress was uniformly

&y,
Fia. 1.

distributed over the cross section. In the general case m m
of Fig. 1 the stress is not uniformly distributed over

mm. 'To obtain the magnitude of stress acting on a _

small area 84, cut out from the cross section mm at any I
point O, we assume that the forces acting across this Fie. 2.

elemental area, due to the action of madterial of the part :

B on the material of the part A, can be reduced to aresultant 8P. If
we now continuously contract the elemental area 3A, the limiting value
of the ratio 5P/8A gives us the magnitude of the stress acting on the
cross section mm at the point O. Thelimiting direction of the resultant
8P is the direction of the stress, In the genera,l case the direction of
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gtress is inclined to the area 84 on which it acts and we usually resolve
it into two components: a normal stress perpendicular to the area, and
a shearing stress acting in the plane of the area 8A4.

3. Notation for Forces and Stresses. There are two kinds of exter-
nal forces which may act on bodies. Forces distributed over the sur-
face. of the body, such as the pressure of one body on another, or hydro-
static pressure, are called surface forces. Forces distributed over the
volume of a body, such as gravitational forces, magnetic forces, or in
the case of a body in motion, inertia forces, are called body forces. The
surface force per unit area we shall usually resolve into three compo-
nents parallel to the coordinate axes and use for these components the
notation X, ¥, Z. Weshall also resolve the body force per unit volume
into three components and denote

these components by X, Y, Z. T %

We shall use the letter ¢ for de-
noting normal stress and the letter o 5
7 for shearing stress. To indicate "z
the direction of the plane on which f}:'x ] |/ i
the stress is acting, subscripts to a.:r—T ez ¢ oy
these letters are used. If wetakea vy il
very small cubic element at a point " 4
0, Fig. 1, with sides parallel to the —':’
coordinate axes, the notations for ¢
the components of stress acting on Fie. 3.

.the' sides of this element and the directions taken as positive are as
1ndlc.ated in Fig. 3. For the sides of the element perpendicular to the
y-axis, for instance, the normal components of stress acting on these
s1d(?s are denoted by o,. The subscript y indicates that the stress is
actl.n.g on a plane normal to the y-axis. The normal stress is taken
positive when it produces tension and negative when it produces
compression.

Th(? shearing stress is resolved into two components parallel to the
f:oo.rdn?ate axes. Two subscript letters are used in this case, the first
indicating the direction of the normal to the plane under cons,ideration
;‘nd .the second indicating the direction of the component of the stress.
N lfr instance, if we again consider the sides perpendicular to the y-axis,

e. con'lponent in the z-direction is denoted by r,, and that in the
izl-ldlrectlon by 74.. .The positive directions of the components of shear-
djfes?ess on any side ?f the cubic element are taken as the positive
. ctions of the coc.)r.dma,te axes if a tensile stress on the same side
Would have the positive direction of the corresponding axis. If the
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tensile stress has a direction opposite to the positive axis, the positive
direction of the shearing-stress components should be reversed. Fol-
lowing this rule the positive directions of all the components of stress
acting on the right side of the cubic element (Fig. 3) coincide with the
positive directions of the coordinate axes. The positive directions are
all reversed if we are considering the left side of this element.

4. Components of Stress. From the discussion of the previous
article we see that, for each pair of parallel sides of a cubic element,
such as in Fig. 3, one symbol is needed to denote the normal component
of stress and two more symbols to denote the two components of shear-
ing stress. To describe the stresses acting on the six sides of a cubic
element three symbols, ¢z, oy, 02, are necessary for normal stresses; and

six symbols, Tey, Tyzy Tazy Tazy Tyzy Towy for shearing
£ L stresses. By a simple consideration of the equi-
= > librium of the element the number of symbols
for shearing stresses can be reduced to three.

If we take the moments of the forces acting on
the element about the z-axis, for instance, only
dy the surface stresses shown in Fig. 4 need be con-
sidered. Body forces, such as the weight of the
element, can be neglected in this instance, which
follows from the fact that in reducing the
dimensions of the element the body forces acting on it diminish as
the cube of the linear dimensions while the surface forces diminish as
the square of the linear dimensions. Hence, for a very small element,
body forces are small quantities of higher order than surface forces and
can be neglected in calculating the surface forces. Similarly, moments
due to nonuniformity of distribution of normal forces are of higher
order than those due to the shearing forces and vanish in the limit.
Also the forces on each side can be considered to be the area of the side
times the stress at the middle. Then denoting the dimensions of the
small element in Fig. 4 by dz, dy, dz, the equation of equilibrium of this
element, taking moments of forces about the z-axis, is

Tyz||dz Tyz

rz_‘y
Fic. 4.

Tey d.’l? dy dZ = Tyz dx dy dz

The two other equations can be obtained in the same manner. From
these equations we find

Tey = Tyz Tez = Tazy Ty = Tus (1)

Hence for two perpendicular sides of a cubic element the components of
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shearing stress perpendicular to the line of intersection of these sides
are equal.

Th'e six quantitie.s Ozy Oyy Ozy Toy = Tygy Taz = Toxy Tyz = Toy ar€ therefore
sufficient to fiescnbe the stresses acting on -the coordinate planes
thI"OlJ:gh a point; these will be called the components of stress at the
point.

It will be spovxtn later (Art. 67) that with these six components the
stress on any inclined plane through the same

point can be determined. T
5. Components of Strain. In discussing ax dzdy
the deformation of an elastic body it will be
assumed that there are enough constraints to %¢ i
prevent the body from moving as a rigid * 4
body, so that no displacements of particles Fic. 5.

of the })ody are possible without a deformation of it.

In this bo?k, only small deformations such as occur in engineerin
structures will be considered. The small displacements of particles o%
a deformed body will usually be resolved into components u, v, w
parallel to the coordinate axes z, y, 2, respectively. It will be ass’un;ed
that these components are very small quantities varying continuousl
over 'the volume of the body. Consider a small element dz dy dz of ai
elastic body (Fig. 5). If the body undergoes a deformation and u, v, w
are the components of the displacement of the point O, the disp,la;e-
ment in the a-direction of an

o ax . .
: 4 x adjacent point A on the r-axis
14 ov is
A —_——t Y ?
== . 9
dy ;‘ jg u -+ -a—z dz
|
-
I‘; due to the increase (du/ozx) dz
1] : \ of the function » with increase
B i of the coordinate x. The in-
.'_{..._L,‘!9 f’ crease in length of the element
h% wrghdy. 0A due to deformation is there-

Fic. 6, fore (du/0x) dx. Hence the
o unit elongation at point O in the
i—d'ltrectlon is au( dr. In the same manner it can be shown that the
nit elongations in the y- and z-directions are given by the derivatives
9v/3y and dw/dz.
Ojet Iés (;:onsic.ler now the distortion of the angle between the elements
e an dB, F}g. 6: If w and v are the displacements of the point O in
Z- an \y-dlrectlons, the displacement of the point A in the y-direc-
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tion and of the point B in the z-direction are v + (9v/dx) dz and
u + (du/dy) dy, respectively. Due to these displacements the new
direction 0’A’ of the element OA is inclined to the initial direction by
the small angle indicated in the figure, equal to dv/dz. In the same
manner the direction O'B’ is inclined to OB by the small angle du/9y.
From this it will be seen that the initially right angle AOB between the
two elements OA and OB is diminished by the angle dv/dx + du/dy.
This is the shearing strain between the planes xz and yz. The shearing
strains between the planes zy and zz and the planes yz and yz can be
obtained in the same manner.

We shall use the letter e for unit elongation and the letter v for unit
shearing strain. To indicate the directions of strain we shall use the
same subscripts to these letters as for the stress components. Then
from the above discussion

ou ov ow
EZ = -—ax, ey = »—ay, ez = -—-az 2
Iu v Ju , ow v . ow 2)
'Yzy=—‘ay+—‘ax7 'sz=32+&" 'sz=a—z+a_y

Tt will be shown later that, having the three unit elongations in three
perpendicular directions and three unit shear strains related to the
same directions, the elongation in any direction and the distortion of
the angle between any two directions can be calculated (see Art. 73).
The six quantities e;, . . . , Yy aT€ called the components of strain.

6. Hooke’s Law. The relations between the components of stress
and the components of strain have been established experimentally and
are known as Hooke's law. Imagine an elemental rectangular paral-
lelopiped with the sides parallel to the coordinate axes and submitted
to the action of normal stress o, uniformly distributed over two oppo-
site sides. Experiments show that in the case of an isotropic material
these normal stresses do not produce any distortion of angles of the ele-
ment. The magnitude of the unit elongation of the element is given
by the equation

“=% (@)
in which E is the modulus of elasticity in tension. Materials used in
engineering structures have moduli which are very large in comparison
with allowable stresses, and the unit elongation (a) is a very small
quantity. In the case of structural steel, for instance, it is usually
smaller than 0,001,
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Extension of the element in the z-direction is accompanied by lateral
contractions,

®

in which » is a constant called Poisson’s ratio. For many materials
Poisson’s ratio can be taken equal to 0.25. For structural steel it is
usually taken equal to 0.3.

Equations (a) and (b) can be used also for simple compression.
Within the elastic limit the modulus of elasticity and Poisson’s ratio
in compression are the same as in tension.

If the above element is submitted to the action of normal stresses
04, Oy, 0z, uniformly distributed over the sides, the resultant components
of strain can be obtained by using Eqgs. (¢) and (b). Experiments
show that to get these components we have to superpose the strain com-
ponents produced by each of the three stresses. By this method of
superposition we obtain the equations

1
€ = E [O'_-, - V(‘Til + 0’,)]
1
€y = E [O'y — v(oz + 0’,)] (3)

€ = E [o'z - V(a'a: + o-ﬂ)]

In our further discussion we shall often use this method of superposi-
tion in calculating total deformations and stresses produced by several
forces. This method is legitimate as long as the deformations are small
and the corresponding small displacements do not affect substantially
the action of the external forces. In such cases we neglect small
changes in dimensions of deformed bodies and also small displacements
of the points of application of external forces and base our calculations
on initial dimensions and initial shape of the body. The resultant dis-
placements will then be obtained by superposition in the form of linear
functions of external forces, as in deriving Egs. (3).

There are, however, exceptional cases in which small deformations
cannot be neglected but must be taken into consideration. As an
example of this kind the case of the simultaneous action on a thin bar
of axial and lateral forces may be mentioned. Axial forces alone pro-
duce simple tension or compression, but they may have a substantial
effect on the bending of the bar if they are acting simultaneously with
lateral forces. In calculating the deformation of bars under such con-
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ditions, the effect of the deflection on the moment of the external forces
must be considered, even though the deflections are very small.! Then
the total deflection is no longer & linear function of the forces and can-
not be obtained by simple superposition.

Equations (3) show that the relations between elongations and
stresses are completely defined by two physical constants E and ».
The same constants can also be used to define the relation between
shearing strain and shearing stress.

Let us consider the particular case of deformation of the rectangular
parallelopiped in which ¢, = —0: z
andg, = 0. Cutting outan element
abed by planes parallel to the 2-axis P Aitt _ b

and at 45 deg. to the y- and z-axes 5 o
z r | o c
A

(Fig. 7), it may be seen from Fig. 7b,

REER

by summing up the forces along and o] y o
. z
perpendicular to be, that the normal 2N\ % —
stress on the sides of this element is d — 5)
gero and the shearing stress on the T T V1
sides is (a)
T =3(0. — o) = 0 (0 Fra. 7.

Such a condition of stress is called pure shear. The elongation of the
vertical element Ob is equal to the shortening of the horizontal elements
Oa and Oc, and neglecting a small quantity of the second order we con-
clude that the lengths ab and be of the element do not change during
deformation. The angle between the sides ab and be changes, and the
corresponding magnitude of shearing strain y may be found from the
triangle Obc.  After deformation, we have

Oc _ LA 14 ¢
o~ (4 2) “THe
Substituting, from Eqgs. 3),

ez=_1%(a'z—yay)=_(_]"__%m

(4 e
& = —F
and noting that for small ¥

1 Several examples of this kind can be found in 8. Timoshenko, “Strength of
Materials,” vol. IT, pp. 25-49.
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tan T — tan J =Y
tan(E_Z)= 4 an2_1 2
4 2 T -
1+ tan Z tan X 04
—'t an 7 tan 5 14 3

we find
v = 2(1 + 1’)0’, = 2(1 + V)T
E E

4)

Thus the relation between shearing strain and shearing stress is defined
by the constants E and ». Often the notation

g=_ %
- 50+ 7) (5)
is used. Then Eq. (4) becomes ‘

'y:

Q=

The constant @, defined by (5), is called the modulus of elasticity in
shear or the modulus of rigidity. !

I s.hearing stresses act on the sides of an element, as shown in Fig. 3
the distortion of the angle between any two coordinate axes depel;d;
or}iy. on shearing-stress components parallel to these axes and we
obtain

Yoy = 1 T = 1 1
G Yy: = afwy Y2z = G T2z (6)

The elongations (3) and the distortions (6) are independent of each
011;11‘1er. Hepce the general case of strain, produced by three normal and
three shearing compf)nents of stress, can be obtained by superposition:
on the t.hree .elongatlons given by Eqgs. (3) are superposed three shear-
ing strains given by Eqgs. (6).
tthuatlons (3) and (6) give the components of strain as functions of
e components .of stress. Sometimes the components of stress
zirgsse(ll) :s fu(rilctlons of the components of strain are needed. These
e obtained as follows. Adding equati i
oo Do optain g equations (3) together and using
€ = € + €y + e
0 =0:4 0,10 ™

we obtain the followin i
g relation between the volume e i
the sum of normal stresses: xpansion ¢ and

7 ° ®)
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In the case of a uniform hydrostatic pressure of the amount p we

have
Opg =0y =6, = —P
and Eq. (8) gives
g — 31— 2P
E

which represents the relation between unit volume expansion e and

hydrostatic pressure p.
The quantity E/3(1 — 2») is called the modulus of volume expansion.

Using notations (7) and solving Egs. (3) for o, 0y, 0, We find

o E
¢T”——(l-i—u)(l—.?:v) 1+vez
vE E
WA+ A - et T ©
_ vE e+ E
oz—(1+v(1—2v) 1+Ve'

or using the notation .
LS (10)
Ta+ -2

and Eq. (5), these become

o. = N + 20¢
oy = Ne + 2Ge (11)
o, = e + 2Ge;

Problems

1. Show that Eqgs. (1) continue to hold if the element of Fig. 4 is in motion and

has an angular acceleration like a rigid body.

2. Suppose an elastic material contains 2 larg
small magnetized particles, 50 that a magnetic field exerts
a moment p dz dy dz about an axis parallel to the z-axis.
be needed in Egs. (1)?

3. Give some reasons why the formulas (2) will be valid for small strains only.

4. An elastic layer is sandwiched between two perfectly rigid plates, to which it
the compressive stress

is bonded. The layer is compressed between the plates,
being o.. Supposing that the attachment to the plates prevents lateral . strain
¢z, & completely, find the apparent Young's modulus (i.e., 0/¢) in terms of Eand ».
Show that it is many times E if the material of the layer is nearly incompressible by

hydrostatic pressure.
-5. Prove that Bq. (8) follows from Eqs. (11), (10), and. ).

e number of evenly distributed
on any element dz dy dz
What modification will

CHAPTER 2
PLANE STRESS AND PLANE STRAIN

bo'lll.n (i:ane Stress. If a thin plate is loaded by forces applied at the
bour thé’};,h Pa}g‘allel (t; the )plane of the plate and distributed uniformly
ickness (Fig. 8), the stress components o, 7
. 2y Tazy Ty ATE ZELO ON
‘Z;):l; :fgzsls(;f vlf,}'fhPla:}?’ arlld it may be assumed, tenioati’veqy, that they
ithin the plate. The state of stress is then speci
. ecified b
02, Oy, Toy ONLy, and is called plane stress. It may also be assll)lmed thayt

1

Y Yy

Fig. 8.

:Eiiﬁ t}}:x:f (;(l)lx.nlp;;)lnents are independent of 2, 7.e., they do not vary
gh the thickness. They are then functi
roug ] Th e the netions of « and y only.
extremlea:‘,i eit:;l;x(.i. A sx-mlla; imphﬁcatlon is possible at theyother
imension of the body in the z-direction i
o o o ens : z-direction is very large.
prismatical body is loaded by f i
perpendicular to the longitudi T ovany slone: the
gitudinal elements and d
> . and do not vary along th
tiz)llglth, 11: may be assumed that all cross sections are in the syame c%ntdi(i
ﬁneé o is s1mﬁplest to suppose at first that the end sections are con-
o dirwzfen .xed smooth rigid planes, so that displacement in the
e dn de<13 1ton is prevented.- The effect of removing these will be
by ooy : er. Since t.here is no axial displacement at the ends, and
b ldy metry, at the mid-section, it may be assumed that th: ’ ,
oT }? at every cross section. T
vith le;r‘; f:le many impprtant problems of this kind—a retaining wall
pressure (Fig. 9), a culvert or tunnel (Fig. 10), a cylindrical

tube with i i
with internal pressure, a cylindrical roller compressed by forces in
11

| IMSTITUTUL POLITEHNS |

fIMISOARA
8iBLICTECA cENmLA

e

1
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a diametral plane as in a roller bearing (Fig. 11). Ip each case of
course the loading must not vary along the length. Since condlthns
are the same at all cross sections, it is sufficient to consider only a slice
between two sections unit distance apart. The components u and v of
the displacement are functions of z and y but are independent of the

Fic. 9.

pb bt

Fritad

b Y
Fia. 11.

longitudinal coordinate z. Since the longitudinal displacement w is

zero, Egs. (2) give

o , ow _
'sz—'gé"*‘gg— ;
'Yzz—az+ax 0
=0 _
“ " oz

The longitudinal normal stress o, can be found in terms of ¢, and oy

by means of Hooke’s law, Eqgs. (3). Since ¢, = 0 we find

o, — oz +oy) =0
or

provided by the fixed smooth rigid planes.

o, = v(o: + ov) ®) :

These normal stresses act over the cross sections, including thfa ends,f »
where they represent forces required to maintain the plane strain, and
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By Egs. (a) and (6), the stress components 7., and r,, are zero, and,
by Eq. (b), ¢. can be found from o; and ¢,. Thus the plane strain prob-
lem, like the plane stress problem, reduces to the determination of
az 0y, and 74 as functions of z and y only.

9. Stress at a Point. Knowing the stress components g, 65, 72y at
any point of a plate in a condition of plane stress or plane strain, the
stress acting on any plane through this point perpendicular to the plate
and inclined to the z- and y-axes can be calculated from the equations
of statics. Let O be a point of the stressed plate and suppose the stress
components o, o, 7., are known
(Fig. 12). To find the stress for any %
plane through the z-axis and inclined o =¥l ___ B

to the z- and y-axes, we take a plane z
BC parallel to it, at a small distance * =

from O, so that this latter plane P
together with the coordinate planes ctio '
cuts out from the plate a very small ()
triangular prism OBC. Since the Y Y o\
stresses vary continuously over the N
volume of the body the stress acting
on the plane BC will approach the stress on the parallel plane through
O as the element is made smaller.

In discussing the conditions of equilibrium of the small triangular
prism, the body force can be neglected as a small quantity of a higher
order (page 4). Likewise, if the element is very small, we can neglect
the variation of the stresses over the sides and assume that the stresses
are uniformly distributed. The forces acting on the triangular prism
can therefore be determined by multiplying the stress components by
the areas of the sides. Let N be the direction of the normal to the
plane BC, and denote the cosines of the angles between the normal N
and the axes z and y by

Fia. 12,

cos Nz = I, cos Ny =m

Then, if A denotes the area of the side BC of the element, the areas of
the other two sides are Al and Am.

If we denote by X and ¥ the components of stress acting on the side
BC, the equations of equilibrium of the prismatical element give '

X = lo, + mryy

Y = moy, + lryy (12)

Thus the components of stress on any plane defined by the direction
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cosines 1 and m can easily be caleulated from Egs. (12), provided the
three components of stress oz, oy, 7oy at the point O are known.
Letting « be the angle between the normal N and the z-axis, so that

] = cos « andm = sin «, the normal and shearing components of stress . 1

on the plane BC are (from Eqgs. 12)
¢ = Xcosat Y sin « = ¢, cos? a + oy sin? «
+ 274 sin « coS a
r=Ycosa— Xsina= 7.y(cos? o — sin? a)
+ (o, — 05) Sin @ COS &

(13)

Tt may be seen that the angle a can be chosen in such a manner that the
shearing stress 7 becomes equal to zero. For this case we have

ray(cos? @ — sin® &) + (6) — o) sin e cos & = 0
or
Ty sin « cos a 1 (14)

=——-2———.—2——=—tan2a
0z — Oy costa — sin?a 2

From this equation two perpendicular directions can be found for

which the shearing stress is zero. These directions are called principal |

directions and the corresponding normal stresses principal siresses.
If the principal directions are taken as the z- and y-axes, 7o i zero
and Egs. (13) are simplified to

o = o, cos? a + oy sin® a i
- 08’ & - 7y 13) §

r = } sin 2a(oy — 0a)

The variation of the stress components o and 7, as we vary the angle }
«, can be easily represented graphically by making a diagram in which |
+ and = are taken as coordinates.! For each plane there will correspond §
a point on this diagram, the coordinates of which represent the values 3
of ¢ and 7 for this plane. Figure 13 represents such a diagram. For 1

the planes perpendicular to the principal directions we obtain points 4 ]
and B with abscissas o, and oy, respectively. Now it can be proved f
that the stress components for any plane BC with an angle o (Fig. 12) |
will be represented by coordinates of a point on the circle having AB as 1
a diameter. To find this point it is only necessary to measure from the
‘point A in the same direction as a is measured in Tig. 12 an arc sub-
tending an angle equal to 9«. If D is the point obtained in this man- 3

ner, then, from the figure,

,OE=OC+CF=a’—ga"+qi—;—ﬂ'cos2a=o,cos2a+a,,sin2a

DF = CD sin 2a = 3(o= — 0y) sin 2«

: This graphical method is due to O. Mohr, Zivilingenieur, 1882, p. 113. See |

also his “Technische Mechanik,” 2d ed., 1914
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Comparing with Eqgs. (13) it is seen that the coordinates of point D
give the numerical values of stress components on the plane BC at the
angle «.  To bring into coincidence the sign of the shearing component
we take 7 positive in the upward direction (Fig. 13) and consider shear-
ing stresses as positive when they give a couple in the clockwise direc-
tion, as on the sides be and ad of the element abed (Fig. 13b). Shearing
stresses of opposite direction, as on the sides ab and dc of the element
are considered as negative.! ’
As the plane BC rotates about an axis perpendicular to the zy-plane
(Fig. 12) in the clockwise direction, and o« varies from 0 to x/2, the

T
~—0y; D
|
%
B cC F 14
o S
H \z i
D
%; gr—y>
(a) . 1
— &
(%)
Fie. 13.

point D in Fig. 13 moves from A to B, so that the lower half circle
determines the stress variation for all values of  within these limits.
The upper half of the circle gives stresses for /2 < @ < .

Prolonging the radius CD to the point D, (Fig. 13), .., taking the
angle T + 2a, instead of 2, the stresses on the plane perpendicular to
BC (Fig. 12) are obtained. This shows that the shearing stresses on
two perpendicular planes are numerically equal as previously proved.
{Xs for normal stresses, we see from the figure that OFy + OF = 20C
U6y the sum of the normal stresses over two perpendicular cross sec:
tions remains constant when the angle a changes.

‘\The n}aximum shearing stress is given in the diagram (Fig. 13) by
t%le maximum ordinate of the circle, 4.e., is equal to the radius of the
circle. Hence

g — Oy

Tmax. =— ) (1 5)

I .
at acts on the plane for which & = 7/4, i.e., on the plane bisecting the
ngle between the two principal stresses.

1epns . .
. 'This rule is used only in the construction of Mohr's circle. Otherwise the

rule given on p. 3 bolds.
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The diagram can be used also in the case when one or both principal
stresses are negative (compression). Itis only necessary to change the
sign of the abscissa for compressive stress. In this manner Fig. 14a
represents the case when both principal stresses are negative and
Fig. 14b the case of pure shear.

T
z /
i f\, o Ll \a,
2
D
Ox
% (a) 5)
Fia. 14.

From Figs. 13 and 14 it is seen that the stress at a point can be resolved into two
parts: One, uniform tension or compression, the magnitude of which is given by the
abscissa of the center of the circle; and the other, pure ghear, the magnitude of
which is given by the radius of the circle. When several plane stress distributions
are superposed, the uniform tensions or compressions can be added together

z 28

Y 5)
Fic. 15.

ars must be added together by taking into account

algébraically. The pure she
Tt can be shown that, if we

the directions of the planes on which they are acting.
superpose two systems of pure shear w
angle of 8 with each other, the resulting system will be another case of pure shear.
For example, Fig. 15 represents the determination of stress on any plane defined
by a, produced by two pure shears of magnitude =, and 72 acting one on the planes

hose planes of maximum shear make an %
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£z and yz (Fig. 15¢) and the other on the planes inclined to zz and yz by the angle
(Fig. 15b). In Fig. 15a.the coordinates of point D represent the shear and nofmzﬁ
stress on plane CB produced by the first system, while the coordinate of D, (Fi
15b) giv-es the stresses on this plane for the second system. Adding OD anld ODg'
geometnc‘a,lly we obtain OG, the resultant stress on the plane due to both s; stemsl
the coordinates of @ giving us the shear and normal stress. Note that the};na.gni:
tude of OG does not depend upon «. Hence, as the result of the superposition of
two Sl]loemgb v&;eh obiia,in a fMohr circle for pure shear, the magnitude of which is
given by OG, the planes of maximum shear being incli

B v malf the anele GOD, eing inclined to the xz and yz planes by

'A (%iagram, such as shown in Fig. 13, can be used also for determining
principal stresses if the stress compo-

nents ¢, gy, Ty for any two perpendicular T 2
planes (Fig. 12) are known. We begin %
in such a case with the plotting of the two *%
points D and D;, representing stress con- o < T
ditions on the two coordinate planes \ o, \ {
(Fig. 16). In this manner the diameter
DD, of the circle is obtained. Construet- 0
ing the circle, the principal stresses ¢y and %
o are obtained from the intersection of Fia. 16.
the circle with the abscissa axis. From the figure we find
0_1=00+CD=0'x‘|2'0'y+\/<0'x"2"0'y>2+7.w2
(16)

ISP =

The maximum shearing stress is given by the radius of the circle, <.e.,

1 or — ay\
"'mn~=§(¢71"02)=\/< 3 ”) + 747 (17)

;1(1)' tilis minner all necessary features of the stress distribution at a

it can i i
by e obtained if only the three stress components o, oy, 7o are
0}0. Strain at a Point.. When the strain components e, ¢, v at a
I(jf int are known, the unit elongation for any direction, and the decrease
o ;t glg?t angle—t}.le shearing strain—of any orientation at the point
ot :ai ound. A -llne element PQ (Fig. 17a) between the points (z,y),
o %, Y + dy) is translated, stretched (or contracted) and rotated
0 the line element P’Q’ when the deformation occurs. The dis-
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v, and those of Q are

ou u o o
u+5—£dx+5l—ldy, v—l—rﬁdx—}——dy

placement components of P are ¥,

ay

If P'Q’ in Fig. 17a is now translated so that P’ is brought back to P,
it is in the position PQ" of Fig. 17b, and QR, R(Q" represent the com-
ponents of the displacement of Q relative to P. Thus

_dug, 0 p Dy 2
The components of this relative displacement @S, SQ'", normal to
PQ" and along PQ", can be found from these as
QS = —QR sin 0 + RQ" cos 0, SQ"’ = QR cos 0+ RQ" sin 6 (b)

ignoring the small angle QPS in comparison with 6. Since the short
line QS may be identified with an arc of a circle with center P, 8Q"

~xy)
P < dx
0 (x+dxy+dy)
() Q 6)

Fia. 17.
gives the stretch of PQ. The unit elongation of P'Q’, denoted by e, 18
8Q"/PQ. Using (b) and (a) we have

o (wds  udi) (202, 0
eo—coso(ax ds+6y ds +Sm0(axds +6y ds

=§Ecos20+ ﬁ’f_‘_ﬁ'f sinecosﬂ—l-@—sin?B

ox dy = ox Y

or

€ = € c0s? 0 + Yz SiD § €OS 0 + € sin? 0 (c)

which gives the unit elongation for any direction 8.

The angle ¥ through which PQ is rotated is QS/PQ. Thus from (b) 1

and (a),

(i o avde , 0 dy
o= —sinb (ax ds " dyds + cos 8 (a:v risl ay ds)

or

9y

o, AW Cou .,
Y o cos? 8 + ( ax) sin 0 cos 8 3y sin? 6 (@)
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The line element PT at right angles to PQ mak
. loment _ ! ! es an angle 8 + (x/2)
with the z-direction, and its rotation Vo+lis therefore given by (d) when

g+ (x/2) 1is substituted for 6. Since cos [ .
: N = —
Sin [0 + (7['/2)] = COS 0, we ﬁnd [ + (‘ll'/ )] sin 0,
v du

1l'o+’—'=a—vsin20— @®_ : du
3 oz 3y oz sin ¢ cos 6 — 3 cos? 0 (e)

The shear strain v, for the directions PQ, PT is ¥» — ¥e47, 80
E’

v . ou
_ 2h o o ou .
o (690 + 5 (cos? 8 — sin? 6) + (5/ - 55) 2 sin 6 cos 0

or

3ve = 3V (cos? § — sin? ) + (¢, — €;) sin 6 cos 6 N
Comparing (c) and ( f) with (13), we observe that they may be obtained
from (13) by replacing o by es, 7 by v6/2, 02 bY €, 0y bY €, 72y BY Yar/2
and a by 6. .Consequently for each deduction made from (13) as t(;
¢ a/x;d T, ;lﬁere tl}s; a corresponding deduction from (c) and (f) as to e and
Yo/2. us there are two values of 6, differing by 90 i
vp is zero. They are given by ’ & by 90 deg, for which

Y _ — tan 26
€ — €&
ghe corresponding stra‘ins o are principal strains. A Mohr circle
iagram z.malogous to Fig. 13 or Fig. 16 may be drawn, the ordinates
;epresentmg 'y?/ 2 and the abscissas ¢5. The principal s‘;rains €1, €2 will
Tt; the algebraically greatest and least values of ¢ as a functic;n of 6
‘he greatest value of y4/2 will be represented by the radius of th.
circle. Thus the greatest shearing strain vs max. is given by °

Yo max, = €1 — €2

tio::lls. xzasu:fement of Surface Strains. The strains, or unit elonga-
elect;-ic-re SI}0 ace are 1.1sua,11y most conveniently measured by means of
T 1s1s aﬁce St.I‘alI'l gauges.! The simplest form of such a gauge
s ength of wire u?sulated from and glued to the surface. When
o thus%) occurs the res1sta¥1ce of the wire is increased, and the strain
Toopin the n}easured electrically. The effect is usually magnified by
foune in e I\lmres backwa:rd an.d forward several times, to form several
o gths connected in series. The wire is glued between two tabs
%;alper, and the assembly glued to the surface.
e use of these gauges is simple when the principal directions are

! A detailed account i i
of thi t i i .
Stress Analysis,” Chaps. 5 8»1:1 ;ng'hod is given in the ‘“Handbook of Experimental
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known. One gauge is placed along each principal direction and direct
measurements of e, ez obtained. The principal stresses o1, 02 May then
be calculated from Hooke’s law, Egs. (38), with o, = 01, 0y = 0
0. = 0, the last holding on the assumption that there is no stress acting
on the surface to which the gauges are attached. Then

(1 - V2)0'1 = E(€1 '+‘ 1’62), (1 - V2)0'2 = E(éz + V€1)

When the principal directions are not known in advance, three meas-
urements are needed. Thus the state of strain is completely deter-

mined if e, €, v can be measured. But since the strain gauges meas-

c E’?’o D
P
~F cll Fl2 %

Cuiprp Card €y

(3] b) (c)
Fia. 18.

ure extensions, and not shearing strain directly, it is convenient to
measure the unit elongations in three directions at the point. Such a
set of gauges is called a ¢“gtrain rosette.” The Mohr circle can be
drawn by the simple construction! given in Art. 12, and the principal
strains can then be read off. The three gauges are represented by the
three full lines in Fig. 18a. The broken line represents the (unknown)
direction of the larger principal strain e, from which the direction of
the first gauge is obtained by a clockwise rotation ¢.

If the z- and y-directions for Egs. (c) and (f) of Art. 10 had been
taken as the principal directions, e would be ¢, & would be €3, and vz
would be zero. The equations would then be

¢s = €1 cos? 0 4 ez sin’ 6, Lys = —(ex — €2) sin 6 cos 8
where 8 is the angle measured from the direction of €. These may be
written

e = e + &) + ¥(ex — e2) cos 26, 3vo = —%(er — €) sin 20

and these values are represented by the point P on the circle in Fig. 18c.
If 6 takes the value ¢, P corresponds to the point A on the circle in Fig.

1 Glenn Murphy, J. Applied Mechanics (Trans, A.8.M.E.), vol. 12, p. A-209,
1945; N. J. Hoff, ibid,
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185, jche angular displacement from the esaxis being 2¢. The abscissa
of this point is ey, which is known. If 6 takes the value ¢ + o, P move;
to B, through a further angle AFB = 2a, and the abscissa is tile know1;
value exrs. If 0 takes the value ¢ 4+ a + 8, P moves on to C, through
a further angle BFC = 28, and the abscissa iS €xt844. ’ ¢

The problem is to draw the circle when these three abscissas and the
two angles «, 8 are known.

12. Cons:truction of Mohr Strain Circle for Strain Rosette. A tem-
porary horizontal e-axis is drawn horizontally from any origin 0’, Fi
18b, .and the three measured strains e;, €xig, €xrsrs laid off alox,lg i%'
Vertlcal.s are drawn through these points. Selecting any point D or;
the vert}cal through €.y, lines DA, DC are drawn at angles o and 8 to
the ve?rtlcal at D as shown, to meet the other two verticals at 4 and C
Tbe circle dl:awn through D, A, and C is the required circle. Its cente1:
F is determined by the intersection of the perpendicular bisectors of
CD, DA. 'The points representing the three gauge directions are 4
B, and C . The angle AFB, being twice the angle ADB at the circum:
ference, is 2, and BFCis28. Thus A, B, C are at the required angular
mt'ervals round the circle, and have the required abscissas. The e
axis can now be drawn as OF, . :

?,nd the distances from O to the *
intersections with the circle give @y )y
€1, ¢2. The angle 2¢ is the angle
‘of FA below this axis. y (e
13 Differential Equations of h 4
E}ilulhbrium. We now consider ays
the equilibrium of a small rectan: 3 1
- (0. (x.y)
gul.ar blo.ck of edges h, k, and < =k
unity (Fig. 19). The stresses 2 Tyt
a,ctl.ng on the faces 1, 2, 3, 4, and (Tryle
tl}elr positive directions are in- 17
dicated in the figure. On ac- k&
Fia. 19.

count of the variation of stress

:Eroughout the material, the value of, for instance, ¢, is not quite

e same for fac.e 1 as for face 3. The symbols ¢, gy, 7y refer to the

i:;ldn_t % 9, the mid-point of the rectangle in Fig. 19. The values at the

o é)e(;mts ofliahe faces are denqted by (02)1, (¢2)3, etc. Since the faces

e y small, the corresponding forces are obtained by multiplying
se values by the areas of the faces on which they act.!

re precise Consld
1 \/l() erations W()uld mtroduce terms Of hlgheI OIdel WhICh
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The body force on the block, which was neglected as a small guantity
of higher order in considering the equilibrium of the triangular prism
of Fig. 12, must be taken into consideration, because it is of the same
order of magnitude as the terms due to the variations of the stress
components which are now under consideration. If X, ¥ denote the

~components of body force per unit volume, the equation of equilibrium
for forces in the z-direction is

’ (0’1)110 - (0':)3]9 + (Try)2h - (Tzu)4h + Xhk = 0
or, dividing by Ak,

(‘71)1 — (0'::)3 (Tz'y)tz - (Tz‘u)4 _
oy Uk x <0

If now the block is taken smaller and smaller, t.e., h— 0, k — 0, the
limit of [(62)1 — (02)s]/h is do./3x by the definition of such a derivative.
Similarly [(7z)s — (7)4]/k becomes dr,,/3y. The equation of equi-

librium for forces in the y-direction is obtained in the same manner.
Thus

0o, 072y _
Ty TX=0 18)
9oy , 91y =
0y+ 6x+Y—O

In practical applications the weight of the body is usually the only
body force. Then, taking the y-axis downward and denoting by p the
mass per unit volume of the body, Eqs. (18) become

90z 4 O7my
oz Y

doy |, Oty _
3y or +pg=0

(19)

These are the differential equations of equilibrium for two-dimensional
problems.

. .14. Boundary Conditions. Equations (18) or\(19) must be satisfied

at all points throughout the volume of the body. The stress compo-
nents vary over the volume of the plate, and when we arrive at the

‘boundary they must be such as to be in equilibrium with the external

forces on the boundary of the plate, so that external forces may be
regarded as a continuation of the internal stress distribution. These
conditions of equilibrium at the boundary can be obtained from Eqgs.
(12). Taking the small triangular prism OBC (Fig. 12), so that the
side BC coincides with the boundary of the plate, as shown in Fig. 20,
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and denoting by X and ¥ the components of the surface forces per unit
area at this point of the boundary, we have

X=lcz+m7ﬂ

> 20
Y = moy + lryy (20)

in which ! and m are the direction cosines of the normal N to the
boundary.

In the particular case of a rectangular plate the coordinate axes are
usually taken parallel to the sides of the plate and the boundary condi-
tions (20) can be simplified. Taking, for instance, a side of the plate
parallel to the z-axis we have for this part of the boundary the normal
N parallel to the y-axis; hence I = 0 and
m = +1. Equations (20) then become x

X=1+ry Y=tq

Here the positive sign should be taken if the

normal N has the positive direction of the y N
y-axis and the negative sign for the opposite Y
direction of N. It is seen from this that at Fia. 20.

the boundary the stress components become equal to the components
of the surface forces per unit area of the boundary.

15. Compatibility Equations. The problem of the theory of elas-
ticity usually is to determine the state of stress in a body submitted to
the action of given forces. In the case of a two-dimensional problem
it is necessary to solve the differential equations of equilibrium (18),
and the solution must be such as to satisfy the boundary conditions
(20). These equations, derived by application of the equations of
statics for absolutely rigid bodies, and containing three stress compo-
nents o, 0y, Ty, are not sufficient for the determination of these compo-
nents. The problem is a statically indeterminate one, and in order to
obtain the solution the elastic deformation of the body must also be
considered. :

The mathematical formulation of the condition for compatibility of
stress distribution with the existence of continuous functions u, v, w
defining the deformation will be obtained from Eqgs. (2). In the case
of two-dimensional problems only three strain components need be
considered, namely,

u 1) ou a
_— —_ = — ot a
€ = oz & ay’ Yoy 3y + o9z ()

X

These three strain components are expressed by two functions  and v;
hence they cannot be taken arbitrarily,-and there exists a certain rela-
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tion between the strain components which can easily be obtained from
(a). Differentiating the first of the Eqs. (a) twice with respect to y,
the second twice with respect to z, and the third once with respect to z
and once with respect to y, we find

%, , 0%, _  O'vy

o T o "z ay (21)

This differential relation, called the condition of compatibility, must be
satisfied by the strain components to secure the existence of functions
u and v connected with the strain components by Egs. (a). By using
Hooke’s law, [Eqgs. (3)], the condition (21) can be transformed into a
relation between the components of stress.

In the case of plane stress distribution (Art. 7), Egs. (3) reduce to

1 1 )
& =7 (0. — voy), @ =% {6y — vo2) (22)
1 2(1

Substituting in Eq. (21), we find

92 0?2
Fe (6 — vay,) + Fy (65 — vor) = 2(1 + v)

0%y

dz dy ®)

This equation can be written in a different form by using the equations
of equilibrium. For the case when the weight of the body is the only
body force, differentiating the first of Eqgs. (19) with respect to  and
the second with respect to y and adding them, we find

dx 9y axt 3yt

Substituting in Eq. (b), the compatibility equation in terms of stress
components becomes

92 a2
(&3 + a_y2> (6z4+0,) =0 (24)

Proceeding in the same manner with the general equations of equilib-
rium (18) we find : ’

9? 92 ax | av\ ...
(B—x2+<9—y2> (0z+0) = —(1+») (H'I"a_y) (25)
In the case of plane strain (Art. 8), we have

O = "(a'z + a'v)
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and from Hooke’s law (Egs. 3), we find

1 2
& =% [A — o, — v(1 + v)oy)

1 (26)
o = 3 [(1 = o, — »(1 + v)eu)
v = 222 ; " @7)

Substituting in Eq. (21), and using, as before, the equations of equilib-
rium (19), we find that the compatibility equation (24) holds also for
plane strain. For the general case of body forces we obtain from Egs.
(21) and (18) the compatibility equation in the following form:

9? a? 1 aX | aY
(a—x?"'a—gﬁ)(""l"””):_l——v(%_i-@_ (28)

The equations of equilibrium (18) or (19) together with the boundary
conditions (20) and one of the above compatibility equations give us a
system of equations which is usually sufficient for the complete deter-
mination of the stress distribution in a two-dimensional problem.!
The particular cases in which certain additional considerations are
necessary will be discussed later (page 117). It is interesting to note
that in the case of constant body forces the equations determining
stress distribution do not contain the elastic constants of the material.
Hence the stress distribution is the same for all isotropic materials, pro-
vided the equations are sufficient for the complete determination of the
stresses. The conclusion is of practical importance: we shall see later
that in the case of transparent materials, such as glass or xylonite, it is
possible to determine stresses by an optical method using polarized
light (page 131). From the above discussion it is evident that experi-
mental results obtained with a transparent material in most cases can
be applied immediately to any other material, such as steel.

It should be noted also that in the case of constant body forces the
compatibility equation (24) holds both for the case of plane stress and
for the case of plane strain. Hence the stress distribution is the same
In these two cases, provided the shape of the boundary and the external
forces are the same.?

! In plane stress there are compatibility conditions other than (21) which are in
fact violated by our assumptions. It is shown in Art. 84 that in spite of this the
method of the present chapter gives good approximations for thin plates.

2 This statement may require modification when the plate or cylinder has holes,
for then the problem can be correetly solved only by considering the displace-
ments as well as the stresses. See Art. 39.
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16. Stress Function. It has been shown that a solution of two-
dimensional problems reduces to the integration of the differential
equations of equilibrium together with the compatibility equation and
the boundary conditions. If we begin with the case when the weight
of the body is the only body force, the equations to be satisfied are (see
Eqgs. 19 and 24)

995 | 07wy

o oy =0
Sy 1 v 4 g =0 @
Y ox TP
02 0?2
(59—0—2 + 5@—2) (6:+0,) =0 )

To these eqﬁations the boundary conditions (20) should be added.
The usual method of solving these equations is by introducing a new
function, called the siress function.! As is easily checked, Eqgs. (a) are

satisfied by taking any function ¢ of z and y and putting the following
expressions for the stress components:

_ o _ % 8%
Oz = ayz PGy, oy = 'a_xE PgY, Toy = — o ay

(29)

In this manner we can get a variety of solutions of the equations of
equilibrium (a). The true solution of the problem is that which satis-
fies also the compatibility equation (b). Substituting expressions (29)
for the stress components into Eq. (b) we find that the stress function
¢ must satisfy the equation

Vo, , ' . o _
dx* az? 9y? + ayt 0 (30)

Thus the solution of a two-dimensional problem, when the weight of
the body is the only body force, reduces to finding a solution of Eq. (30)
which satisfies the boundary conditions (20) of the problem. In the

following chapters this method of solution will be applied to several
examples of practical interest.

Let us now consider a more general case of body forces and assume that these

rorces have a potential. Then the components X and Y in Eqgs. (18) are given
by the equations

1 This function was introduced in the solution of two-dimensional problems by
G. B. Airy, Brit. Assoc. Advancement Sci. Rept., 1862, and is sometimes called the
Airy stress function.
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X=-% ©

v=-% ”
-

in which V is the potential function. Equations (18) become

OTzy

a _—
—_— (a,‘— V) + % =0
a3 L OTzy
2 - +¥ -0

These equations are of the same form as Egs. (a) and can be satisfied by taking

62¢ 32¢ _ a2¢

gz — = — oy — = — Tay = — az oy

@1)

in which ¢ is the stress function. Substituting expressions (31) in the compati-
bility equation (25) for plane stress distribution, we find

P g 00 L P (azv v

azt aztoyr | oyt ozt T Byt

(32)
An analogous equation can be obtained for the case of plane strain.

When the body force is simply the weight, the potential V is —pgy. In this
case the right-hand side of Eq. (32) reduces to zero. By taking the solution ¢ = 0
of (32), or of (30), we find the stress distribution from (31), or (29),

0z = —pgy, Oy = —pgy, Toy =0 (d)

as a possible state of stress due to gravity. This is a state of hydrostatic pressure
egy in two dimensions, with zero stress at y = 0. It can exist in a plate or eylinder
of any shape provided the corresponding boundary forces are applied. Consider-
ing a boundary element as in Fig. 12, Eqgs. (13) show that there must be a normal
pressure pgy on the boundary, and zero shear stress. If the plate or eylinder is to
be supported in some other manner we have to superpose s boundary normal
tension pgy and the new supporting forces. The two together will be in equilibrium,
and the determination of their effects is a problem of boundary forces only, without
body forces.!

Problems

1. Show that Egs. (12) remain valid when the element of Fig. 12 has acceleration.
2. Find graphically the principal strains and their directions from rosette
measurements

&g =2 X 1073, earp = 1.35 X 1073, eaifire = 0.95 X 1073 in. per inch
where o = g = 45°,

! This problem, and the general case of a potential V such that the right-hand
side of Eq. (32) vanishes, have been discussed by M. Biot, J. Applied Mechanics
(Trans. A.8.M.E.), 1935, p. A-41,
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8. Show that the line elements at the point z, y which have the maximum and
minimum rotation are those in the two perpendicular directions ¢ determined by

tan 20 = @ )/(

4. The stresses in a rotating disk (of unit thlckness) can be regarded as due to
centrifugal force as body force in a stationary disk. Show that this body force is
derivable from the potential V = —3}pw?(z? + y?), where p is the density, and o the
angular velocity of rotation (about the origin).

b. A disk with its axis horizontal has the gravity stress represented by Egs.
(d) of Art. 16. Make a sketch showing the boundary forces which support its
weight. Show by another sketch the auxiliary problem of boundary forces which
must be solved when the weight is entirely supported by the reaction of a horizontal
surface on which the disk stands.

6. A cylinder with its axis horizontal has the gravity stress represented by Egs.
(d) of Art. 16. Its ends are confined between smooth fixed rigid planes which
maintain the condition of plane strain. Sketch the forces acting on its surface,
including the ends.

7. Using the stress-strain relations, and Eqs. () of Art. 15 in the equations of
equilibrium (18), show that in the absence of body forces the displacements in
problems of plane stress must satisfy

o , 0% , 1+ v 2}

azt 3y2+1—p¢9x +ay =0

and a companion equation.

8. The figure represents a ‘“‘tooth” on a plate in a state of plane stress in the
plane of the paper. The faces of the tooth (the two straight lines) are free from
force. Prove that there is no stress at all at the apex of the tooth. (¥.B.: The
same conclusion cannot be drawn for a reentrant, ¢.e., internal, corner.)

CHAPTER 3

TWO-DIMENSIONAL PROBLEMS
IN RECTANGULAR COORDINATES

17. Solution by Polynomials. It has been shown that the solution
of two-dimensional problems, when body forces are absent or are con-
stant, is reduced to the integration of the differential equation
34¢ a4¢ a4¢ _
50?+2ax26y2+6y4 =0 (a)
having regard to boundary conditions (20). In the case of long
rectangular strips, solutions of Eq. (a) in the form of polynomials are
of interest. By taking polynomials
of various degrees, and suitably ad- @z =62 ¢

. { {
justing their coefficients, a number of ‘_.L.L.L—T——L.L.L. ;
practically important problems can be R .
solved.! M >

Beginning with a polynomial of the ‘__ —
second degree e
c y
¢y = %2 2? + bazy + 52 v () Fa. 21.

which evidently satisfies Eq. (a), we find from Egs. (29), putting
pg =0,
3%, 9%¢s %P2

= Cg, Ty = ————axz = Qg Toy = — 7= = —bz

All three stress components are constant throughout the body, i.e., the
stress function (b) represents a combination of uniform tensions or
compressions? in two perpendicular directions and a uniform shear.
The forces on the boundaries must equal the stresses at these points as
discussed on page 23; in the case of a rectangular plate with sides
parallel to the coordinate axes these forces are shown in Fig. 21.

1 A. Mesnager, Compt. rend., vol. 132, p. 1475, 1901. See also A. Timpe, Z
Math. Physik, vol. 52, p. 348, 1905.
2 This depends on the sign of coefficients a: and bs. The directions of stresses
indicated in Fig. 21 are those corresponding to positive values of as, bs, cs.
29



30 THEORY OF ELASTICITY

Let us consider now a stress function in the form of a polynomial of
the third degree:

¢s = x3+—xy+

x 3 2y ©

This also satisfies Eq. (a). Using Eqgs. (29) and putting pg = 0, we
find

93

02 = gz = OF + day
62
ay = 6;;3 = azr + bsy
- _ s _ —
T = T 9z ay b — cay

For a rectangular plate, taken as in Fig. 22, assuming all coefficients
except d3 equal to zero, we obtain pure bending. If only coefficient a;
is different from zero, we obtain pure bending by normal stresses
applied to the sides y = +c of the plate. If coefficient b or c3 is taken

|2 N R e
F4 % ’ b5l
] I o B —%
~ 1 X i t
el = FT T T pee
4 - ‘
Yy 4
Fig. 22. Fia. 23.

different from zero, we obtain not only normal but also shearing
stresses acting on the sides of the plate. Figure 23 represents, for
instance, the case in which all coefficients, except b; in function (c), are
equal to zero. The directions of stresses indicated are for b; positive.
Along the sides y = +c¢ we have uniformly distributed tensile and
compressive stresses, respectively, and shearing stresses proportional
tox. Onthesidex = I wehave only the constant shearing stress —bjl,
and there are no stresses acting on the sidex = 0. An analogous stress
distribution is obtained if coefficient c; is taken different from zero.
In taking the stress function in the form of polynomials of the second
and third degrees we are completely free in choosing the magnitudes of
the coefficients, since Eq. (a) is satisfied whatever values they may
have. In the case of polynomials of higher degrees Eq. (a) is satisfied
only if certain relations between the coefficients are satisfied. Taking,

L

N
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for instance, the stress function in the form of a polynomial of the
fourth degree,

¥+ xy+

by = 4 3 3+‘1‘2§?/4 (d)

and substituting it into Eq. (@), we find that the equation is satisfied
only if
ey = "'(204 + a4)

The stress components in this case are

("2
gz = 6;"4 = ¢ + dxy — (2¢4 + ag)y?
a2
oy = aﬁ; = ax? + by + cuy?
0% — bse , ds ,
T T gray s 2% 28y~ Y

Coeflicients a4, . . . , ds in these expressions are arbitrary, and by
suitably adjusting them we obtain various conditions of loading of a
rectangular plate. For instance, taking all coeflicients except ds equal

to zero, we find
_ & U (e)
2

Assuming ds positive, the forces acting on the rectangular plate shown
in Fig. 24 and producing the stresses (e) are as given. On the longi-
tudinal sides ¥y = ¢ are uniformly distributed shearing forces; on the
ends shearing forces are distributed according to a parabolic law. The
shearing forces acting on the boundary | . o+ —» v —vos

o, = dyy, oy =0, Tey =

of the plate reduce to the couple! t % i_—
x
_ d402l A 1 d4C 1 2 3 ) 1 4"
M="92-35 2l=3zd? § & _
This couple balances the couple pro- d
duced by the normal forces along the
side x = [ of the plate. Fic. 24.

Let us consider a stress function in the form of a polynomial of the
fifth degree.

-9 5, b, €5 g9, s 5o € o f5oog
S =5t TtV gVt g gt gy

)

! The thickness of the plate is taken equal to unity.
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Substituting in Eq. () we find that this equation is satisfied if

€ = —(265 + 3(15)
-~ fs = —%(bs + 2ds)

The corresponding stress components are:

i

o = 995 = %8 s + dszty — (2¢5 + 3as)zy® — % (bs + 2ds)y?

oy? 3
92 d
oy = —éTd); = a5z + bsx’y + csry® + gs y?
2 1 1
Tay = — ;ﬁy‘ = — -3- bal's — caxzy - dsxy2 + g (265 + 3&5)_1/3
Again coefficients as, . . . , ds are arbitrary, and in adjusting them

we obtain solutions for various loading conditions of a plate. Taking,

RN —

T —r — —
¢ - ¢ !
4 X } x
t - i 4
¢ . — i It
T T T T T T Raatzie-2c9 ;
d.
L Fe? y
y (@) &)
Fia. 25.
for instance, all coefficients, except ds, equal to zero we find
Oy = dﬁ(x2y - %ys)
oy = §dsy® )

Ty = —dszy?

The normal forces are uniformly distributed along the longitudinal
sides of the plate (Fig. 25a). Along the side z = [, the normal forces
consist of two parts, one following a linear law and the other following
the law of a cubic parabola. The shearing forces are proportional to «
on the longitudinal sides of the plate and follow a parabolic law along
theside x = I. The distribution of these stresses is shown in Fig. 25b.

Since Eq. (a) is a linear differential equation, it may be concluded
that a sum of several solutions of this equation is also a solution. We
can superpose the elementary solutions considered in this article and
in this manner arrive at new solutions of practical interest. Several
examples of the application of this method of superposition will be
considered.
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18. Saint-Venant's Principle.! In the previous article several cases
were discussed in which exact solutions for rectangular plates were
obtained by taking very simple forms for the stress function ¢. In
each case all the equations of elasticity are satisfied, but the solutions
are exact only if the surface forces are distributed in the manner given.
In the case of pure bending, for instance (Fig. 22), the bending moment
must be produced by tensions and compressions on the ends, these
tensions and compressions being proportional to the distance from the
neutral axis. The fastening of the end, if any, must be such as not to
interfere with distortion of the plane of the end. If the above condi-
tions are not fulfilled, ¢.e., the bending moment is applied in some
different manner or the constraint is such that it imposes other forces
on the end section, the solution given in Art. 17 is no longer an exact
solution of the problem. The practical utility of the solution however
is not limited to such a specialized case. It can be applied with suffi-
cient accuracy to cases of bending in which the conditions at the ends
are not rigorously satisfied. Such an extension in the application of
the solution is usually based on the so-called principle of Saint-Venant.
This principle states that if the forces acting on a small portion of the
surface of an elastic body are replaced by another statically equivalent
system of forces acting on the same portion of the surface, this redis-
tribution of loading produces substantial changes in the stresses locally
but has a negligible effect on the stresses at distances which are large in
comparison with the linear dimensions of the surface on which the
forces are changed. For instance, in the case of pure bending of a
rectangular strip (Fig. 22) the cross-sectional dimensions of which are
small in comparison with its length, the manner of application of the
external bending moment affects the stress distribution only in the
vieinity of the ends and is of no consequence for distant cross sections,
at which the stress distribution will be practically as given by the solu-
tion to which Fig. 22 refers.

The same is true in the case of axial tension. Only near the loaded
end does the stress distribution depend on the manner of applying the
tensile force, and in cross sections at a distance from the end the
stresses are practically uniformly distributed. Some examples illus-
trating this statement and showing how rapidly the stress distribution

‘bécomes practically uniform will be discussed later (see page 52).

1 This principle was stated in the famous memoir on torsion in Mém. savants
éirangers, vol. 14, 1855. Its relation to the principle of conservation of energy is
discussed later (see p. 150).
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. 19. Determination of Displacements. When the components of
stress are found from the previous equations, the components of strain
can be obtained by using Hooke’s law, Eqgs. (3) and (6). Then the
displacements « and v can be obtained from the equations

du ov du , 9
W W 5?‘/‘4-&—7@ (a)
The integration of these equations in each particular case does not
present any difficulty, and we shall have several examples of their
application. It may be seen at once that the strain components (a)
remain unchanged if we add to u and » the linear functions

u = a + by, v =c¢ — bz )

in which @, b, and ¢ are constants. This means that the displacements
are not entirely determined by the stresses and strains. On the dis-
placements due to the internal strains a displacement like that of a
rigid body can be superposed. The constants a and ¢ in Egs. (b) repre-
sent a translatory motion of the body and the constant b is a small
angle of rotation of the rigid body about the z-axis.

1t has been shown (see page 25) that in the case of constant body
forces the stress distribution is the same for plane stress distribution or
plane strain. The displacements however are different for these two
problems, since in the case of plane stress distribution the components
of strain, entering into Eqgs. (@), are given by equations

1 1 1
€ = ‘E (o'z - Vau)y € = E (‘Tu - va,,), Yoy = GTW

and in the case of plane strain the strain components are:

(o2 = 3oy + 0] = 2 [(1 = oz — »(1 + 1o,

€ — E

& = é[ﬂ',’ — v(oz + 0',)] = % [(1 - V2)‘71I - V(l + V)O'I]
1

Yoy = (_;Try

Tt is easily verified that these equations can be obtained from the pre-
ceding set for plane stress by replacing E in the latter by E/(1 — »?),
and » by »/(1 — »). These substitutions leave @, which is £ /2(1 + v),
unchanged. The integration of Egs. (a) will be shown later in dis-
cussing particular problems.
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20. Bending of a Cantilever Loaded at the End. Consider a canti-
lever having a narrow rectangular cross section of unit width bent by a
force P applied at the end (Fig. 26). The upper and lower edges are
free from load, and shearing forces, having a resultant P, are dis-
tributed along the end = 0. These conditions can be satisfied by a
proper combination of pure shear,

with the stresses (e¢) of Art. 17 repre- ~Z 4
sented in Fig. 24. Superposing the T
pure shear 7., = —bs on the stresses Xc x
e), we find ¢
(e), D 1 7
o, = dazy, oy =0 '
) d a Yy
Ty = —bs — 54 y? @ Fia. 26.

To have the longitudinal sides ¥ = = ¢ free from forces we must have

(Tam)u=;|:c = —by — 3 ¢2=0

from which
d4 = — =

To satisfy the condition on the loaded end the sum of the shearing
forces distributed over this end must be equal to P. Hence?!

—[_crw-dy=/_ (bz-—lc)—:yz)dy=P

_3P
T 4e¢

from which
be

Substituting these values of ds and b, in Eqs. (a) we find

3P

a,=—§5§xy, O'y=0

3P Y2
()

Noting that $¢? is the moment of inertia I of the cross section of the
cantilever, we have

a;ré—}%/; ray=0
P1 ©)
Toy = —Ti(cz*lﬂ)

! The minus sign before the integral follows from the rule for the sign of shearing
stresses. Stress 7., on the end z = 0 is positive if it is upward (see p. 3).
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This coincides completely with the elementary solution as given in
books on the strength of materials. It should be noted that this
solution represents an exact solution only if the shearing forces on the
ends are distributed according to the same parabolic law as the shear-
ing stress 7., and the intensity of the normal forces at the built-in end
is proportional to y. If the forces at the ends are distributed in any
other manner, the stress distribution (b) is not a correct solution for the
ends of the cantilever, but, by virtue of Saint-Venant’s principle, it can
be considered satisfactory for cross sections at a considerable distance
from the ends.

Let us consider now the displacement corresponding to the stresses
(b). Applying Hooke’s law we find

_du _ g, _ _ Pzy _ & _ _ vo. _ vPay
=% -E_ ~EI' ““ "9 < E EI ©
_du T P s o
’YW—@—*_GIE—G—' 2IG(C y) (d)

The procedure for obtaining the components % and v of the displace-
ment consists in integrating Egs. (¢) and (d). By integration of Egs.

(c) we find
P 2 P 2
w=—opl + 1@, v="gpr TH®

in which f(y) and fi(z) are as yet unknown functions of y only and =
only. Substituting these values of u and v in Eq. (d) we find
P2 | df wPy? | dfi(x) _ _

_ & () f_ — 2
sgIt ay Tomr v as sig & — V)

In this equation some terms are functions of = only, some are functions
of y only, and one is independent of both and y. Denoting these
groups by F(z), G(y), K, we have

_ _ P2 dh(@ _dfy) , Py’ _ Py

F@) = -5z +-g W =" 38~ 2@
Pe?
K=-3m@

and the equation may be written
Fz) + G@) = K

Such an equation means that F(z) must be some constant d and G(y)
some constant e. Otherwise F(z) and G(y) would vary with z and y,
cespectively, and by varying « alone, or y alone, the equality would be
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violated. Thus
_ Pe
[4 + d= — m (8)
and
dfi(x) _ Pax? df(y) Py: | Py?
& —2EITY g T~ omitagte
Functions f(y) and fi(x) are then
_ _vPy* | Py?
3
@) = E2 - do o+ b
Substituting in the expressions for u and » we find
- _ Iﬂ __wPy* | Py?
“= 281 "6Er terg Tt
vPry? )

_ Px?

The constants d, ¢, g, h may now be determined from Eq. (e) and from
the three conditions of constraint which are necessary to prevent the
beam from moving as a rigid body in the zy-plane. Assume that the
point 4, the centroid of the end cross section, is fixed. Then u and v
are zero for x = [, y = 0, and we find from Egs. (g),

_pe
6E1
The deflection curve is obtained by substituting ¥ = 0 into the

second of Egs. (9). Then

g=0, k= dl

(©)y=0 = 6EI ~ 6EI d(l — ) (h)

For determining the constant d in this equation we must use the third
condition of constraint, eliminating the possibility of rotation of the
beam in the xy-plane about the fixed point A. This constraint can be
realized in various ways. Let us consider two cases: (1) When an ele-
ment of the axis of the beam is fixed at the end A. Then the condition

of constraint is
D)
(32)ezs =0 w

(2) When a vertical element of the cross section at the point A is fixed,
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Then the condition of constraint is

(%Z);:a =0 @

In the first case we obtain from Eq. (k)

pr?

4= ~2g1
and from Eq. (¢) we find
o _Pe

2EI 2I@G

Substituting all the constants in Eqs. (g), we find

_ _Pzy wPy* Py (P2 Pc
= —3p7r ~eEI T elG " \2EI ~ 21G)Y )
yPry*  Px® Plz | PI m

v=5pr t§m1 ~ 2mI T 3EI

The equation of the deflection curve is

()0 = FZ° _ Pz PI )
v=0" 6EI = 2EI ' 3EI

which gives for the deflection at the loaded end (z = 0) the value
P13/3EI. 'This coincides with the value usually derived in elementary
books on the strength of materials.

To illustrate the distortion of cross sections produced by shearing
stresses let us consider the displacement u at the fixed end (z = I).
For this end we have from Eqgs. (m),

‘ _ _vPy? Py*  Pcty
We=t = — 557 T 616 ~ 2UG
o) _ e Py P
(@)M = ~3gr T 216 T 2IG )

owy ~_ _be 3P

ay)izh T T 2IG T 4G
The shape of the cross section after distortion is as shown in Fig. 27a.
Due to the shearing stress ., = —3P/4c¢ at the point A, an element of
the cross section at A rotates in the zy-plane about the point 4 through

an angle 3P/4¢@ in the clockwise direction.
If a vertical element of the cross section is fixed at A (Fig. 270h).
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instead of a horizontal element of the axis, we find from condition (I)
and the first of Eqgs. (g)

oo P

T 2EI
and from Eq. (¢) we find

PR S i

2EI 2IG

Substituting in the second of Egs. (g) we find
_ Pg* PP’z Pl Pc
(®)y=0 = SFI 2—Ef+m+m(l_$) (r)

Comparing this with Eq. (n) it can be concluded that, due to rotation

Fia. 27.

of the end of the axis at A (Fig. 27b), the deflections of the axis of the
cantilever are increased by the quantity

Pc? 3r
s (=) =50 -2)

This is the so-called effect of shearing force on the deflection of the beam.
In practice, at the built-in end we have conditions different from those
shown in Fig. 27. The fixed section is usually not free to distort
and the distribution of forces at this end is different from that given
by Egs. (b). Solution (b) is, however, satisfactory for compara-
tively long cantilevers at considerable distances from the terminals.
21. Bending of a Beam by Uniform Load. Let a beam of narrow
rectangular cross section of unit width, supported at the ends, be bent
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by a uniformly distributed load of intensity ¢, as shown in Fig. 28
The conditions at the upper and lower edges of the beam are:

Ta)ymse = 0, (09)y=tc = 0, (ey)y=—o = —¢ (a)
The conditions at the ends z = +1 are
[rmdy=Fa,  [edy=0 [ oyd=0 ®

The last two of Eqs. (b) state that there is no longitudinal force and no
bending couple applied at the ends of the beam. All the conditions
(a) and (b) can be satisfied by combining certain solutions in the form

1 q
1l1lll121ll}q _'H‘- %{
| =
1 U i
l 2 A2l
Y
(@ 6) (c)

Fia. 28.

of polynomials as obtained in Art. 17. We begin with solution (g)
illustrated by Fig. 25. To remove the tensile stresses along the side
y = ¢ and the shearing stresses along the sides y = +¢ we superpose a
simple compression ¢, = a, from solution (b), Art. 17, and the stresses
oy = bsy and 7.y = —bsr in Fig. 23. In this manner we find

o = ds(z% — 3%
oy = 3dsy® + b3y + a: ()
Toy = —dsty? — bsx

From the conditions (a) we find

—dge? — b3 =0
¥dsc® + bic + a2 =0
—3dsc® — b + a2 = —¢q
from which
34q 3q
B=—F b=y d=-ig

Substituting in Eqgs. (¢) and noting that 2¢3/3 is equal to the moment of
inertia I of the rectangular cross-sectional area of unit Width, we find
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3q 2 \__4 2
%= w(ﬁy —gys) - Tor\"v —3¥
__ 3% _ gl s_ . 2
oy = 403 3y —c2y+—c>— 2—1(321 cy+3c (d)
Toy = — @ (¢*—yi)z = — 53 (c2 — Yz

It can easily be checked that these stress components satisfy not only

conditions (a) on the longitudinal sides but also the first two conditions

(b) at the ends. To make the couples at the ends of the beam vanish

we superpose on solution (d) a pure bending, 0. = dsy, 6y = 7y = 0,

shown in Fig. 22, and determine the constant d; from the condition at
= Xl

y3) + day] ydy =0

=84, 2,y 3¢ _2
9= = 4c3(” 3¥)tic\e—35)Y
=l 2 _1,23__2_2
7 x2)y+2l<3y 5 %Y

The first term in this expression represents the stresses given by the
usual elementary theory of bending, and the second term gives the
necessary correction. This eorrection does not depend on z and is
small in comparison with the maximum bending stress, provided the
span of the beam is large in comparison with its depth. For such
beams the elementary theory of bending gives a sufficiently accurate
value for the stresses ¢,. It should be noted that expression (33) is an
exact solution only if at the ends x = X! the normal forces are dis-
tributed according to the law

= 3q{f2 2
X = 463(:0;1’“‘302?/)

1.e., if the normal forces at the ends are the same as ¢, forz = +1Ifrom
Eq.‘ (33). These forces have a resultant force and a resultant couple
equal to zero. Hence, from Saint-Venant’s principle we can conclude

33)
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that their effects on the stresses at considerable distances from the
ends, say at distances larger than the depth of the beam, can be
neglected. Solution (33) at such points is therefore accurate enough
for the case when there are no forces X.

The discrepancy between the exact solution (33) and the approxi-
mate solution, given by the first term of (33), is due to the fact that in
deriving the approximate solution it is assumed that the longitudinal
fibers of the beam are in a condition of simple tension. From solution
(d) it can be seen that there are compressive stresses o, between the
fibers. These stresses are responsible for the correction represented
by the second term of solution (33). The distribution of the com-
pressive stresses o, over the depth of the beam is shown in Fig. 28¢c-
The distribution of shearing stress 7., given by the third of Egs. (d),
over a cross section of the beam coincides with that given by the usual
elementary theory.

When the beam is loaded by its own weight instead of the distributed load g,
the solution must be modified by putting ¢ = 2pge in (33) and the last two of Egs.
(d), and adding the stresses

o =0, oy = pglc — ¥), Toy =0 (e
For the stress distribution () can be obtained from Egs. (29) by taking

= Lpglcz? + y¥/3)

and therefore represents a possible state of stress due to weight and boundary
forces. On the upper edge y = —c we have o, = 2pgc, and on the lower edge

=c¢, ¢, = 0. Thus when the stresses (¢) are added to the previous solution,
with ¢ = 2pgc, the stress on both horizontal edges is zero, and the load on the beam
consists only of its own weight.

The displacements u and » can be calculated by the method indi-
cated in the previous article. Assuming that at the centroid of the

middle cross section (x = 0,y = 0) the horizontal displacement is zero

and the vertical displacement is equal to the deflection 8, we find, using
solutions (d) and (33),

I S 2 ,_2, 1 _ Eﬂ
u 2E1[<“c 3)y+x(3y 5CV) Fe\gy -y tge

ey e 2, sy Y L
b= 2EI{12 g T3yt | @ -G+ mpov

q | P 2zt 1 1 .
'WELT_E ?W+Q+2O”2+a

Tt can be seen from the expression for u that the neutral surface of the
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beam is not at the center line. Due to the compressive stress

(@uo = ~ 3

the center line has a tensile strain »q/2E, and we find

Vg

(Wymo = °E

From the expression for v we find the equation of the deflection curve,

22 4
(V)ymo = & — ﬁql [l—;* - % - %c%z + (1 + % v) c%{l H

Assuming that the deflection is zero at the ends (xr = +1) of the center

line, we find
_ 5 ql* 12¢2 (4 v
3—ﬂmb+€ﬁ%+§] 34)

The factor before the brackets is the deflection which is derived by the
elementary analysis, assuming that eross sections of the beam remain
plane during bending. The second term in the brackets represents the
correction usually called the effect of shearing force.

By differentiating Eq. (f) for the deflection curve twice with respect
to z, we find the following expression for the curvature:

d% 2 — g2 4
(), - &[5+ (3+3)] (35)

It will be seen that the curvature is not exactly proportional to the
bending moment! ¢(I2 — z?)/2. The additional term in the brackets
represents the necessary correction to the usual elementary formula.
A more general investigation of the curvature of beams shows? that the
correction term given in expression (35) can also be used for any case of
continuously varying intensity of load. The effect of shearing force
on the deflection in the case of a concentrated load will be discussed
later (page.107). . k

An elementgry derivation of the effect of the shearing force on the curvature
of the deflection curve of beams has been made by Rankine? in England and by
Grashof* in Germany. Taking thé maximum shearing strain at the neutral

V'This was pointed out first by K. Pearson, Quart. J. Math., vol. 24, p. 6?;, 1889.

28ee paper by T. v. Kdrmén, Abhandl. aerodynam. Inst., Tech. Hochschule,
Aachen, vol. 7, p. 8, 1927. .
"3 Rankine, “Applied Mechanics,” 14th ed., p. 344, 1895.

¢ Grashof, “Elastizitit und Festigkeit,” 2d ed., 1878.
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axis of a rectangular beam of unit width as $(Q/2¢®), where Q is the shearing force,
the corresponding increase in curvature is given by the derivative of the above
shearing strain with respect to z, whigh gives $(¢/2cG). The corrected expression
for the curvature by elementary analysis then becomes

EI 2
Comparing this with expression (35), it is seen that the elementary solution gives
an exaggerated value! for the correction.

The correction term in expression (35) for the curvature cannot be attributed
to the shearing force alone. It is produced partially by the compressive stresses g,.
These stresses are not uniformly distributed over the depth of the beam. 'The
lateral expansion in the z-direction produced by these stresses diminishes from the
top to the bottom of the beam, and in this way a reversed curvature (convex
upwards) is produced. This curvature together with the effect of shearing force
accounts for the correction term in Eq. (35).

— —_— 2
R T +o+9)

22. Other Cases of Continuously Loaded Beams. By increasing
the degree of polynomials representing solutions of the two-dimensional
problem (Art. 17), we may obtain solu-

Y - tions of bending problems with various
— types of continuously varying load.2

] By taking, for instance, a solution in the

-_ e ¢ form of a polynomial of the sixth degree
EE— and combining it with the previous
| v solutions of Art. 17, we may obtain the

stresses in a vertical cantilever loaded
x by hydrostatic pressure, as shown in

Fig. 29. In this manner it can be
shown that all conditions on the longitudinal sides of the cantilever are
satisfied by the following system of stresses:

3
O = .qx_.y _I_ i (_2xy3 + gc2xy)

Fia. 29.

4c3 4¢3
z ) 83
ay=—%+qx(fc—3—ﬁ) (@)
3qx? 3
Toy = %(62*1/ —%s(c‘*—y“)+‘%gc’-(c2—y2)

Here ¢ is the weight of unit volume of the fluid, so that the intensity of
the load at a depth z is gz. The shearing force and the bending
moment at the same depth are ¢qr2/2 and ¢2%/6, respectively. It is
t A better approximation is given by elementary strain-energy considerations.
See 8. Timoshenko, ‘“Strength of Materials,” 2d ed., vol. 1, p. 299.
* See papers by Timpe, loc. cit.; W. R. Osgood, J. Research Natl. Bur. Standards,
vol. 28, p. 159, 1942.
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evident that the first terms in the expressions for ¢, and ., are the
values of the stresses calculated by the usual elementary formulas.
~ On the top end of the beam (x = 0) the normal stress is zero. The
shearing stress is

o= =g @ — ) + L e —
Although these stresses are different from zero, they are very small all
over the cross section and their resultant is zero, so that the condition
approaches that of an end free from external forces.

By adding to o, in Eqgs. (a) the term —gyz, in which ¢1 is the weight
of unit volume of the material of the cantilever, the effect of the weight
of the beam on the stress distribution is taken into account. It has
been proposed! to use the solution obtained in this way for calculating
the stresses in masonry dams of rectangular cross section. It should
be noted that this solution does not satisfy the conditions at the bottom
of the dam. Solution (a) is exact if, at the bottom, forces are acting
which are distributed in the same manner as o, and r, in solution (a).
In an actual case the bottom of the dam is connected with the founda-
tion, and the conditions are different from those represented by this
solution. From Saint-Venant’s principle it can be stated that the
effect of the constraint at the bottom is negligible at large distances
from the bottom, but in the case of a masonry dam the cross-sectional
dimension 2¢ is usually not small in comparison with the height [ and
this effect cannot be neglected.?

By taking for the stress function a polynomial of the seventh degree
the stresses in a beam loaded by a parabolically distributed load may
be obtained.

In the general case of a continuous distribution of load ¢, Fig. 30, the stresses
at any cross section at a considerable distance from the ends, say at a distance

larger than the depth of the beam, can be approximately calculated from the
following equations:3

! M. Levy, Compt. rend., vol. 126, p. 1235, 1898.

* The problem of stresses in masonry dams is of great practical interest and has
been discussed by various authors. See K. Pearson, On Some Disregarded Points
in the Stability of Masonry Dams, Drapers’ Co. Research Mems., 1904; K. Pearson-
and C. Pollard, An Experimental Study of the Stresses in Masonry Dams, Drapers’
Co. Research Mems., 1907. See also papers by L. F. Richardson, Trans. Roy.
Soc. (London) series A, vol. 210, p. 307, 1910; and 8. D. Carothers, Proc. Roy. Soc.
Edinburgh, vol. 83, p. 292, 1913. 1. Muller, Publications du laboratoire de photo-
élasticité, Ziwrich, 1930. Fillunger, Oesterr. Wochschr. &ffenil. Baudienst, 1913,
Heft, 45. K. Wolf, Sitzber. Akad. Wiss. Wien, vol. 123, 1914,

*¥. Seewald, Abkandl. aerodynam. I nst., Tech. Hochschule, Aachen, vol. 7, p. 11 ,ri
1927, ) S
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M 3
e« =7 +a(35 - 10%)

2¢¢ " 10¢
3 3
w=-4+d(¥-5%5) (36)

Tzy = "2QI (cz —y»

in which M and @ are the bending moment

I 1 l 1 I ] l 1 and shearing forces calculated in the usual

way and ¢ is the intensity of load at the

cross section under consideration. These

equations agree with those previously ob-

tained for & uniformly loaded beam (see Art.
21).

y If the load of intensity g, in the down-

Fra. 30 ward direction, is distributed along the lower

e edge (y = +c) of the beam, the expressions

for the stresses are obtained from Egs. (36) by superposing a uniform tensile stress,

oy = ¢, and

e e V]
b

My y> 3y
"‘=T+q(’2?3"T67:

3
w=t+d(¥-L 369

Tey = Z—QI' (62 - yz)

93. Solution of the Two-dimensional Problem in the Form of a Fourier Series.
Tt has been shown that if the load is continuously distributed along the length of a
rectangular beam of narrow cross section a stress function in the form of a poly-
nomial may be used in certain simple cases. If the load is discontinuous, a stress
funetion in the form of a trigonometric series should be used.! The equation for
the stress function,

Po g O e
ozt +2 ax? 9y? + ET 0 @

may be satisfied by taking the function ¢ in the form
¢ = sin 7 f(y) ®)

in which m is an integer and f(y) a function of y only. Substituting (b) into Eq. (a)
and using the notation mr/l = &, we find the following equation for determining
F@):

atf(y) — 2a3"(y) +7(@y) =0 @

1 The first application of trigonometric series in the solution of beam problems
was given by M. C. Ribiére in a thesis, Sur divers cas de la flexion des prismes
rectangles, Bordeaux, 1889. See also his paper in Compt. rend., vol. 126, pp. 402
404 and 1190-1192. Further progress in the application of this solution was made
by L. N. G. Filon, Phil. Trans., series A, vol. 201, p. 63, 1903, Several particular
examples were worked out by F. Bleich, Bauingenieur, vol. 4, p 255, 1923.
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The general integral of this linear differential equation with constant coefficients is

J@) = Cicosh ay 4 C:sinh ay + Csy cosh ay + C sinh ay
The stress function then is
¢ = sin ax(C1 cosh ey + C; sinh ay + Cay cosh ay + Cuy sinh ay) (d)

and the corresponding stress components are

92 .
gz = 5?? = sin ax [C1a? cosh ay + Cia? sinh oy + Cia(2 sinh oy
+ ay cosh ay) + Cia(2 cosh ay + ay sinh ay)]
92 - .
oy = :ﬁd—; = —a?sin ax(C1cosh ay + C;sinh ay + Csy cosh ay + Caysinh ay)  (e)
a2 .
Tay = — a—x—%/ = —acos ax[Cia sinh ay 4 Crx cosh ay -+ Cs(cosh ay

+ ay sinh ay) + Ci(sinh ay + ay cosh ay)]

Let us consider a particular case of a rectangular beam supported at the ends
and subjected along the upper and lower edges to the action of continuously

AT P
UL ¥ 7

o

>

o

RN

A
NI 1

Y

[
B
—

Fia. 31,

di_stributed vertical forces of the intensity A sin ax and B sin ar, respectively.
Figure 31 shows the case when « = 4x/I and indicates also the positive values of
A and B. The stress distribution for this case can be obtained from solution (e).
The constants of integration Cy, . . . , €y, may be determined from the conditions
on the upper and lower edges of the beam, y = +e¢. These conditions are:

Fory = +¢,

7oy = 0, g, = —Bsin ax

Fory = g, -
Ty =0, oy = —~Asin oz
Substituting these values in the third of Eqs. (¢), we find

Cia sinh ac + Caa cosh ac + Cs(cosh ac + ac sinh ac)

, =+ Cy(sinh ac + ac cosh ac) = 0
—~Cha sinh ac + C:e cosh ac 4 Cs(cosh ac + ac sinh ac)

— Cy(sinh ac + ac cosh ac) = Q
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from which
Cy = — « cosh ac
3 % cosh ac + ac sinh ac
Co= —C a sinh ac @
¢ ! sinh ac + ac cosh ac
Usiug the conditions on the sidesy = *cin the second of Eqgs. (¢), we find
«2(C; cosh ac + Czsinh ac + Csc cosh ac + Cuc sinh ac¢) = B
a2(C cosh ac — C: sinh ac — Cic cosh ac + Cicsinh ac) = A
By adding and subtracting these equations and using Egs. (g, We“ﬁnd’ T
C _ A 4 B _sinh ac + ac cosh ac
P sinh 2ac + 2ac . : -
C, = __ A — B cosh ac + acsinh ac
2 o? sinh 2a¢ — 2ac T (k)
'C—A_B‘ « cosh ac -
37 7 a%  sinh 2ac — 2ac
A+ B a sinh ac
Ci= — °

a? sinh 2ac 4+ 2ac
Substituting in Eqgs. (¢), we find the following expressions for the stress components:

ac — sinh «c) cosh ay — ay sinh oy sinh ac
sinh 2ac + 2ac

v. = (4 + B) EOON - §in az

(¢ sinh ac — cosh ac) sinh ay — ay cosh ay cosh ac

~(@Ad-B sinh 2ac — 2ac " sin az

oy = — (A +B) (ac cosh ac + sinh S?Icl)hc;:il _T_yz; ay sinh ay sinh oc sin oz o
+ (4 - B) (ac sinh ac 4 cosh szxircl)hs;I;}; iy 2;cay cosh ay cosh ac sin az

oy = —(A + B) ac cosh ac si;xilll1 }«:yz o; ':—y;:csh ay sinh ac | cos i

. : : + (A —B) a¢ sinh ac cosh .oy — ay sinh ay cosh ac | c08 az

sinh 2ac — 2ac

These stresses satisfy the conditions shown in Fig. 31 along the sides y = *ec.
At the ends of the beam = = 0 and # = , the stresses o, are zero and only shearing
stress 7.y is present. 'This stress is represented by two terms [see Eqs. (k)]. The
first term, proportional to A 4 B, represents stresses which, for the upper and
lower halves of the end crogs Bection, are of the same magnitude but of opposite
sign. The resultant of these stresses over the end is zero. The second term,
proportional to A — B, has resultants at the ends of the beam which-maintain
equilibrium with the loads applied to the longitudinal sides (y = ).

If these loads are the same for both sides, coefficient A is equal to B, and the
reactive forces at the ends vanish, T:6f us consider this particular case more in
detail, assuming that the length of the beam is large in comparison with its depth.
From the second of Eqs. (k) the normal stresses oy over the middle plane y = 0
of the beam are :

o ac cosh ac + sinh ac .
= M R Sac F 2ac ®

-

TWO-DIMENSIONAEL PROBLEMS 49

TFor long beams ac, equal to mwrc/l, is small, provided the number of waves m is not
large. Then, substituting in (),

ac)? ac)? o
(e (@) | e,

t e T 2 24

sinh ac. = ac:l-‘ 120+ 3 coshac =1 +

and neglecting small quantities of higher order than (ac)*, we find

: o, = —A sin az (1 — (ac)*’)

24

Hence for small values of ac the distribution of stresses over the middle plane is
practically the same as on both hori-

zontal edges (y = *c¢)of thebeam. It ‘
can be concluded that pressures are

transmitted through a beam or plate —lTTﬂ—HT

without any substantial change, pro- ]

vided the variation of these pressures
along the sides is not rapid. . -
The shearing stresses 7., for this case !
are very small. On the upper and —ELLLLLLL
lower halves of the end cross sections.
they add up to the small resultants Y
necessary to balance the small difference Fia. 32.
between the pressures on the horizontal edges (y = *c¢) and the middle plane
(y =0).
In the most general case the distribution of vertical loading along the upper

and lower edges of a beam (Fig. 32) can be represented by the following series:!
For the upper edge,

o
bt O o1 O o

mn2 mnr

¢ = 40 + EA,,.sinT—i— 2 A,,.’cos—l-
m=1 m=1
For the lower edge, (m)

¢ =B+ ZBms‘umTﬂ—l- 2 Bm’cos#
=1 m=1

T.he constant terms A, and B, represent a uniform loading of the beam, which was
discussed in Art. 21. Stresses produced by terms containing sin (mmrz/l) are
obtained by summing up solutions (k). The stresses produced by terms containing
cos (mxz/l) are easily obtained from (k) by exchanging sin oz for cos ax and vice
versa, and by changing the sign of 7.,.

To illustrate the application of this general method of stress calculation in
rectangular plates, let us consider the case shown in Fig. 33. For this case of
symmetrical loading the terms with sin (mx2/l) vanish from expressions (m) and
the coefficients A, and 4.’ are obtained in the usual manner;

I.For Fourier s?ries see Osgood, ““ Advanced Calculus,” 1928; or Byerly, ‘‘Fourier
Series and Spherical Harmonics;” 1902; or Churchill ““Fourier Series and Bound-
ary Value Problems,” 1941,
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qa 1 ¢ mnz 2g sin m;r .
= — L ! o= _— e e———
Ay = By = T’ Awn’ = Bm 7] 908 dx pongn (n)
The terms Ao and B, represent a uniform compression in the y-direction equal to
ga/l. The stresses produced by the trigonomet- p
ric terms are obtained by using solutions (k), l

exchanging sin ax for cos oz in this solution )
and changing the sign of 7.,. x
Let us consider the middle plane y = 0, on

P
% k4
15

e §FE

T >’L0 J 1\

¢ |~ 8

c 4% 0.5 ] \
iz §

74 4 =3 -2 -1 0 1 2 3

v Values of x/c
Fia. 33. Fic. 34.

which there is only the normal stress o,. By using the second of Eqgs. (k) we find

o 4 sin _mzra mTrc cosh "% + sinh ——er 4 _—
9= _qT _;‘1 m . 1 2mrc mae 00 Zf
sinh I +2 -
m=1

This stress was evaluated by Filon! for an infinitely long strip when the dimension
a is very small (i.e., concentrated force P = 2ga). The results of this calculation

n P
] bl.-
T Pb
o 1o
7 l . i z
bl
P o
¥F1a. 35.

are shown in Fig. 34. It will be seen that o, diminishes very rapidly with z. Ata
value x/c = 1.35, it becomes zero and is then replaced by tension. Filon discusses

1L. N. G. Filon, Trans. Roy. Soc. (London), series A, vol. 201, p. 67, 1903. The
same problem was discussed also by A. Timpe, Z. Math. Physik, vol. 55, p. 149,
1907; G. Mesmer, Vergleichende spannungsoptische Untersuchungen . . .,
Dissertation, Gottingen, 1929; F. Seewald, Abkandl. aerodynam. Inst., Tech.
Hochschule, Aachen, vol. 7, p. 11, 1927; and H. Bay, Ingenieur-Archiv, vol. 3,
p. 435, 1932. An approximate solution of the same problem was given by M.
Pigeaud, Compt. rend., vol. 161, p. 673, 1915. The investigation of the problem in
the case of a rectangular plate of finite length was made by J. N. Goodier, J.
Applied Mechanics (Trans. A.S.M.E.), vol. 54, no. 18, p. 173, 1932.
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also the case shown in Fig. 35 when the forces P are displaced one with respect to
the other. The distribution of shearing stresses over the cross section nn in this
case is of practical interest and is shown in Fig. 36. It may be seen that for small
values of the ratio b/c this distribution does not resemble the parabolic distribution
given by the elementary theory, and that there are very large stresses at the top

and bottom of the beam while the middle

C portion of the beam is practically free
le— 2{3_. from shearing stresses.
1.0 4 In the problem of Fig. 34 there will by
\\\\ symmetry be no shear stress and no
08 Z ¥ vertical displacement at the middle line
06 WA c—=70L y = 0. The upper half therefore corre-
) / ‘?6 ~5_ 1 sponds to an elastic layer resting on a
04 / ‘\‘2 ‘,’ rigid smooth base.!
) /\r‘ c’T Let us consider now another extreme
02 ‘bt case when the depth of the plate 2¢ is
[ V5. | |
0 oo |2
i
- ' \ c
04 \\
-08 *A\ -\l-»<l-> Cc
1V T 1
-1.0 !
0 05 1.0 15 20 25 30 35 ‘D
2CTyy
- Y
Fic. 36. Fie. 37.

1arge in comparison with the length 21 (Fig. 87). We shall use this case to show
that the distribution of stresses over cross sections rapidly approaches uniformity
as the distance from the point of application of the forces P increases. By using
the second of Eqs. (k) with cos oz instead of sin ar and expressions (n) for coeffi-
cients 4,’, equal to B,', we find

m sinh 2ac + 2ac ~cosez (p)

m=1

=20 4q z sinaa (accosh ac+sinh ac) cosh ay —ay sinh ay sinh ac
=12 .
I =

in which ga = P/2. Tflis small in comparison with ¢, ac is a large number and it
can be neglected in comparison with sinh ac. We can also put

sinh ac = cosh ac = Fe
For cross sections at a large distance from the middle of the plate we can write

! The rough base is considered by K. Marguerre, Ingenieur-Archiv, vol. 2, p. 108,
1931, and a flexible but inextensible layer embedded in the elastic material, a case
of interest in soil mechanics, by M. A. Biot, Physics, vol. 6, p. 367, 1935,
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sinh ay = cosh ay = §e2v. Substituting these in Eq. (p), we find

@

oy = — 28 2N S 1)enm0 — ayesv9] cos as
w
m=1
= smm Z(y—c)
'_” ¢ maz
p a5 e ] T
T me=1

If ¢ — y is not very small, say ¢ — y > 1/2, this series converges very rapidly and
it is only necessary to take a few terms in calculating ¢5. Then we can take

mmra mra

sin == ==~
and putting 2ag = P, we find
s T—o)
P P mre
,”=_§1—72 [—-(c—y)—l—l] cos—l—-
m=1

For y = ¢ — I, for instance,

P P1r+1 21r+1 27z | 3w+ 1 3oz )

o=~ T\ e LT cos 7 +-———emr cos 7 +
The first three terms of the series are sufficient to give good accuracy a..nd‘the
stress distribution is as shown in Fig. 38b. In the same figure the stress distribu-
tions for ¢ —y =1/2 and ¢ —y = 2l are

:g also given.! It is evident that at a distance
(@) S ?1-7) from the end equal to the width of th(? strip
- the stress distribution is practically uniform,
c-y=2£ which confirms the conclusion usually made
on the basis of Saint-Venant’s principle.
For a long strip such as in Fig. 37 the o,
stresses will be transmitted through the
R S TP width 20 of the plate with little change, pro-
6) Sl S |27 vided the rate of variation along the edge is
- N I not too rapid. The stresses of the present
c-y=t solution will, however, require some correc-
~ ¥ S Tp tion on this account, especially near the em.is,
(c) & x 57 Y= *c A solution of the problem of Fig.
© - = 37 with ¢ = 2I, by a different method,?
S ¢-¥=2L yields a practically uniform compressive
Fra 3'; stress over the middle horizontal section, in

agreement with Fig. 38c. The stresses in
the vicinity of the points of application of the loads P will be discussed later (see
page 85).

1 See paper by F. Bleich, loc. cit.
2 J. N. Goodier, Trans. A.S.M.E., vol. 54, p. 173, 1932,
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24. Other Applications of Fourier Series. Gravity Loading. The problems
considered in Art. 23 concerned a single “span” [ or 2I. The solutions, however,
can equally well be regarded as representing periodic states of stress in long strips
parallel to the z-axis, since a Fourier series represents a periodic function. A con-
tinuous beam consisting of a sequence of equal spans similarly loaded will have
such a periodic stress distribution if the end conditions are appropriate. If, as
in certain reinforced-concrete bunker constructions, the beam is essentially a wall
supported at points whose distance apart is comparable with the depth (Fig. 39),
useful results can be obtained by the present method.! The elementary beam

1
0—*—37
4 yT
Py PP T TTTT 7T
% z
=93
2b
Fie. 39.

theory is not adequate. A uniformly distributed load ¢: on the lower edge, sup-
ported by upward reactions uniformly distributed in widths 2b at intervals I,
presents a special case covered by Egs. (m) of Art. 23. If the load ¢ is applied
on the upper edge it is merely necessary to add the stress distribution due to equal
and opposite uniformly distributed pressures ¢; on both upper and lower edges.

If the load is the weight of the beam itself the resulting body-force problem may
at once be reduced to an edge-load problem. The simple stress distribution

Oz = 0, oy = "‘P!I(l/ + c)’ Tzy =0

satisfies the equations of equilibrium and compatibility (19) and (24). It clearly
represents support by uniformly distributed pressure 2pgc on the lower edge in
Fig. 39. The condition that o, is zero at the lower edge, except at the supports
(of width 2b), is satisfied by adding this stress distribution to that represented by

Fig. 39 when ¢, is replaced by 2pgc, and the stress is due to ¢ and ¢q: without body
force.

Problems

1. Investigate what problem of plane sfress is solved by the stress function

3F
=4—c(x 302) +2y’

2. Investigate what problem is solved by
F
) I ¢ = — o 2y*@d — 2y)

apphedto the region 1nc1uded iny =0,y =d,z = 0, on the side z positive.

! Problems of this kind are discussed, with references, in the book ‘Die Statik im

Eisenbetonbau,” by K. Beyer, 2d ed., p. 723, 1934; see also H. Craemer, Ingemeur-
Archiv, vol. 7, p. 325, 1936.
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8. Show that
¢ = 8%3 [x’ (y’ — 3c2y + 203) - .;_ Yt (yz - 2c’)]

is a stress function, and find what problem it solves when applied to the region
included in y = +c, £ = 0, on the side 2 positive.
4, The stress function
cs(lay 2w W I
¢ ‘3(4"1’ s dcf T Vg

is proposed as giving the solution for a cantilever (y = ¢, 0 < z <1) loaded by
uniform shear along the lower edge, the upper edge and the end z = [ being free
from load. In what respects is this solution imperfect? Compare the expres-
gions for the stresses with those obtainable from elementary tension and bending
formulas.

5. The beam of Fig. 28 is loaded by its own weight instead of the load ¢ on the
upper edge. Find expressions for the displacement components u and ». Find
also an expression for the change of the (originally unit) thickness.

6. The cantilever of Fig. 26, instead of having a narrow rectangular cross sec-
tion, has a wide rectangular cross section, and is maintained in plane strain by
suitable forces along the vertical sides. The load is P per unit width on the end.

Justify the statement that the stresses oz, oy, 72y are the same as those found
in Art. 20. Find an expression for the stress ., and sketch its distribution along
the sides of the cantilever. Write down expressions for the displacement com-
ponents 1 and » when & horizontal element of the axis is fixedat z = 1.

7. Show that if V is a plane harmonic function, i.e., it satisfies the Laplace
equation

v | a2V

o oy

=0
then the functions zV, yV, (22 4 y%)V will each satisfly Eq. (a) of Art. 17, and
50 can be used as stress functions.

8. Show that

(Ade*v + Be~ + Cyew -+ Dye~2v) gin ax

is a stress function.

Derive series expressions for the stresses in a semi-infinite plate, ¥ > 0, due to
normal pressure on the straight edge (y = 0) having the distribution

Show that the stress o, at a point on the edge is a compression equal to the applied
pressure at that point. Assume that the stress tends to disappear as y becomes
large.

9. Show that (a) the stresses given by Eqs. (¢) of Art. 23 and (b) the stresses in
Prob. 8 satisfy Eq. (b) of Art. 16.

CHAPTER 4
TWO-DIMENSIONAL PROBLEMS IN POLAR COORDINATES

26. General Equations in Polar Coordinates. In discussing stresses
in circular rings and disks, curved bars of narrow rectangular cross sec-
tion with a circular axis, etc., it is advantageous to use polar coordi-
nates. The position of a point in the middle plane of a plate is then
defined by the distance from the origin O (Fig. 40) and by the angle 6
between 7 and a certain axis Ox fixed in the plane.

Let us now consider the equilibrium of a small element 1234 cut out
from the plate by the radial sections 04, 02, normal to the plate, and by
two cylindrical surfaces 3, 1, normal to the
plate. The normal stress component in
the radial direction is denoted by o,, the

(/] 3 X

normal component in the circumferential a Tols 1 (og)s
direction by ¢4 and the shearing-stress ()X 7 (Zrg)4
component by 7.4, each symbol represent- }47

ing st!:ess at the point r, 8, which is the () %
mid-point P of the element. On account gl | N\(G)

of the variation of stress the values at the y (2.6)s
mid-points of the sides 1, 2, 3, 4 are not r=0P
quite the same as the values a,, og, 7ro, and
are denoted by (o)1, ete., in Fig. 40. The radii of the sides 3, 1 are
denoted by 73, r1. The radial force on the side 1 is o171 d9 which may
be written (s.r): df, and similarly the radial force on side 3 is — (o)
dé. The normal force on side 2 has a component along the radius
through P of —(04)2(r1 — r3) sin (d9/2), which may be replaced by
—(o9)2 dr (d6/2). The corresponding component from side 4 is
—(00)s dr (d8/2). The shearing forces on sides 2 and 4 give [(r,0)s —
(778)4]d7'. .
Summing up forces in the radial direction, including body force R
per unit volume in the radial direction, we obtain the equation of
equilibrium

Fia. 40.

(018 — (0,1)s 46 — (a5)s dr ‘12‘-’ — (00)s dr-dz—o
+ [(rr0)2 — (740)d) dr 4+ Rrdodr = 0
55
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Dividing by dr d6 this becomes

(erh — s Loy + o0 + 02 000 4 R = 0
If the dimensions of the element are now taken smaller and smaller, to
the limit zero, the first term of this equation is in the limit d(s,r)/dr.
The second becomes o4, and the third dr.4/36. The equation of equi-
librium in the tangential direction may be derived in the same manner.
The two equations take the final form

adr_'_la'rrﬁ_}_ r +R_0
r 06 ;
@7
l% + aTrO + 279'0 =0
T 36 r

These equations take the place of Eqs. (18) when we solve two-
dimensional problems by means of polar coordinates. When the body
force R is zero they are satisfied by putting

_lag 1%
o= T ar T o6
3¢ .
] oy = W 7 7 (38)
_ 1o 1% _ 13¢
T =730 roro ar 7 86)

where ¢ is the stress function as a functlon of rand 6. This of eourse
may be verified by direct substitution. A derlvatlon ‘of (38) is mcluded
in what follows. ’ '
'« To yield a possible stress distribution, this function must ensure that
the condition of compatibility is satisfied. In Cartesian coordinates
(see page 26) this condition is ‘
d9*¢
6:1:4
For the present purpose we need this equation transformed to polar
coordinates.. The relation between polar-and Cartesian coordinates-is
glven by R

3

t 2 575 dz? oy

64
+5~£—=0 (@)

t- covinIaIn - e gtz:;i;;y'z; § _"‘»9"‘=_" é,'i'ct'-é)n%—:i' LUl
'ﬁ'dni"Wh'jch A o i o
ﬂ=£=cos0, I _Y_sno
A S8y T : .
8 _y __sing 3 _x _cosd
ox . r 3y 1 r
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Using these, and considering ¢ as a function of r and 0, we find

9 _ ¢ dr 0430 _9¢ . 139
" arow T abar  aro®? 7m0
To get the second derivative with respect to z, it is only necessary to

repeat the above operation; hence

) 1 3% cp_ 199
W—(arcoso smo% (6 s 0 aosm@)

9%¢ 9%¢ sinfcos@ , d¢sin?d a¢ sin 8 cos 6
—~(,—,—2cos’0 26061' r or r +2 r?
62¢ sin2? @
w e O
In the same manner we find
a2¢ _ 0% ., 9%¢ sin 6 cos @ §_4_>cos’0
ay: ar’sm 0+ 2550 r T T
d¢ sin 0 cos § , d%¢ cos® 6 ©
a6 r? a6 r?
Adding together (b) and (c), we obtain
3 | % _ %  13p 1%
ox? T 5 ay?  or + r or T r2 96 (d)
Using the identity
) 39 3 | 2\ (3% , 9%
ErE 63:2 ay? + (6952 + dy?) \9x? + ay?
and Eq. (d), the compa.tlblhty equation (a) in polar coordinates
becomes '
) 10°\ (3% , 10¢ , 18%) _
(ar2 rar r'-’aa)( T3 T e =0 (39)

From various solutions of this partial differential equation we obtain
solutions of two-dimensional problems in polar coordinates for various
boundary conditions. Several examples of such problems will be dis-
cussed in this chapter.

The first and second of the expressions (38) follow from Egs. (b) and (c). If
we choose any point in the plate, and let the z-axis pass through it, we have ¢ = 0,
and ¢, o, are the same, for this particular point, as o,, p. Thus from (c), putting

L

0=0,
_ 0% 16¢
o= = (ay’ 80 = or T rige
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This expression continues to represent ¢ Whatever the orientation of the z-axis.
We find similarly from (b), putting 6 = 0,

(e _ ¥
00 =y =\ Gat)o, ~ ot

and the third expression of (38) can be obtained likewise by finding the expression
for —a2¢/0x dy analogous to (b) and (c).

26. Stress Distribution Symmetrical about an Axis. If the stress
distribution is symmetrical with respect to the axis through O per-
pendicular to the zy-plane (Fig. 40), the stress components do not
depend on 4 and are functions of 7 only. From symmetry it follows
also that the shearing stress 7, must vanish. Then only the first of
the two equations of equilibrium (37) remains, and we have

do, , 0r — 09 _

P =L R=0 (40)
If the body force R is zero, we may use the stress function ¢.
When this function depends only on r, the equation of compatibility
(39) becomes

ar 14\ (2 1d¢
dr® ' rdr/\dr* ' radr
_d'e | 2d%  1d% , 1do
=gitra rar e 0 @
This is an ordinary differential equation, which can be reduced to a
linear differential equation with constant coefficients by introducing a
new variable ¢ such that r = ¢!, In this manner the general solution
of Eq. (41) can easily be obtained. This solution has four constants of
integration, which must be determined from the boundary conditions.

By substitution it can be checked that
¢ = Alogr + Br2logr 4+ Cr*+ D (42)

is the general solution. The solutions of all problems of symmetrical
stress distribution and no body forces can be obtained from this. The
corresponding stress components from Egs. 38 are

196 _ A
”’—;37—F+B(1+210gr)+20
a%¢ A
0o = Ga=— 3+ BB+ 2logr) +2C (43)
10 =0

Tf there is no hole at the origin of coordinates, constants 4 and B van-
ish, since otherwise the stress components (43) become infinite when
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r = 0. Hence, for a plate without a hole at the origin and with no
body forces, only one case of stress distribution symmetrical with
respect to the axis may exist, namely that when ¢, = 09 = constant
and the plate is in a condition of uniform tension or uniform compres-
sion in all directions in its plane.

If there is a hole at the origin, other solutions than uniform tension
or compression can be derived from expressions (43). Taking B as
zero,! for instance, Eqs. 43 become

Ur=1’_A_2+20
. 44)
oo = —;—454-20'

This solution may be adapted to represent the stress distribution ina
hollow cylinder submitted to uniform pressure on the inner and outer
surfaces? (Fig. 41). Let a and b denote the'inner and outer radii of the
cylinder, and p; and p, the uniform internal and external pressures
Then the boundary conditions are: .

(0' r)r=a = —D (U'r)r=b = =D (a)

Substituting in the first of Eqs. (44), we obtain the following equations
to determine A and C':

;iz +2C = —p;
%-F 2C = -1
from which
A= azbzgpa_-‘;zpi)
oo - 217

Substituting these in Eqgs. (44) the following expressions for the stress
components are obtained:

_a®*(po—p) 1 | pia — pb?
TETR_g Pl Eoa
oo = — a?(p, — p:) 1 | pa? — pb? (45)
8= P—a T g

1 Proof tha,t: B must be zero requires consideration of displacements. See p. 68
* The solution of this problem is due to Lamé, “Legons sur la théorie . . .
de Vdlasticité,” Paris, 1852.



60 THEORY OF ELASTICITY

. It is interesting to note that the sum ¢, + ¢ is constant through the

thickness of the wall of the cylinder. Hence the stresses o, and o pro-

duce a uniform extension or contraction in the

direction of the axis of the cylinder, and cross

sections perpendicular to this axis remain plane.

Hence the deformation produced by the stresses

% (45) in an element of the cylinder cut out by

' two adjacent cross sections does not interfere

with the deformation of the neighboring ele-

ments, and it is justifiable to consider the ele-

ment in the condition of plane stress as we did
in the above discussion.

In the particular case when p, = 0 and the cylinder is submitted to

internal pressure only, Eqgs. 45 give

-

Y 2
api“ r (46)

a":bz——a?(l_‘_r:)

These equations show that o, is always a compressive stress and ¢4 a
tensile stress. The latter is greatest at the inner surface of the cylin-
der, where

Fia. 41.

A2 2 :
e = BT @7)

(06)max. is always numerically greater than the internal pressure and
approaches this quantity as b increases, so that it can never be reduced
below p:;, however much material is added on the outside. Various
applications of Egs. (46) and (47) in machine design are usually dis-
cussed in elementary books on the strength of materials.!

The corresponding problem for a cylinder with an eccentric bore is
considered in Art. 66. It was solved by G. B. Jeffery.? If the radius
of the bore is a and that of the external surface b, and if the distance
between their centers is e, the maximum stress, when the cylinder is
under an internal pressure p;, is the tangential stress at the internal
surface af the thinnest part, if e < }a, and is of the magnitude

[ 2b2(b2 + a? — 2ae — €?) 1]
(@ + b2 (b — a® — 2ae — €?)
If ¢ = 0, this coincides with Eq. (47).

1 See, for instance, S. Timoshenko, “Strength of Materials,” vol. 2, p. 236, 1941.
* Prans. Roy. Soc. (London), series A, vol. 221, p. 265, 1921. See also Brit.
Assoc. Advancement Sci. Repts., 1921,

a
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27. Pure Bending of Curved Bars. Let us consider a curved bar
with a constant narrow rectangular cross section! and a circular axis
bent in the plane of curvature by couples M applied at the ends (Fig,
42). The bending moment in this case is constant along the length of
the bar and it is natural to expect that the stress distribution is the
same in all radial cross sections, and that the solution of the problem

can therefore be obtained by using expression (42). Denoting by a
and b the inner and the outer radii of the boundary and taking the
width of the rectangular cross section as unity, the boundary conditions
are

1) o, =0forr=aandr =25

2) vaodr=0, /;baordr= —-M (@)
3) 6 = 0 at the boundary

Condition (1) means that the convex and concave boundaries of the
bar are free from normal forces; condition (2) indicates that the normal
stresses at the ends give rise to the couple M only, and condition (3)
indicates that there are no tangential forces applied at the boundary.
Using the first of Egs. (43) with (1) of the boundary conditions (a) we
obtain

%+B(1+2loga)+20=0

A ®)
=5+ B(1+2logh) +2C = 0

! From the general discussion of the two-dimensional problem, Art. 15, it follows
tk'lat th.e solution obtained below holds also for another extreme case when the
dimension of the cross section perpendicular to the plane of curvature is very large,
a8, for instance, in the case of a tunnel vault (see Fig. 10), if the load is the same
along the length of the tunnel.
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From (2) of conditions (a) we find

b b g%

or substituting for ¢ its expression (42), we find

9¢

b
ar =0

a

[% + B(b + 2 log b) + 2Cb]
- [%+B(a+2aloga) +2C’a} =0 (o
Comparing this with (b), it is easy to see that (¢) is satisfied, and the

forces at the ends are reducible to a couple, provided conditions (b) are
satisfied. To have the bending couple equal to M, the condition

ﬁaordr=ﬁg—rfrdr=—M )
must be fulfilled. We have
b b b 16 b
vo o _loel_ [tas, _les S
/;&;rdr—a—rra ‘/;(,ﬂdr— a7l ¢a
and noting that on account of (b)
b
g—f rf =0
we find from (d),
lols = M

or substituting expression (42) for ¢,
4 10%% + B(b*logh — a*loga) + C®* —a®) =M (9

This equation, together with the two Eqgs. (b), completely determines
the constants 4, B, C, and we find

A - il B M e )
N a N f)
C = jl\/v—l[b2 — a? + 2(b% log b — a?log a)]

where for simplicity we have put

2
N = (b — a®)? — 4a%? (log g) )
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Substituting the values (f) of the constants into the expressions (43)
for the stress components, we find

LM (@ b e g
oy = —N—(Wloga—}-blogb-l—alog;)

4aM B2, b T
aa=—-—]—V—(—%loga+bzlogl—)—l—tﬂlog%—l—b?—az) (48)
70 = 0

This gives the stress distribution satisfying all the boundary conditions:
(a) for pure bending and represents the exact solution of the problem,
provided the distribution of the normal forces at the ends is that given
by the second of Eqs. (48). If the forces giving the bending couple M
are distributed over the ends of the bar in some other manner, the stress
distribution at the ends will be different from that of the solution (48).
But on the basis of Saint-Venant’s principle it can be concluded that
the deviations from solution (48) are very small and may be neglected
at large distances from the ends, say at distances greater than the
depth of the bar.

It is of practical interest to compare solution (48) with the elemen-
tary solutions usually given in books on the strength of materials. If
the depth of the bar, b — @, is small in comparison with the radius of
the central axis, (b + a)/2, the same stress distribution as for straight
bars is usually assumed. If this depth is not small it is usual in prac-
tice to assume that cross sections of the bar remain plane during the
bending, from which it can be shown that the distribution of the nor-
mal stresses oy over any cross sections follows a hyperbolic law.2 In
all cases the maximum and minimum values of the stress ¢s can be pre-
sented in the form

M

g = M —
[ aZ

(h)

1 This solution is due to H. Golovin, Trans. Inst. Tech., St. Petersburg, 1881.
The paper, published in Russian, remained unknown in other countries, and the
same problem was solved later by M. C. Ribiére (Compt. rend., vol. 108, 1889,
and vol. 132, 1901) and by L. Prandtl. See A. Féppl, “Vorlesungen iiber tech-
nische Mechanik,” vol. 5, p. 72, 1907; also A. Timpe, Z. Math. Physik, vol. 52,
p. 348, 1905,

% This approximate theory was developed by H. Résal, Ann. mines, p. 617, 1862,
and by E. Winkler, Zivilingenieur, vol. 4, p. 232, 1858; see also his book ‘‘Die
Lehre von der Elastizitat und Festigkeit,”” Chap. 15, Prag, 1867. Further develop-
ment of the theory was made by F. Grashof, “Elastizitit und Festigkeit,” p. 251,

1878, and by K. Pearson, “History of the Theory of Elasticity,” vol. 2, pt. 1, p. 422,
1893.
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The following table gives the values of the numerical factor m calcu-
lated by the two elementary methods, referred to above, and by the

CorrriciENT m OF Eq. (h)

b Linear stress Hyp‘erb.olic .stress Exact solution

a distribution distribution -

1.3 +66.67 +72.98, -—61.27 4+73.05, —61.35
2 + 6.000 + 7.725, — 4.863 | + 7.755, — 4.917
3 + 1.500 + 2.285, — 1.095 | + 2.292, — 1.130

exact formula (48).1 It can be seen from this table that the elementary
solution based on the hypothesis of plane cross sections gives very

accurate results.

m
10
N
Ny 6
ﬁ 4 AN
be2a § 2 éNeufra/aXI.'s/f##})
g 0]
& 2 - -
6!.0 1112 13 14 1516 1T” 18 19 20
B Values of &
15 ‘ ‘ ‘
NSE' 12 LM .(1.070,
) 09 ™
=2 go‘s \\
~N
£
& 03 N
°w 112 13 14 15 16 17 18 1920
Values of
Fia. 43.

It will be shown later that, in the case of pure bending, the cross
sections actually do remain plane, and the discrepancy betweein the
elementary and the exact solutions comes h‘OII.I the fact that in th.e
elementary solution the stress component o, 18 neglected and it is

1 The results are taken from the doctorate thesis, Univ. Michigan, 1931, of

V. Billevicz.
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assumed that longitudinal fibers of the bent bar are in simple tension
or compression. . :

From the first of Eqgs. (48) it can be shown that the stress o, is always
positive for the direction of bending shown in Fig. 42. The same can
be concluded at once from the direction of stresses o4 acting on the ele-
ments n — n in Fig. 42. The corresponding tangential forces give
resultants in the radial direction tending to separate longitudinal fibers
and producing tensile stress in the radial direction. This stress
increases toward the neutral surface and becomes a maximum near this
surface. This maximum is always much smaller than (o¢)max. For
instance, for b/a = 1.3, (0)mx. = 0.060(00)msx.; fOr b/a = 2, (0)max. =
0.138(00)iaex.; TOr b/a = 3, (0-)max. = 0.193(00)max.. In Fig. 43 the dis-
tribution of ¢ and o, for b/a = 2is given. . From this figure we see that
the point of maximum stress o, is somewhat displaced from the neutral
axis in the direction of the center of eurvature.

28. Strain Components in Polar Coordinates. In considering the
displacement in polar coordinates let us denote by u and » the compo-

y

nents of the displacement in the radial and tangential directions, respec-
tively. - If u is the radial displacement of the side ad of the element
abed (Fig. 44), the radial displacement of the side be is u + (0u/ar) dr.
Then the unit elongation of the element abed in the radial direction is

& =2 (49)

As for the strain in the tangential direction it should be ebserved that
it depends not only on the displacement » but also on the radial dis-
placement u. -Assuming, for instance, that the points_aand d-of the
element abed (Fig. 44) have only the radial displacement u, -the new
length of the arc ad is (r + u) df and the tangential strain is therefore

(r+udd—rdd _u
A rdé Ty

The difference in the tangential displacement of the sides ab and cd. of

'vb-v"‘w‘.” - .
MSTITUTUL POLITERNL
TIMISOAR A 1
e inteeA CENTRALA
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the element abed is (6v/96) do, and the tangential strain due to the dis-
placement v is accordingly 8v/r 6. The total tangential strain is thus!

U av
& ==+ (50)

Considering now the shearing strain, let a'b’c'd’ be the position of the
element abed after deformation (Fig. 44). The angle between the
direction ad and a’d’ is due to the radial displacement u and is equal to
du/r 36. In the same manner the angle between a'b’ and ab is equal
to 9v/dr. It should be noted that only part of this angle (shaded in
the figure) contributes to the shearing strain and the other part, equal
to v/r, represents the angular displacement due to rotation of the ele-
ment abed as a rigid body about the axis through O. Hence the total
change in the angle dab, representing the shearing strain, is
ou v v

Substituting now the expressions for the strain components (49), (50),
(51) into the equations of Hooke’s law,?

& = %, (6, — voo)
1
@ =3 (0o — vor) (62)
.
Yro = a"'rﬂ

we can obtain sufficient equations for determining » and v.

929. Displacements for Symmetrical Stress Distributions. Sub-
stituting in the first of Egs. (52) the stress components from Eqgs. 43,
we find

du _ 1

or E
By integration we obtain

u:%[—(l—-’-;—y)é+2(1—v)Brlogr—B(1+v)r

[g—# +2(1 — »)Blogr+ (1 —3») B+ 2(1 — 7)0]

+ 200 — u)r] +10) (@

1 The symbol ¢; was used with a different meaning in Art. 10.
2 T4 is assumed here that we have to do with plane stress, 4.e., that there is no
stress o, perpendicular to the plane of the plate (see p. 11).
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in which £(8) is a function of 6 only. From the second of Egs. (52), we
find, by using Eq. 50,

dv _ 4DBr

- 1O

from which, by integration,

v="3" - f 7(6) do + f2(r) ®)

where fi(r) is a function of r only. Substituting (a) and (b) in Eq. (51)
and noting that v, is zero since 7,4 is zero, we find

19f(6) |, ofa(r) , 1 1
;W+-37L+;ff(0)d0—;f1(r)=0 (c)
from which
fi(r) = Fr, f(8) = H sin 6 4 K cos 0§ (d)

where F, H, and K are constants to be determined from the con-
ditions of constraint of the curved bar or ring. Substituting expres-

sions (d) into Egs. (a) and (b), we find the following expressions for the
displacements.!

u=%,[—(1—+r—y—)i1+2(1—u)Brlogr—B(l-{-v)r

4+ 201 — v)r] + H sin § + K cos 8 (53)

B
v=éﬁﬁ+Fr+Hcos0—Ksin0

in which the values of constants A, B, and C for each particular case
should be substituted. Consider, for instance, pure bending. Taking
‘Phe centroid of the cross section from which 8 is measured (Fig. 42) and
also an element of the radius at this point, as rigidly fixed, the condi-
tions of constraint are
o
u =0, v =0, 5=0for0=0andr=ro=a;:b

Applying these to expressions (53), we obtain the following equations
for calculating the constants of integration F, H, and K:

) ! Equation (c) is satisfied only when [ f(6) dé is taken from (d) without an addi-
tive constant.
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]—}[; 9—1;—”)4 + 2(1 — #)Bro log ro — B(1 + »)ro
0

+20(1 — y)ro] +K=0

FT0+H=0
F=0

From this it follows that F = H = 0, and for the displacement v we
obtain
__4Bro

— H 54
7 K sin 0 (54)

v

This means that the displacement of any cross section consists of a
translatory displacement — K sin 8, the same for all points in the cross
section, and of a rotation of the cross section by the angle 4B0/E about
the center of curvature O (Fig. 42). We see that cross sections remain
plane in pure bending as is usually assumed in the elementary theory
of the bending of curved bars.

In discussing the symmetrical stress distribution in a full ring (page
59) the constant B in the general solution (43) was taken as zero, and
in this manner we arrived at a solution of Lamé’s
problem. Now, after obtaining expressions (53) for
P displacements, we see what is implied by taking B

/ as zero. B contributes to the displacement v the
term 4Br6/E. This term is not single valued, as it
changes when we increase 0 by 2r, i.e., if we arrive
at a given point after making a complete circle round
the ring. Such a many-valued expression for a dis-
placement is physically impossible in a full ring, and so, for this case,
we must take B = 0 in the general solution (43).

A full ring is an example of a multiply-connected body, i.e., a body
such that some sections can be cut clear across without dividing the
body into two parts. In determining the stresses in such bodies we
usually arrive at the conclusion that the boundary conditions referring
to the stresses are not sufficient to determine completely the stress dis-
tribution, and additional equations, representing the conditions that
the displacements should be single valued, must be considered (see
page 118). .

~The physical meaning of many-valued solutions can be explained by
considering the initial siresses possible in a multiply-connec?ed body.
If a portion of the ring between two adjacent cross section‘s is cut out
(Fig. 45), and the ends of the ring are joined again by welding or other

Fig. 45.
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means, a ring with initial stresses is obtained, ¢.e., there are stresses in
the ring when external forces are absent. If « is the small angle meas-
uring the portion of the ring which was cut out, the tangential dis-
placement necessary to bring the ends of the ring together is

v = ar (e)
The same displacement, obtained from Eq. (54) by putting § = 2x, is
v =222 BC)
From (¢) and (f) we find
oF
B =< )

The constant B, entering into the many-valued term for the displace-
ment (54) has now a definite value depending on the way in which the
initial stresses were produced in the ring. Substituting (g) into Eqs.
(f) of Art. 27 (see page 62), we find that the bending moment necessary
to bring the ends of the ring together (Fig. 45) is

b2
2 42)2 27,2 v
oF () a? 4a? (loga)

M=-< 208 = o) : *)

From this the initial stresses in the ring can easily be calculated by
using the solution (48) for pure bending.

30. Rotating Disks. The stress distribution in rotating circular
disks is of great practical importance.! If the thickness of the disk is
small in comparison with its radius, the variation of radial and tan-
gential stresses over the thickness can be neglected? and the problem
can be easily solved.? If the thickness of the disk is constant Eq. (40)

can be applied, and it is only necessary to put the body force equal to
the inertia force.* Then

R = pwr (a)

* A complete discussion of this problem and the bibliography of the subject can
be found in the well-known book by A. Stodola, ‘“Dampf- und Gas-Turbinen,”
6th ed., pp. 312 and 889, 1924,

? An exact solution of the problem for a disk having the shape of a flat ellipsoid
of revolution was obtained by C. Chree, see Proc. Roy. Soc. (London), vol. 58, p. 39,
1895. It shows that the difference between the maximum and the minimum stress
at the axis of revolution is only 5 per cent of the maximum stress in a uniform disk
with thickness one-eighth of its diameter.

® A more detailed discussion of the problem will be given later (see Art. 119).
+The weight of the disk is neglected.
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where p is the mass per unit volume of the material of the disk and o

the angular velocity of the disk.
Equation (40) can then be written in the form

% (re) — o0+ potr = 0 ®)

This equation is satisfied if we derive the stress components from a
stress function F in the following manner:

dF
re, = F, o0 = - + par?r? )

The strain components in the case of symmetry are, from Egs. (49)

and (50),
du

€T=$") € =

S

Eliminating u between these equations, we find

eo—e,-{-r%—é;=0 (d)

Substituting for the strain components their expressions in terms of
the stress components, (52), and using Egs. (¢), we find that the stress
function F should satisfy the following equation:

2
72%;+T%—F+<3+v>pw2r3=0 (e)

It can be verified by substitution that the general solution of this
equation is

F=Cr+01;1‘-~3§ypw27'3 )
and from Egs. (c) we find
0'r=0+011—]:§—3_gva27'2
(9)
gy = 0—017175— l-ggypwzrz

The integration constants C and C are determined from the boundary
conditions.

Tor a solid disk we must take C'; = 0 since otherwise the stresses (9)
become infinite at the center. The constant C is determined from the
condition at the periphery (r = b) of the disk, If there are no forces
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applied there, we have

(0r)rs = (]—3;_",,‘021,2 =0

from which
C = 3+ v po?h?
8
and the stress components, from Eqs. (g), are
o =3 T2 gt ~ 1)
3 (55)
gy = —é_ przb2 — 1 —;31, pw?r?
These stresses are greatest at the center of the disk, where
o =09 = 8 +v puw?b? (56)

In the case of a disk with a circular kole of radius a at the center, the
constants of integration in Eqgs. (g) are obtained from the condit,ions
at the inner and outer boundaries. If there are no forces acting on
these boundaries, we have

(‘fr)r=a =0, (”r)rmb =0 (R
from which we find that
3
C = _g prZ(bz + a2); Ci= — 3 -SI_ przazbz

Substituting in Egs. (g),

ar=3—g-va2(b2+a,2—‘ig2_,,2)
T

34w a®? 143 67
7 =g pw2(b2+a2+7 - 3—:_ :ﬂ)
We find the maximum radial stress at » = +/ab, where
3+
(@)max. = —5— " p*(b — a)? (58)

The maximum tangential stress is at the inner boundary, where

3+ 11—
4 pw2 <b2 + m 02) (59)
It will be seen that this stress is larger than (0+) max..

(60) max., —
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When the radius a of the hole approaches zero, the maximum tan-
gential stress approaches a value twice as great as that for a solid dis.k
(56); i.e., by making a small circular hole at the center of a solid
rotating disk we double the maximum stress. This phenomenon of
stress concentration at a hole will be discussed later (see page 78).

Assuming that the stresses do not vary over the thickness of the disk,
the method of analysis developed above for disks of constant thickness
can be extended also to disks of variable thickness. If h is the thickness
of the disk, varying with radius r, the equation of equilibrium of such
an element as shown in Fig. 40 is

4 (hra) — how + hpa'r® = 0 *)
This equation is satisfied by putting

hro =By, Tao = 5+ hputr?

where F is again a stress function. .
Substituting these expressions for the stress components into the com-
patibility equation (d) we arrive at the following equation for the stress
function F':
d*F dF _rdh( dF _ _
r? E;E + 1"-(77: —-F + (3 + V)pw2h1'8 z ar r ar vF 0 (l)

In this manner the problem of finding the stress distribution in a disk
of variable thickness is reduced to the solution of Eq. (). II.l the
particular case where the thickness varies according to the equation

h=Cr (m)

in which C is a conétant and n any number, Eq. (!) can easily be
integrated.! The general solution has the form

F = mm*3 4 Are + Brf

_ 8 + »)pw?C
T (»m+3n+8)

while « and 8 are the roots of the quadratic equation

in which

22—nr+wm—1=0
and A and B are integration constants which are determined from the
boundary conditions.

1'This case was investigated by Stodola, loc. cit. See also H. Holzer, Z. ges.
Turbinenwesen, 1915.
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A good approximation to the actual shapes of rotating disks can be
obtained by dividing the disk into parts and fitting approximately to
each part a curve of the type (m).! The case of a conical disk has been
discussed by several authors.? Very often the calculations are made
by dividing the disk into parts and considering each part as a disk of
gonstant thickness.3

'31. Bending of a Curved Bar by a Force at the End.* We begin
with the simple case shown in Fig. 46. A bar ) D
of a narrow rectangular cross section and O 73 x
with a circular axis is constrained at the lower a
end and bent by a force P applied at the upper : In
end in the radial direction. The bending o
moment at any cross section mn is propor-
tional to sin 8, and the normal stress oy,
according to elementary theory of the bending
of curved bars, is proportional to the bending
moment. Assuming that this holds also for Y
the exact solution, an assumption which the
results will justify, we find from the second of Eqgs. (38) that the stress
function ¢, satisfying the equation

2 2 2 . 2
a_aﬁ+la+1a)<a~9+1a¢+1a¢)=0 @

ror ' 72962)\ort ' ror ' 1% a6

Fic. 46.

should be proportional to sin 6. Takiﬁg :
¢ =f(r)sing ®)

and substituting in Eq. (a), we find that f(r) must satisfy the following
ordinary differential equation: '

1 See M. Griibler, V.D.I., vol. 50, p. 535, 1906.

2 See A. Fischer, Z. oesterr. Ing. Arch. Vereins, vol. 74, p. 46, 1922; H. M. Martin,
Engineering, vol. 115, p. 1, 1923; B. Hodkinson, Engineering, vol. 116, p. 274,
1923; K. E. Bisshopp, J. Applied Mechanics (Trans: A.8.M.E.), vol. 11, p. A-1,
1944. T a o »

$ This method was developed by M. Donath; see his book, “Die Berechnung
rotierender Scheiben und Ringe,” Berlin, 1912. It is described in English by
H. Hearle in Engineering, vol. 106, p. 131, 1918. A further development of the
method was given by R. Grammel; Dinglers.Polytech. J., vol, 338, p. 217, 1923.
The case when material does not follow Hooke’s law was investigated by M.
Griibler, V.D.I., vol. 41, p. 860, 1897, and vol. 44, p. 1157, 1900. See also H.
Schlechtweg, Z. angew. Math. Mech., vol. 11, p. 17, 1931, and Ingenieur-Archiv,
vol. 2, p. 212, 1031. N

“* H. Golovin, loc. cit. ) et
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@ 1d _ W\(fd¥_ 1df _f)_ y
(aﬁ+;a;‘ﬁ>(w+rdr ) =0 (©

This equation can be transformed into a linear differential faqu{a,tion
with constant coefficients (see page 58), and its general solution 18

f@ =Ar3+B%+CT+Drlogr (d)

in which 4, B, C, and D are constants of integration, which.are dete.r-
mined from the boundary conditions. Substituting solution (d) in
expression (b) for the stress function, and gsing the general formulas
(38), we find the following expressions for the stress components:

D\ .
g,=16¢+—1-éi‘3=(2Ar—27§+7 sin 0

Tor | r?ae?
¢ 2B , DY .
60=E‘—2=(6A7‘+73—+ - sin 0 (60)
a (1o _ _ _2B, D
Tro = _517(?36 = (2Ar — ) cos o

From the conditions that the outer and inner boundaries of the curved
bar (Fig. 46) are free from external forces, we require that

o, =79 =0forr=aandr =2>
or, from Egs. (60),

240 -8 +2 -0
a a
(e)
9B . D

The last condition is that the sum of the shearing forces distr.'ibuted
over the upper end of the bar should equal the force P. .Ta,kfng the
width of the cross section as unity—or P as the load per unit thickness
of the plate—we obtain for 6 = 0,

’ >3 (194 _‘13_4,\“
ﬁmd“—ﬁs;(;sa o =1 36l

B ¢
= lArz+ﬁ+C+Dlogrb—P
or o ,
—ap -y +BEZD —Dlogg =P o)
From Eqgs. (¢) and (f) we find
P Pa?b?

P, ‘
= = —— = - = + b? )
A =3y B N’ D N(“ ) g
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in which

N = a? = b + (a* + b?) log 2

Substituting the values (g) of the constants of integration in Egs. (60),
we obtain the expressions for the stress components. For the upper
end of the bar, 6§ = 0, we find

g =0
p a®? 1 (n)
Trg = "N[T+”}T—;(a2+b2)]
For the lower end, 6 = 7/2,
0 =0
2p2 k
aa=%[3r—%f——<a2.+b2)%] ®

The expressions (60) constitute an exact solution of the problem only
when the forces at the ends of the curved bar are distributed in the

20
N © |
> - N I
LS| 924 == 3
~ %v,\.u,;/ INNRN
aRio yab o I NONA
[N V7 I N < >
s A4 | | N
osEHEL G2e216-0) : | NN
- 33i(b-ax 3 S\
) | N
0 '0.50]0/6:‘2}
!‘ (6-a) >
Fia. 47.

manner given by Egs. (k) and (k). For any other distribution of
forces the stress distribution near the ends will be different from that
given by solution (60), but at larger distances this solution will be
valid by Saint-Venant’s principle. Calculations show that the simple
theory, based on the assumption that cross sections remain plane dur-
ing bending, again gives very satisfactory results.

In Fig. 47 the distribution of the shearing stress 7,4 over the cross
section 6 = 0 (for the cases b = 3a, 2a, and 1.3a) is shown. The
abscissas are the radial distances from the inner boundary (r = a).
The ordinates represent numerical factors with which we multiply the
average shearing stress P/(b — a) to get the shearing stress at the
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point in question. A value 1.5 for this factor gives the maximum
shearing stress as calculated from the parabolic distribution for
rectangular straight beams. From the figures it may be seen that the
distribution of shearing stresses approaches the parabolic distribution
when the depth of the cross section is small. For such proportions as
are usual in arches and vaults the parabolic distribution of shearing
stress, as in straight rectangular bars, can be assumed with sufficient
aceuracy.

Let us consider now the displacements produced by the force P
(Fig. 46). By using Eqgs. (49) to (52), and substituting for the stress
components the expressions (60), we find

91‘=Sin0[2Ar(1—3v)—i—?(l"i-l’)‘f'g(l_”)]

or E

v

— = — l

FY Teg u ()
o o v

T = Tap + i

From the first of these equations we obtain by integration

u=20 [Ar2(1 —3) + 5+ + D1 — ) log r] +5O (m

where f(6) is a function of § only. Substituting (m) in the second of
Eqgs. (I) together with the expression for ¢ and integrating, we find

v=’—5(%—0[Ar2(5+V)+§(1+V) — Dlogr(l - 7)

+ D1 — v)] - /f(a) de + F(r) (n)

in which F(r) is a function of r only. Substituting now (m) and (n)
in the third of Egs. (I) we arrive at the equation

4D cos 0
ff(ﬁ) de + f'(6) + rF'(r) — F(r) = — __%__
This equation is satisfied by putting
F(r) = Hr, f(0)=—%)0cos0+Ksin0+Lcoso (p)

in which H, K, and L are arbitrary constants, to be determined from
the conditions of constraint. The components of displacements, frem
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(m) and (n), are then

2D i
u = ——E—,Bcose-i—Sl—n——Eo[D(l—v)logr-!—A(l—3v)r2
B(1
+%’~)]+Ksin0+Lcos0
oD . (9)
v =f—0s1n6—00§,0[f1(5+v)r2—|—§%;t.’2

D1
—D(l—u)logr]+—LEchoso+Kcos0—Lsin0+Hr

The radial deflection of the upper end of the bar is obtained by putting
6 = 0 in the expression for u, which gives

(W)omo = L ()

Tl%e constant L is obtained from the condition at the built-in end‘
(Fig. 46). For 6 = n/2 we have v = 0; dv/dr = 0, hence, from the
second of Egs. (g), »

= Dx
H =0, = ©
The deflection of the upper end is, therefore, using (g),
(W) oo = %r = — . Pr(a® 4 b?)
g [(“2 =) + (a* + 1) log Z] o

The application of this formula will be given later. When b approaches
a, and the depth of the curved bar, h = b — q, is small in comparison
with a, we can use the expression

Sll)lbstituting in (61) and neglecting small terms of higher order, we
obtain

3ra’P
Ep3

which coi-ncides with the elementary formula for this case.’
By taking the stress function in the form

¢ = f(r) cos @
! Bee S. Timoshenko, “Strength of Materials,” vol. 2, Art. 13, 1941.

(W)oo = —
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and proceeding as above, we get a solution for the case when a vertical
force and a couple are applied to the upper end of the bar (Fig. 46).
Subtracting from this solution the stresses produced by the couple (see
Art. 27), the stresses due to a vertical force applied at the upper end of
the bar remain. Having the solutions for a horizontal and for a
vertical load, the solution for any inclined force can be obtained by
superposition.

In the above discussion it was always assumed that Egs. (e) are
satisfied and that the circular boundaries of the bar are free from
forces. By taking the expressions in (e) different from zero, we obtain
the case when normal and tangential forces proportional to sin § and
cos 0 are distributed over circular boundaries of the bar. Combining
such solutions with the solutions previously obtained for pure bending
and for bending by a force applied at the end we can approach the
condition of loading of a vault covered with sand or soil.?

39. The Effect of Circular Holes on Stress Distributions in Plates.
Figure 48 represents a plate submitted to a uniform tension of magni-

2ty
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tude S in the z-direction. If a small circular hole is made in the middle
of the plate, the stress distribution in the neighborhood of the hole will
be changed, but we can conclude from Saint-Venant’s principle that the
change is negligible at distances which are large compared with a, the
radius of the hole.
Consider the portion of the plate within a concentric circle of radius
b, large in comparison with a. The stresses at the radius b are effec-
tively the same as in the plate without the hole and are therefore given
by
(61)rs = S cos? § = $S(1 + cos 26) (@)
(Tre),-a, = - %S sin 20

1 Several examples of this kind were discussed by Golovin, loc. cit., and Ribire,
loc. cit., and Compt. rend., vol. 132, p. 315, 1901.
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These forces, acting around the outside of the ring having the inner
and outer radii r = @ and r = b, give a stress distribution within the
ring which we may regard as consisting of two parts. The first is due
to the constant component S of the normal forces. The stresses it
produces can be calculated by means of Egs. (45) (page 59). The
_remaining part, consisting of the normal forces S cos 26, together
with the shearing forces —3.S sin 26, produces stresses which may be
derived from a stress function of the form

¢ = f(r) cos 26 (b)

Substituting this into the compatibility equation

0?2 10 1 92 92 149 2
(W‘}‘ +;§5@§>(l+——?+lﬁ>=0

ror ar:  r ar = r?290?

we find the following ordinary differential equation to determine f(r):

dr  1d _4a\(dy¥ , 1df 4f
(drzﬂa ﬁ)(d'ﬁ+;a;‘ﬁ>=°

The general solution is

() =Ar2+Br4—|-C:—2+D

The stress function is therefore
¢=(Ar2+Br4+07172+D) cos 26 )

and the corresponding stress components, from Egs. (38), are

_lag 1 9% 6C |, 4D
T FW=_<2A+74‘+7)00320

3¢
co=5—r7=<2A-|—12Br2+—6§> cos 20 @

_9(1ae\ _(,, 6C _ 2D\ .
6r<rﬁ)—(2A+6Br2_'F—T sin 26

2

Trg =

'(I;l)lef constants of integration are now to be determined from conditions
N or the outer boundary and from the condition that the edge of the
ole s free from external forces. These conditions give
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6C , 4D 1
24 + 3+ 37 = — 55
6C , 4D
M+t =0
6C 2D 1
2——————:—_
24 + 6BY — = — 33 58
2A+6Ba2—%g—271)2-=0

Solving these equations and putting a/b = 0, z.e., assuming an infinitely
large plate, we obtain

a?.
D = 3 S

S at
A——Z’ B =0, ——ZS’

Substituting these values of constants into Egs. (d) and adding the
stresses produced by the uniform tension 1S on the outer boundary

caleulated from Eqgs. (45) we find*

S a? S 3at 4a?
0’,-—-5(1 _?é)+'§(1 +—7-T_7>COS20

S a? S 3a!
"0=§(1+F>—§ 1+—T—4)cos20 (62)
4 2
'r,a=—§2 1"%"'2:7 sin 20

If r is very large, o, and 7rg approach the values given in Egs. (a). - At
the edge of the hole, 7 = a and we find

oo = S — 28 cos 20

o = 70 = 0,

1t can be seen that o is greatest when 8 = x/2or 6§ = 3w/2, 1.e., at
the ends m and n of the diameter perpendicular to the direction of the
tension (Fig. 48). At these points (06)mex. = 3S. This is the maxi-
mum tensile stress and is three times the uniform stress S, applied at

the ends of the plate.
+.At the points p and g, 6 is equal to = and 0 ‘a‘nd we find

o= — 8
5o that theré is a compression stress in the tangential direction at these
points.
i This solution was obtained by Prof. G. Kirsch; see V.D.I., vol. 42, 1898, It

has been well confirmed many times by strain measurements and by the photo-
elastic method (see Chap: 5 and the boaks cited on p. 131), :
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For tl{e cross section of the plate through the center of the hole and
perpendicular to the z-axis, § = 7/2, and, from Egs. (62), ‘

S 2
0 = 0, 00=§(2+%+3g—z)

It is evident that the effect of the hole is of a very localized character,
and, as r increases, the stress ¢y approaches the value S very rapidlyi
The distribution of this stress is shown in the figure by the shaded area
The localized character of the stresses around the hole justifies thé
application of the solution (e), derived for an infinitely large plate, to a
plate of finite width. If the width of the plate is not less than, four
diameters of the hole the error of the solution (62) in calculating (os)

does not exceed 6 per cent.! o

Having the solution (d) for tension or (44
compression in one direction, the solution - -
for tension or compression in two perpen- =— m |,
dicular directions can be easily obtained by <— C Y x
superposition. By taking, for instance, -— I\n e 1.
tensile stresses in two perpendicular direc- < >
tions equal to S, we find at the boundary
of the hole a tensile stress o5 = 2S (see S N
page 72). By taking a tensile stress S in y
the z-direction (Fig. 49) and a compressive Fie 49.

stress -—.S in the y-direction, we obtain the case of pure shear. The
tangential stresses at the boundary of the hole are, from Eqgs. (62),

co =8 — 28 cos 26 — [S — 28 cos (26 — )]

For 6§ = 7/2 or § = 3x/2, i.e., at the points n and m, we find ¢y = 48S.
For 6 =0 or § = =, 1.e., at ny and my, 0s = —48. Hence, for a large
plate under pure shear, the maximum tangential stress at the boundary
of the hole is four times larger than the applied pure shear.

Thfa high stress concentration found at the edge of a hole is of great
pract}cal importance. As an example, holes in ships’ decks may be
mentloned.. When the hull of a ship is bent, tension or compression is
EZ(;;uce% in the decks and there is a high stress concentration at the
e 1 nder the cycles of s‘.oress produced by waves, fatigue of the

1 Sa at the overstressed portions may result finally in fatigue cracks.?

ee S. Timosh Y
to ’ﬂqle load dividegng&;r) ’tlllgeu;lx:olsj: iy::;h;fl’:ii ,p{;?.u, 907 Wo must fake  equsl
“ee paper by T. L. Wilson, The 8.8. Leviathan, Damage, Repairs and Strength

Analysis :

, presented at a meeting of the American Society of N Architects an
; - aval

Marine Engineers, November, 1930, Y s d
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Tt is of ten necessary to reduce the stress concentration at holes, such
as access holes in airplane wings and fuselages. This can be done by
adding a bead! or reinforcing ring.? The analytical problem has been
solved by extending the method employed for the hole, and the results
have been compared with strain-gauge measurements.?

The case of a circular hole near the straight boundary of a semi-
infinite plate under tension parallel to this boundary (Fig. 50) was
analyzed by G. B. Jeffery.? A corrected result and a comparison with
photoelastic tests (see Chap. 5) were given later by R. D. Mindlin.*

m 2
1llc a 7
NZAP
p
F1s. 50.

The stress at the hole, at the point n nearest the edge, becomes a very
large multiple of the undisturbed tensile stress when mn is small com-
pared with np.

G. B. Jeffery also investigated the case of a uniform normal pressure
p; acting on the boundary of the hole. 'This is a problem of practical
interest. It gives the stresses near a rivet hole while the hot plastic
rivet is being forced home under pressure. If the hole is very far from
the straight edge the stresses at the boundary of the hole, from Eqgs.
(46) (page 60), are

oo = Pi, Or= —Di

If the hole is near the straight edge, the tangential stresses are no
longer constant along the boundary of the hole. The maximum tan-
gential stress is at the points k and [ and is given by the formula
d* +rt
(00)max. = Ps g (63)

1 See S. Timoshenko, J. Franklin Inst., vol. 197, p. 505, 1924; also 8. Timoshenko,
“Strength of Materials,” 2d ed., vol. 2, p. 317.

8. Levy, A. E. McPherson, and F. C. Smith, J. Applied Mechanics (Trans.
A.8.M.E.), vol. 15, p. 160, 1948. References to prior work may be found in this
paper.

3 Trans. Roy. Soc. (London), series A, vol. 221, p. 265, 1921.

4 Proc. Soc. Expl. Stress Analysis, vol. 5, p. 56, 1948.

SRS

TWO-DIMENSIONAL PROBLEMS IN POLAR COORDINATES 83

This stress. should be compared with the tensile stress at the point m
on the straight edge of the plate, given by the formula '
4pir?

T

(64)
For d = r /3, the two expressions have the same magnitude. If d
is greater than this the maximum stress is at the circular boundary
and if it is less, the maximum stress is at the point m. ’

The case of a plate of finite width with a circular hole on the axis of
symmetry (Fig. 51) was discussed by R. C. J. Howland.! He found
for instance, that when 2r = 4d, ’

oo = 4.38 at the point n and m 5

oo = 0.758 7 y2 T —

. J O3« F

at the point m. -— l |
The method used in this article for

analyzing stresses round a small cir- Fie. 51.

cular hole can be applied when the plate is subjected to pure bending,.?
The cases of a row of circular holes in an infinite plate,®*® a row of
holes in a strip,*® and in a semi-infinite plate,® and a ring of holes in
a plate” (under all-round tension) have also been investigated. A
method devised by Hengst has been applied to the case of a hole.in a
square plate? under equal tension in both directions, and under shear?
when the hole is plain or reinforced.

Solutions have been obtained for the infinite plate with a circular
hole when forces are applied to the boundary of the hole,9for the corre-

:g C. J.. Hov.vland, Trans. Roy. Soc. (London), Series A, vol. 229, p. 49, 1930.
5 . Tuzi, Phil. Mag., February, 1930, p. 210; also Sci. Papers Inst. Phys. Chem.
helsearch (Tokyo), vo!. 9, p. 65, 1928. The corresponding problem for an elliptical
hole was sol.vefi ea?,rher by K. Wolf, Z. tech. Physik, 1922; p. 160. The circular
S(; e 12 a strip is @scussed by R. C.J. Howland and A. C. Stevenson, T'rans. Roy.
solﬁtgo z:c?on)., series A, vol. 232! p. 155, 1933. A proof of convergence of the series
Tone is given by R. C. Knight, Quart. J. Math., Ozford series, vol. 5, p. 255,
‘:‘i\{l Sadowsky, Z. angew. Math. Mech., vol. 8, p. 107, 1928,
. K. ? g(;lifl)wlla;nd, ?\7{'0;. Ilioy. Soc. (London), series A, vol. 148, p. 471, 1935.
-d. z, Proc. Nederl. Akad. van Wetenschappen, vol. 45, pp. 233, 341
anzl 32% 1?;12, vol. 48, pp. 282 and 292, 1945. ’ » - 255 541, 497
- B. Ling, P. 8. Wang, and K. 8. Jing, Tech. Rept
Re;?eézrch, C:hengtu, China, Jan. 1944, ’ ept o 3, Bur. Aeronant.
I~ 1%{ Ling and P. 8. Wang, Tech. Rept. No. 6, ibid., June, 1943,
. C‘ Kengst, Z. angew. Math. Mech., vol. 18, p. 44, 1938,
. W G Wang, J. Applied Mechanics (Trans. A.S.M.E.), vol. 13, p. A-77, 1946.
- G. Bickley, Trans. Roy. Soc. (London), series A, vol. 227, p. 383, 1928,.
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sponding problem of the strip,* and for a row of holes parallel and near
to the straight edge of a semi-infinite plate? (row of rivet holes).

If an elliptical hole is made in an infinite plate under tension S, with
one of the principal axes parallel to the tension, the stresses at the ends
of the axis of the hole perpendicular to the direction of the tension are

a=S(1+2%) (65)

where 2a is the axis of the ellipse perpendicular to the tension, and 2b
is the other axis. This and other problems concerning ellipses, hyper-
bolas, and two circles are discussed in Chap. 7, where references will
be found.

A very slender hole (a/b large) perpendicular to the direction of the
tension causes a very high stress concentration.? This explains why
cracks transverse to applied forces tend to spread. The spreading can
be stopped by drilling holes at the ends of the erack to eliminate the
sharp curvature responsible for the high stress concentration.

When a hole is filled with material which is rigid or has elastic con-
stants different from those of the plate (plane stress) or body (plane
strain) itself, we have the problem of the rigid or elastic inclusion.
This has been solved for circular* and elliptic inclusions.® The results
for the rigid circular inclusion have been confirmed by the photoelastic
method® (see Chap. 5).

The stresses given by Egs. (62) for the problem indicated by Fig. 48
are the same for plane strain as for plane stress. In plane strain, how-
ever, the axial stress

o, = v(o, + 0)

must act on the plane ends, which are parallel to the zy-plane, in order
to make e, zero. Removal of these stresses from the ends, to arrive at
the condition of free ends, will produce further stress which will not
be of a two-dimensional (plane stress or plane strain) character. If

1 R. C. Knight, Phil. Mag., series 7, vol. 19, p. 517, 1935.

2. B. Ling and M. C. Hsu, Tech. Rept. No. 16, Bur. Aeronaut. Research,
Chengtu, China, February, 1945.

3 The problem of a narrow slot was discussed by M. Sadowsky, Z. angew. M ath.
Mech., vol. 10, p. 77, 1930. ‘

4+ K. Sezawa and G. Nishimura, Rept. Aeronaut. Research Inst., Tokyo Imp.
Univ., vol. 6, no. 25, 1931; J. N. Goodier, Trans. A.S.M.E., vol. 55, p. 39 (1933).

s L. H. Donnell, “Theodore von Kérmén Anniversary Volume,” p. 293, Pasa-
dena, 1941.

¢ W. E. Thibodeau and L. A, Wood, J, Research Natl, Bur, Standards, vol, 20,
p. 393, 1938.
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the hole is small in diameter compared with the thickness between the
ends, the disturbance will be confined to the neighborhood of the ends.
But if the diameter and the thickness are of the same order of magni-
tude, the problem must be treated as essentially three-dimensional
throughout. Investigations of this kind! have shown that ¢s remains
the largest stress component and its value is very close to that given
by the two-dimensional theory. -

33. Concentrated Force at a Point of a Straight Boundary. Let us
consider now a concentrated vertical force P acting on a horizontal

(a) )
Fra. 52.

st?'aight boundary AB of an infinitely large plate (Fig. 52a). The dis-
tribution of the load along the thickness of the plate is uniform, as indi-
cated in Fig. 52b. The thickness of the plate is taken as unity so that
P is the load per unit thickness.

The distribution of stress in this case is a very simple one? and is
called a simple radial distribution. Any element C at a distance r from
fche point of application of the load is subjected to a simple compression
in the radial direction, the radial stress being

__Z_Ecoso
T T

Gy = (66)
YA, E. Green, Trans. Roy. S i
. Roy. Soc. (London), series A, vol. 193 229, 1948; E
Sternbe d ’ ! s ies ( . ' ) 16,
b 27 11‘%)4:311 M. Sadowsky, J. Applied Mechanics (Trans. A.8.M.E.), vol. 16,
2 . .
ol 'tlthe solution of ’.chls problem was obtained by way of the three-dimensional
18;21(;? cff J. Boussmesg (p. 362) by Flamant, Compt. rend., vol. 114, p. 1465,
Bo » Paris, The extension of the solution to the case of an inclined force is due to
Mizzslﬁesq, Compt. rend., vol. 114, p. 1510, 1892. See also the paper by J. H.
ell, Proc. London Math. Soc., vol. 32, p. 85, 1900. The experimental investi-

gation of stress distribution, which : i
¢ ' y suggested the above theoretical work, was don
by Carus Wilson, Phil. Mag., vol. 32, p. 481, 1891. TR
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The tangential stress oo and the shearing stress 7, are zero. It is easy
to see that these values of the stress components satisfy the equations
of equilibrium (37) (page 56).

The boundary conditions are also satisfied because g and 7, are zero
along the straight edge of the plate, which is free from external forces
except at the point of application of theload (r = 0). Here s, becomes
infinite. The resultant of the forces acting on a cylindrical surface of
radius r (Fig. 52b) must balance P. It is obtained by summing the
vertical components o,r d0 cos § acting on each element r d6 of the sur-
face. In this manner we find

3 3
2/a,cos0-rd0=——gf cos2 §d9 = —P
0 T Jo .

To prove that solution (66) is the exact solution of the problem we
must consider also the equation of compatibility (39). The above
solution is derived from the stress function

)
¢———1;r081n0 (a)

We can verify this by using Eqgs. (38) as follows:

_1a¢ 198% _ _ 2Pcos?d
J'—rar+1'2602,_,,7 r

_ 9% _ » s
s=22-0 (66")

=2 (L28) -0
I or \rado/
which coincides with solution (66). Substituting the function (a) into
Eq. (39), we can easily show that this equation is satisfied. Hence, (a)
represents the true stress function and Eqs. (66’) give the true stress
distribution. '
* Taking a circle of any diameter d with center on the z-axis and tan-
gent to the y-axis at O. (Fig.-52a), we have, for any point C of the circle,
d cos 8 = r. Hence, from Eq. (66), '
2P

Oy = — —7

wd

i.e., the stress is the same at all points on the circle, except the point O,
the point of application of the load.

Taking a horizontal plane mn at a distance @ from the straight edge
of the plate, the normal and shearing components of the stress on this
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plane at any point M (Fig. 52a) are calculated from the simple com-
pression in the radial direction,

3
¢, = 0r €O8% 0 = —?—1—)005 0= —ggcos‘*o
T T *a
. 2P .
o, = o, 8in% 0 = —Esmzocosze (67)

_gl:sin()coszo _

T = 08D 0 cos § = - .

_2r sin 6 cos? 6

Ta
In Fig. 53 the distribution of stresses ¢, and 7., along the horizontal
plane mn is represented graphically.

At the point of application of the load the stress is theoretically
infinitely large because a finite force is acting on an infinitely small

d P Y]

y A . - 5 }”}, }q\B
F.Ai 1
A N |
" %’ N 2 l
,,,(=-—/’ M| N\b b, | B
{ =

x
Fia. 53.

area. In practice, at the point ef application there is always a certain
yielding of material and as a result of this the load will become dis-
tributed over a finite area. Imagine that the portion of materiai
which suffered a plastic flow is cut out from the plate by a circular
cylindrical surface of small radius as shown in Fig. 52b. Then the
e(llutations of elasticity can be applied to the remaining portion of the
plate.

An analogous solution can be obtained for a horizontal force P
applied to the straight boundary of the semi-infinite plate (Fig. 54).
The stress components for this case are obtained from the same Egs.
(66'); it is only necessary to measure the angle 6 from the direction of
the force, as shown in the figure. By calculating the resultant of the
forces acting on a cylindrical surface, shown in Fig. 54 by the dotted
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line, we find - - N S
—%f cos? 0df = —P
T Jo

This resultant balances the external force P, and, as the stress compo-
nents 7.5 and o¢ at the straight edge are zero, solution (66') satisfies the
boundary conditions. ,
Having the solutions for vertical and horizontal concentrated forces,
solutions for inclined forces are obtained by superposition. Resolving
the inclined force P into two components, P cos a vertically and P sin

A o B
r
C;
Fia. 54. Fi1a. 55.
« horizontally (Fig. 55), the radial stress at any point C is, from Eqgs.
(66,)_} * ) ?

oy = —E[PGOSacose+Psinacos(7—r+0)]
wr . 2
-2P
= — —cos (x+8) (68)

Hence Eqgs. (66') can be used for any direction of the force, provided in
each case we measure the angle § from the direction of the force.
The stress function (a) may be used also in the case when 2 couple is acting on

the ‘straight boundary of an infinite plate (Fig. 56a). It is easy to see that the
stress function for the case when the tensile force P is at the point 0y, at a distance a

from the origin, is obtained from ¢, Eq. (a), regarded for the moment as a function-

of zand y instead of r and 6, by writing y + a instead of y and also —P instead of P.
This and the original stress function ¢ can be combined, and we then obtain the
stress function for the two equal and opposite forces applied at 0 and Oy, in the form

—olz,y +0) + ¢(z,y)
When a is very gmall, this approaches the value ‘
Substituting (a) in Eq. (b), and noting (see page 57) that

3¢ - 06 ., 990080
2y TRl t e
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we find
Pa . M . N
¢1=;—(0+smocoso)=—;(0+sm00050) (69)

in which M is the moment of the applied couple. .

Reasoning in .’che same manner, we find that by differentiation of ¢;, we obtain
the stress function ¢, for the case when two equal and opposite couples M are
acting at two points O and O; a very

small distance apart (Fig. 56b). We thus P P
- find that
a Y TOI
<i>z=<i>1—(<i>1+¢1)=—aitl ~—a—

_6—:17 a ay
= — gn# cés_sa 0 (70)

If the directions of the couples are
changed it is only necessary to change
the sign of the function (70).

A series of stress functions obtained (a)
by successive differentiation has been X
employed to isolve the problem of stress
concentration due to a semicircular notch ’/ﬁl\ /j‘%

in a semi-infinite plate in tension parallel Y 7] 7
to the edge.! The maximum tensile J

stress is slightly greater than three times 1
the undisturbed tensile stress away from
the notch. The strip with a semicircular
notc(}il in each edge has also been investi- -
gated.? The stress-concentration factor

(ratio of maximum to mean stress at mini- —/
mum section) falls below three, approach- p.
ing unity as the notches are made larger. Fia. 56..’

6)

C

Having the distribution of stresses, the corresponding displacements
can be obtained in the usual way by applying Eqs. (49) to (51). For
a force normal to the straight boundary (Fig. 52) we have '

e_gy__g’coso
i ar B r
_u, ov 2P cos 0
€ r+r60 A @
ou o v
Yro Tao"_ar_;:o

:g G. Maunsell, Phil. May., vol. 21, p. 765, 1936. '
Hp . B Ling, J. Apgnlied Mechanics (Trans. A.8.M.E.), vol. 14, p. A-275, 1947;
- Poritsky, H. D. Snively, and C. R. Wylie, ibid., vol. 6, p. A-63, 1939. ’ '
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Integrating the first of these equations, we find

2P
U= —Ecoselogr + f(6) @
where f(6) is a function of 6 only. Substituting in the second of Egs.
(c) and integrating it, we obtain

- 29P 2P .
v—ﬁsmo—l—mlogrsmo—ff(o)d0+F(r) (e)
in which F(r) is a function of r only. Substituting (d) and (e) in the
third of Egs. (c), we conclude that

1(6) = —(_1_;—El)fasino+Asino+Bcos 6, F@)=Cr ()
where A, B, and C are constants of integration which are to be deter-
mined from the conditions of constraint. The expressions for the dis-
placements, from Eqs. (d) and (e), are

2P _ 1 —-»P . .
u———mcoselogr g fsin 4+ A sin 6 + B cos
_2vP 2P . _ Q- v)P
v =7 sin 6 -+ iy log r sin —F 0 cos’0 (@)

+(—1;—_E—V)—Psin0+Acos0—Bsin0+Cr

Assume that the constraint of the semi-infinite plate (Fig. 52) is such
that the points on the z-axis have no lateral displacement. Then
v = 0, for § = 0, and we find from the second of Eqs. () that A = 0,
C = 0. With these values of the constants of integration the vertical
displacements of points on the z-axis are
2P

(U) gm0 = — F logr + B ()
To find the constant B let us assume that a point of the z-axis at a dis-
tance d from the origin does not move verticaliy. Then from Eq. ()
we find

2P

Having the values of all the constants of integration, the displacements
of any point of the semi-infinite plate can be calculated from Eqgs. (g).
Let us consider, for instance, the displacements of points on the
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straight boundary of the plate. The horizontal displacements are
obtained ‘by putting 8 = *x/2 in the first of Eqs. (g). We find

(1 —»P 1 —»P

(u)0= = - ~aF (u)0=_% = — TR (71)

IR )

The straight boundary on each side of the origin thus has a constant
displacement (71), at all points, directed toward the origin. We may
regard such a displacement as a physical possibility, if we remember
that around the point of application of the load P we removed the por-
tion of material bounded by a cylindrical surface of a small radius (Fig.
52b) within which portion the equations of elasticity do not hold.
Actually of course this material is plastically deformed and permits
displacement (71) along the straight boundary. The vertical dis-
placements on the straight boundary are obtained from the second of
Egs. (g)- Remembering that v is positive if the displacement is in the
direction of increasing 6, and that the deformation is symmetrical with
respect to the z-axis, we find for the vertical displacements in the down-
ward direction at a distance r from the origin

2P d 1
oy = — @pur = Ztogd - AEIE - gy

At the origin this equation gives an infinitely large displacement. To
remove this difficulty we must assume as before that a portion of mate-
rial around the point of application of the load is cut out by a eylindri-
cal surface of small radius. For other points of the boundary, Eq. (72)
gives finite displacements.

34. Any Vertical Loading of a Straight Boundary. The curves for
% and 7., of the preceding article (Fig. 53) can be used as ¢nfluence
lines. 'We assume that these curves represent the stresses for P equal
to a unit force, say 11b. Then for any other value of the force P the
stre.ss oz at any point H of the plane mn is obtained by multiplying the
ordinate HK by P.

If‘ several vertical forces P, Py, Py, . . ., act on the horizontal
Strajlght boundary AB of the semi-infinite plate, the stresses on the
horizontal plane mn are obtained by superposing the stresses produced
by e?ach of these forces. For each of them, the o, and r,, curves are
Ob_ta:med by shifting the o, and 7., curves, constructed for P, to the new
;)ng1ns 01,0;, . . . . From this it follows that the stress ¢, produced,

or mstance, by the force P; on the plane mn at the point D is obtained
by multiplying the ordinate H;K; by P;. In the same manner the o,
stress at D produced by Psis H;K, - Ps, and so on. The total normal
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stress at D on the plane mn produced by P, P, P, ...1is
0‘z=_D_D_1 - P+ HiKy - Py + H:K» Pyt

Hence the o, curve shown in Fig. 53 is the influence line for the normal
stress ¢, at the point D. In the same manner we conclude that the 7
curve is the influence line for the shearing stress on the plane mn at the

point D.

ard_f_ 5*1_.1_.1_4 pr

Y O O O e { O

Y

o
= (5
L
o 6,
~— (c)

Fi1a. 57.

Having these curves, the stress components at D for any kind of
vertical loading of the edge AB of the plate can easily be obtail%ed.

If, instead of concentrated forces, we have a uniform load of' inten-
sity g, distributed over a portion 55 of the straight boundary (Fig. 53),
the normal stress ¢, produced by this load at the point D is obtained by
multiplying by ¢ the corresponding ¢nfluence area shaded in the ﬁgur.e.

The problem of the uniformly distributed load can be solved in
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another manner by means of a stress function in the form
¢ = Ar% (@)
in which A is a constant. The corresponding stress components are
184 , 19%

o= ar Ty g — 240
9%¢
0'o=—c,—);—2=2A9 b

= 9 (Lae) _ _
™= 6r(r 60)— 4

Applying this to the semi-infinite plate we arrive at the load distribu-
tion shown in Fig. 57a. On the straight edge of the plate there acts a
uniformly distributed shearing force of intensity —A4 and a uniformly
distributed normal load of the intensity Aw, abruptly changing sign at
the origin O. The directions of the forces follow from the positive
directions of the stress components acting on an element C.

By shifting the origin to O; and changing the sign of stress function
¢, we arrive at the load distribution shown in Fig. 57b. Superposing
the two cases of load distribution (Figs. 57a and 57b), we obtain the
case of uniform loading of a portion of the straight boundary of the
semi-infinite plate shown in Fig. 57¢. To obtain the given intensity ¢
of uniform load, we take

1
241 = ¢, A—ﬂq

The stress at any point of the plate is then given by the stress function!
¢ = A(r?0 — r26,) = % (r26 — r,%01) (¢

From Egs. (b) we see that the first term of the stress function (c) gives, at any
point M of the plate (Fig. 58a), a uniform tension in all directions in the plane of
the plate equal to 246 and a pure shear —A. In the same manner the second
term of the stress function gives a uniform compression —2A6,; and a pure shear A.
The uniform tension and compression can be simply added together and we find a
uniform compressive stress

p =246 — 246, = 24(6 — 6,) = —2A« (d)

n which « is the angle between the radii r and ry.

In superposing the two kinds of pure shear, one corresponding to the direction »
and the other to the direction ry, we shall use Mohr’s circle (Fig. 58b), which in this
case hags a radius equal to the numerical value of the pure shears A. By taking

! This solution of the problem is due to J. H. Michell, Proc. London Math., Soc.,
vol. 34, p. 134, 1902,
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the two diameters, DD, parallel tor and FF, perpendicular to 7, as the - and o-axes,
we have a representation of the pure shear corresponding to the r-direction. The
radii CF and CF; represent the principal stresses 4 and —A making angles =/4
with r at the point M, corresponding to this pure shear, and the radius CD repre-
gents the shearing stress —A on the plane mn perpendicular to r. For any plane
mym, inclined at an angle g to mn (Fig. 58a), the stress components are given by the
eoordinates o and = of the point G of the circle, with the angle GCD equal to 28.

(4] 0O,

®
Fia. 58.

The same circle can be used also to get the stress components due to pure ghear
in the direction ri (see page 16). Considering again the plane mins, and noting
that the normal to this plane makes an angle @ — B with the direction r; (Fig. 58a),
it appears that the stress components are given by the coordinates of the point H
of the circle. To take care of the sign of the pure shear corresponding to the
r~direction, we must change the signs of the stress components, and we obtain in
this manner the point H1 on the circle. The total stress acting on the plane min:
is given by the vector CK, the components of which give the mnormal stress
—(o 4 1) and the shearing stress 71 — 7. The vector CK has the same magnitude
for all values of g since the lengths of its components CH, and CG, and the angle
between them, = — 2a, are independent of g. Hence, by combining two pure
shears we obtain again a pure shear (see page 17).
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When 71 — = 0, the angle 8 determines the direction of one of the principal
stresses at M. From the figure we see that r and 71 are numerically equal
if 28 = 2(a — B), from which 8 = /2. The direction of the principal stress
therefore bisects the angle between the radii r and r.. The magnitudes of the
principal stresses are therefore

+2 = +2A5in 28 = +24 sin a (e)

Combi_nil}g this with the uniform compression () we find, for the total values of
the principal stresses at any point M, :

—2A(a + sin a), —2A(a — sin a) 6))]

' Along any circle through O and O, the angle « remains constant, and so the prin-
cipal stresses (f) are also constant. At the boundary, between the points O and O,

DU, "S- z

| %
q
Alo 2 B

Fia. 59.

(Fig. 58a), the angle « is equal to x, and we find, from (), that both principal
stresses are equal to —2rA = —q. For the remaining portions of the boundary
a=0, anfi both principal stresses are zero.

Hence if an arbitrary load distribution (Fig. 59) is regarded as composed of a
large number of loads of varying intensities on short elements of the boundary,

the.horizontal stress o, under one such load element (as indicated in Fig. 59) is
entirely due to that element, and

o, =0y = —¢ @
all along the straight boundary.

. Se_veral other cases of distributed load on a straight boundary of the semi-
infinite plate were discussed by 8. D. Carothers,* and by M. Sadowsky.? Another
manner of solving this problem will be discussed later (see page 125).

The deflections of the straight boundary of the plate can be found
for any load distribution by using Eq. (72) obtained for the case of a
cor.lcentrated force. If g is the intensity of vertical load distribution
(Fig. 59), the deflection produced at any point O at a distance r from
the shaded element g dr of the load, from Eq. (72), is

2¢, d (14 7»)q
FE 08 A — g dr

:Proc. Roy. Soc. (London), series A, vol. 97, p. 110, 1920.
Z. angew. Math. Mech., vol. 8, p. 107, 1928.
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and the total deflection at O is

9 [ite d 14 [H+® '
Uo—;E—,/; qug;dT'——;E,—‘ . qdr (h)

~ In the case of a uniformly distributed load, ¢ is constant and we find

dl , 1—v»

d .
z + o ql (%)

2
v0=1r—-lqi,[(l+x)logl+x—xlog

In the same manner, for a point under the load (Fig. 60), we find

dl , 1—»

d
—I—xlog; + -

l—x

ql )

vo = %[(l — z) log

Equation (k) can be used also for finding the intensity ¢ of load dis-
tribution, which produces a given deflection at the straight boundary.

: oA

o
o oo

Yy

v

Fia. 60. Fia. 61.

Assuming, for instance, that the deflection is constant along the loaded
portion of the straight boundary (Fig. 61), it can be shown that the dis-
tribution of pressure along this portion is given by the equation’

P
q_'zr\/a,2—ar:2

36. Force Acting on the End of a Wedge. The simple radial stress
distribution discussed in Art. 33 can be used also in investigating the
stresses in a wedge due to a concentrated force at its apex. Let us con-
sider a symmetrical case, as shown in Fig. 62. The thickness of the
wedge in the direction perpendicular to the zy-plane is taken as unity.
The conditions along the faces, § = *a, of the wedge are satisfied by
taking for the stress components the values

kP cos 0
'—-—‘r 3

[ 0, Trg = 0 (a)

oy = —

1 Sadowsky, loc. cit.
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The f:on.stant k will now be adjusted so as to satisfy the condition.of
equihb?lun% at the point 0. Making the resultant of the pressures on
the cylindrical surface (shown by the dotted line) equal to —P we find

* kP cos? @
_.2/; ———T——rd0= —kP(a+%sin2a) = —P

from which

o1

a + § sin 2a

Then, from Egs. (a),!

_ Pcos b
r(a + % sin 2a)

By.making a = 7/2 we arrive at solution (66) for a semi-infinite plate,

which has already been discussed. It may be seen that the distribu-

g, =

(73)

D

Yy
Frit
Y
I [
a‘b-——d
X
Fia. 62. Fia. 63.

tion of normal stresses over any cross section mn is not uniform, and
the ratio of the normal stress at the points m or n to the maximum
stress at the center of the cross seetion is found to be equal to cos* a.

If the force is perpendicular to the axis of the wedge (Fig. 63), the
same solution (a) can be used if 0 is measured from the direction of the
force. The constant factor k is found from the equation of equilibrium

e
L orcosf-rdf = —P
o T T

from which '

L Lk = 11 RDCUUS A Slooa i el
e ) " a — % sin 2a o . ..
and the radial stress is - R v S e

: .- _ Pcos8 ' L
. r r{a — % sin 2a) e
! This solution is due t ichel cit, ‘ n. pe :
chousstun. 1901 ue to Miche l‘, loc. .cit. Sf:e also A. Mesna.a,gerjv, Ann.pontset
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The normal and shearing stresses over any cross section mn are

_ _ _ Pyzsino
% = 7 y5(a — % sin 2a) ®)
P22 sin* ¢
Toy =

~ y¥(a — & sin 2q)
In the case of a small angle @, we can put

(2a)"

2a — sin 2a = 6

Then writing I for the moment of inertia of the cross section mn we

find from (b) that
3
gy = — P___gI/x : (t——aI; a) sin? @

Px? tana3.4
Ty = — T ° - sint 6

For small values of o, the factor (tan a/«)?sin* § can be taken as nearly
anity. Then the expression for o, coincides with that given by the
elementary beam formula. The maximum shearing stress occurs at
the points m and n and is twice as great as that given by the elementary
theory for the centroid of a rectangular cross section of a beam.

Since we have solutions for the two cases represented in Figs. 62 and
63, we can deal with any direction of the force P in the zy-plane by
resolving the force into two components and using the method of super-
position.! It should be noted that solutions (73) and (74) represent
an exact solution only in the case when, at the supported end, the
wedge is held by radially directed forces distributed in the manner
given by the solutions. Otherwise the solutions are accurate only at
points at large distances from the supported end.

The problem of the wedge loaded by a bending couple M, in the
plane of the wedge, and concentrated at the tip, is solved by the stress
function.?

(c)

sin 20 — 26 cos 2a
2(sin 2a — 2a cos 2a)

o=M (d)

where @ is as indicated in Fig. 62 and the applied couple M is counter-

1 8everal examples of stress distribution in wedges are discussed by Akira Miura,
“Spannungskruven in rechteckigen und keilférmigen Trigern,” Berlin, 1928.
Forces not at the vertex, on a wedge, or a plate from which a wedge has been cut,
are considered by J. H. A. Brahtz, Physics, vol. 4, p. 56, 1933, and by W. M.
Shepherd, Proc. Roy. Soc. (London), series A, vol. 148, p. 284, 1935.

2 C. E. Inglis, T'rans. Inst. Nav. Arch. (Londen), 1922, vol. 64.
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clockwise. The stresses are

- M 4 .
2(sin 2a — 2a cos 2a) T s 26, g =0

M 2
2(sin 200 — 2a cos 2a) r? (cos 26 — cos 2a)

Or =

(9

Trg =

36. Concentrated Force Acting on a Beam. The problem of stress
distribution in a beam subjected to the action of a concentrated force
is of great practical interest. It was shown before (Art. 22) that in
continuously loaded beams of narrow rectangular cross section the
stress distribution is obtained with

satisfactory accuracy by the usual (Lp
elementary theory of Dbending. %!
Near the point of application of a f.x

concentrated force, however, a seri- D
ous local perturbation in stress dis- a &
tribution should be expected and a Y. k

further investigation of the problem Fa, 64. -

is necessary. The first study of these local stresses was made experi~
mentally by Carus Wilson.! Experimenting with a rectangular beam
of glass on two supports (Fig. 64) loaded at the middle, and using
polarized light (see page 132), he showed that at the point 4, where the
load is applied, the stress distribution approaches that produced in a
semi-infinite plate by a normal concentrated force. Along the cross
section AD the normal stress o, does not follow a linear law, and at the
point D, opposite to 4, the tensile stress is smaller than would be
expected from the elementary beam theory. These results were
explained on the basis of certain empirical assumptions by G. G-
Stokes.2 The system represented in Fig. 64 can be obtained by super-
pos.ing two systems shown in Fig. 65. The radial compressive stresses
acting on the sections mn, np, and pq of a semi-infinite plate (Fig. 65a)
are removed by equal radial tensile stresses acting on the sides of the
re(.:tangular beam supported at n and p (Fig. 65b). The stresses in
this beam should be superposed on the stresses in the semi-infinite
plate in order to get the case discussed by Stokes.

In calculating the stresses in the beam, the elementary beam
formula will be applied. The bending moment at the middle cross
section AD of the beam is obtained by taking the moment of the reac-

! Loc. cit.

> ;gilson, loc. cit.; also G. G. Stokes, “ Mathematical and Physical Papers,” vol. 5,
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tion P/2 and subtracting the moment of all the radially directed tensile

_half of the beam. This latter moment is easily
caleulated if we observe that the radially distributed tensile forces are
statically equivalent to the pressure distribution over the quadrant ab
of the cylindrical surface abe at the point A (Fig. 65¢) or, using Eq. (66),
are equivalent to a horizontal force P/= and a vertical force P /2,

Fig. 65.

applied at A (Fig. 65d). Then the bending moment, ¢.e., the moment

about the point O, is

p,_P,
2 T

and the corresponding bending stresses aret

,_P(L_c), 3L (L_c
o =7\z 7)Y 2\ )Y

iformly distributed tensile stress
/x should be added. T he normal
ed in this elementary way,

To these bending stresses the un
P /2 produced by the tensile force P
stresses over the cross section AD, as obtain

are therefore
3P (z ¢ P

% = 353\2 7 ome
This coincides with the formula given by Stokes.

1 As before we take P as the force per unit thickness of the plate.
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A better approximation is obtained if we obser i
distributed load is applied to the bottom of the b:aiflh(ai:‘;ig 0551113121:13“513;
Egs. (36’). The intensity of this load at the point D fro;n Eq. (66), is
P/mc. Substituting this in (36’) and combining Wifjh the val.ue of1
above, we obtain, as a second approximation, "

3P (1 c) P P
0z === — = o (y 3y
203(2 T y+21rc+1rc(izé——1_0;)

_P P (3y ¢ (@
o 2,rc+7rc<za - 4?)
These stresses should be superposed on the stresses
_ 2P
o, =0, = - —
N ) ®

as for a semi-infinite plate, in ord i

as for o somiir , er to obtain the total stresses along
A comparison with a more accurate solution, given below (see table

page 106), shows ’Fhat Eqgs. () and (b) give the stresses with very goo(i

aceuracy at all p01.nts except the point D at the bottom of the beam, at

which the correction to the simple beam formula is given as ’

3P P 1P
~ s T ra T 5rg = 024

while the more accurate solution gives only —0.133(P/c).
mai[(‘ll;ebﬁr?]t z]gctemPt to glet a more accurate solution of the problem was
made nz;_h.lﬁnc{ltlssulxesq. He used Flamant’s solution (see Art. 33) for
Fre 50 hel ep a,.te. To annul the stresses over the boundary np
o .uses a, n il}llpelzr‘imposes an e'qual. and opposite system of stresses
e Igten te dgmant solution, v.e., considers the beam as a semi-
introducis ¢ tgx ending above the line np. This corrective system
pomocueer xtra stresses over tbe top of the beam, which again can be
s proces); i;eg)(:aatfd lapphcatlon of Flarr%ant’s solution, and so on.
P o0 slowly convergent and did not lead to a satisfactory
ob:?a izc;l(ilggri‘ olf\I tge 14B;oblzem by means qf trigonometric series was
cenianec, load.s a.n d. i gn. He apphed this solution to the case of con-
et 93 ik - made calculations f?r several particular cases (see

» Which are in good agreement with more recent investigations.

:gorgpt. ren.d., vol. 114, p. 1510, 1892,
+ N, G, Filon, Trans. Roy. Soc. (London), series A, vol. 201, p. 63, 1903
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Further progress in the solution of the problem was made by H.
Lamb.! Considering an infinite beam loaded at equal intervals by
equal concentrated forces acting in the upward and downward direc-
tions alternately, he simplified the solution of the two-dimensional
problem and obtained for several cases expressions for the deflection
curves. It was shown in this manner that the elementary Bernoulli-
Euler theory of bending is very accurate if the depth of the beam is
small in comparison with its length. It was shown also that the cor-
rection for shearing force as given by Rankine’s and Grashof’s ele-
mentary theory (see page 43) is somewhat exaggerated and should be
diminished to about 0.75 of its value.?

A more detailed study of the stress distribution and of the curvature near the
point of application of a concentrated load was made by T. v. Kérmdn? and F.
Seewald.s Kérmén considers an infinitely long beam and makes use of the solution
for a semi-infinite plate with two equal and opposite couples acting on two neigh-
boring points of its straight boundary (Fig. 56b). The stresses along the bottom
of the beam which are introduced by this procedure can be removed by using &
solution in the form of a trigonometric series (Art. 23) which, for an infinitely long
beam, will be represented by a Tourier integral. In this manner Kérmén arrives
at the stress function

_Ma f={ac cosh ac + sinh ac) cosh oy — sinh ac sinh ay - ay
¢ == f sinh 2ac + 2a0c cos ez da

© (ac sinh ac + cosh a-c) sinh ay — cosh ac cosh ay * ay cos azda (€)
0 sinh 2a¢ — 2ac
This function gives the stress distribution in
the beam when the bending moment diagram
consists of a very narrow rectangle, as shown

(21 and
l‘lf in Fig. 66. For the most general loading of

_ Ma
k3
‘1

the beam by vertical forces applied at the top

of the beam? the corresponding bending-mo-

A T .
=*  ment diagram can be divided into elementary
rectangles such as the one shown in Fig. 66,
Y and the corresponding stress function will be
Fia. 66. obtained by integrating expression (c) along the
length of the beam.

This method of solution was applied by Seewald to the case of a beam loaded by &
concentrated force P (Fig. 64). He shows that the stress o, can be split into two

1 H. Lamb, Attt IV congr. intern. matemat., vol. 3, p. 12, Rome, 1909.

2 Filon came to the same conclusion in his paper (loc. cit).

8 Abhandl. aerodynam. Inst., Tech. Hochschule, Aachen, vol. 7, 1927.

¢ The case of a concentrated load applied half way between the top and bottom
of the beam was discussed by R.C.J. Howland, Proc. Roy. Soc. (London), vol. 124,
p. 89, 1929 (see p. 115 below), and pairs of forces within the beam by K. Girkmann,
Ingenieur-Archiv, vol. 13, p.273,1943. Concentrated longitudinal forcesin the web
of an I-beam are considered by Girkmann in Oesterr. Ingenieur-Archiz, vol. 1, p. 420,
1946.
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parts: one, which can be calculated by the usual elementary beam formula; and
another, which represents the local effiect near the point of application of the load.
This latter part, called o./, can be represented in the form g(P /¢), in which Bisa
pumerical factor depending on the position of the point for which the local stresses
are calculated. The values of this factor are given in Fig. 67. The two other
stress components ¢, and 7., can also be represented in the form B(P /¢). The
corresponding values of § are given in Figs. 68 and 69. It can be seen from the
figures that the local stresses decrease very rapidly with increase of distance from

y=-F 2 o4&
30 25 20 15 L0 05 05 10 15 20 25 30
0] x
N 1 ‘
1R -
SR o o» ]
\7‘ 38§ |§
\ TN 3
(a)
y=0 8
30 25 20 15 10 05 ‘ 05 10 15 20 25 30
i [ OI.QI [ — | Za_:
IS Wl @ g
¥ <, R
\ 3 8 3 \ 8
S S S
+ 4 +
(6)
[
y=+-2- ,8
30 25 20 15 10 05 0 05 10 15 20 25 30
[ [l — Lot | ) I | $ 4 l i %
] [ o
‘ \ Jreey € § \ S
JsisIsisl s % $
(c)
F1a. 68,

the point of application of the load and at a distance equal to the depth of the
beam are usually negligible. Using the values of the factor g for z = 0, the local
stresses at five points of the cross section AD under the load (Fig. 64) are tabulated
below. For comparison the local stresses,' as obtained from Egs. (a) and (b)
(page 101), are also given. Tt is seen that these equations give the local stresses
with sufficient accuracy.

Knowing the stresses, the curvature and the deflection of the beam can be
caleulated without any difficulty. These calculations show that the curvature
of the deflection curve can also be split into two parts—one as given by the

1 That is, stresses which must be superposed on those obtained from the ordinary
beam formula.

TWO-DIMENSIONAL PROBLEMS IN POLAR COORDINATES 105

_a.2
(A
N\
ves o TS T
QY S
JURR § 8 g
30 20 15 10 05 [SISISISL_SL.S l x
0 05 10 15 20 30 c
()
g 4
N
u
ALl LL
5 /] 1
8/ |
=0 Q/ QS
y= s ]
N o o)
NRE ¥ R
30 20 15 10 o5 JISSE 8 5 T 2
, 0 05 10 15 20 ~30 T c
/ (5)
__ ]
y:-l-g— l§
Sl s
(" 1)
&Q% S S D
30 20 15 10 05 [/ISSY S 3L -§ x
- TT/0 051015 20 30 <
/ ) -
Fie. 69.



106 THEORY OF ELASTICITY

TaBLE OF FacTORS § FOR THE MIDDLE

[

0 s (4

o

2
Exact solution
o = | .- 0.428 0.121 —0.136 —0.133
oy = ® —1.23 —0.456 —0.145 0
Approximate solution
o) = 0.573 0.426 0.159 —0.108 —0.254
oy = © —1.22 —0.477 —0.155 0

elementary beam theory and the other representing the local effect of the concen-
trated load P. This additional curvature of the center line can be represented
by the formula

1 P

el 7 @
in which « is a numerical factor varying along the length of the beam. Several
values of this factor are given in Tig. 70. It is seen that at cross sections at a

IRRRUULUNUREN!

Fic. 70.

distance greater than half of the depth of the beam the additional curvature is
negligible.

..____g___,._._—-g —
B le-C >1e C"‘ QL
= . 2
Chr s A 1 1
Fia. 71.

On account of this localized effect on the curvature, the two branches of the
deflection curve AB and AC (Fig. 71) may be considered to meet at an angle

equal to
P(3 3 3v (&)

10 4E

cxar
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The corresponding defection at the middle is

31='1_l=}:_l 3 _ 3 _ 3
4 "2 \i0 ~10E ~1E ?

From this deflection a small further correction 8,, removing the sharp change of
slop(? at A, should be subtracted. This quantity was also calculated by Seewald
and is equal to

P

8y = 0.21 B

Denoting now by & the deflection as calculated b, i
y using the element
the total deflection under the load is ¢ entary theory,

_ PI3 PlLf3 3 3
b =0t d —og= o g2 -2 2 P
oo =8 = e Y \ae 108 "1m) 0% @
Taking » = 0.3, this gives
. PB 2c\? 2c\3

b= g [1 + 2585 (T) ~0.84 (T) ] (75")

The elementary Rankine-Grashof theory (see page 43) gives for this case
.. PB 2c\ 2 .
b= g [1 +3.90 (T) ] @

It appears that Eq. (g) gives an exaggerated value for the correction due to shear
In these formulas the deflection due to .
local deformation at the supports is not P

taken into account. R
A

37. Stresses in a Circular Disk. M, D
Let us begin with the simple case
of two equal and opposite forces of N, D
P acting along a diameter AB (Fig. x
72). Assuming that each of the
forces produces a simple radial
stress distribution [Eq. (66)], we can
find what forces should be applied
at the circumference of the disk in
order to maintain such a stress dis- Y
tl.‘ibution. At any point M of the Fre. 72
circumference we have compressions in the directions of 7 and r; equal to

2P cos 6 2P cos @
- 1
x 7 ond

G

6y

B
Vad

— respectively.! Since r and r, are perpendic-

ular to each other and
cosf _cosb _1
r o d @
1T
It is assumed that P is the force per unit thickness of the disk.

o JPRE S

anTuTuL POLITERNE
TIMISOARA &
aiBLICTECA CENTRALA -

= 7 e
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where d is the diameter of the disk, we conclude that the two principal

" stresses at M are two equal compressive stresses of magnitude 2P /xd.

Hence the same compressive stress is acting on any plane through M
perpendicular to the plane of the disk, and normal compressive forces
of the constant intensity 2P/xd should be applied to the circumference
of the disk in order to maintain the assumed pair of simple radial stress
distributions.

If the boundary of the disk is free from external forces, the stress at
any point is therefore obtained by superposing a uniform tension in the
plane of the disk of the magnitude 2P/xd on the above two simple
radial stress distributions. Let us consider the stress on the horizontal
diametral section of the disk at N. From symmetry it can be con-
cluded that there will be no shearing stress on this plane. The normal
stress produced by the two equal radial compressions is -

9. 2P cos 6 c

b
in which 7 is the distance AN, and 6 the angle between AN and the
vertical diameter. Superposing on this the
uniform tension 2P/=d, the total normal
stress on the horizontal plane at N is

3

_ 4P cos® 8 + 2P

T r xd

os? 6

oy =

or, using the fact that
d

€08 0 = ————
4/ d? + 4x?
we find

2P 4d*
w=Zl - @ tey| ©

Fia. 73.

The maximum compressive stress along the diameter CD is at the cen-
ter of the disk, where
e -7
v wd
At the ends of the diameter the compressive stress o, vanishes.
Consider now the case of two equal and opposite forces acting along
achord AB (Fig. 73). Assuming again two simple radial distributions
radiating from A and B, the stress on a plane tangential to the circum-
ference at M is obtained by superposing the two radial compressions
2P cos 6 2P cos 61
K3 r an —; 1

acting in the directions r and ry, respectively.
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The normal MN to the tangent at M is the diameter of the disk; hence
MAN and MBN are right-angled triangles and the angles which the
normal MO makes with r and r; are#/2 — 6;and /2 — 8, respectively.
The normal and shearing stresses on an element of the boundary at M
are then

2Pcos 8 fr 2P cos 6 T
= e — —_ — 0 Rl — 2 —_— -
a -, o8 (2 1) . cos® | 5
_ 2P {cos @ sin? ¢, . cos 6 sin? ¢
-z ( LY ©
2P 0 .
T= — — (COS sin #; cos 6y — €oS 0 sin @ cos 0)
™ r il

These equations can be simplified if we observe that, from the triangles
MAN and MBN,
r = d sin 6y, r1 = d sin 0

Substituting in Egs. (¢), we find

a=—72§sin(0+01), r=0 @
From Fig. 73 it may be seen that sin (¢ + 6,) remains constant around
the boundary. Hence uniformly distributed compressive forces of the
intensity 2P /=d sin (8 + 6:) should be applied to the boundary in order
to maintain the assumed radial stress distributions. To obtain the
solution for a disk with its boundary
free from uniform compression it is
only necessary to superpose on the
above two simple radial distributions

a uniform tension of the intensity
2P /xd sin (6 + 6y).

The problem of the stress distribution in
a disk can be solved for the more general
case when any system of forees in equilibrium
1s acting on the boundary of the disk.! Let
us take one of these forces, acting at 4 in the Trg. 74
direction of the chord AB (Fig. 74). Assum- T
Ing again a simple radial stress distribution we have at point M a simple radial
Compression of the magnitude (2P/x) cos 6:/r: acting in the direction of AM.

! The problems discussed in this article were solved by H. Hertz, Z. Math. Physik,
vol. 28, 1883, or *Gesammelte Werke,” vol. 1, p. 283; and J. H. Michell, Proc.
London Math. Soc., vol. 32, p. 44, 1900, and vol. 34, p. 134, 1901. The problem
corresponding to Fig. 72 when the disk is replaced by a rectangle is considered by
J. N'. Goodier, Trans. A.S.M.E., vol. 54, p. 173, 1932, including the effects of
distribution of the load over small segments of the boundary.
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Tet us take as origin of polar coordinates the center O of the disk, and measure 8
as shown in the figure. Then the normal and the shearing components of the
stress acting on an element tangential to the boundary at M can easily be calcu-
lated if we observe that the angle between the normal MO to the element and the
direction r; of the compression is equal to /2 — 02. Then

2P cos 01 .
gy = -————'—7'——‘181112 02
L 1
e
2P cos 01 . (€)
g = — — —,— Sl 0, cos 02
™ 71

Since, from the triangle AMN, r, = d sin 0, Eqgs. (¢) can be written in the form

o = ——%sin (61 + 62) — ;r%sin (62 — 61)

- < ()
T8 = — —3CO8 (01 4 02) - —5 CO8 (62 - 01)

xd wd

This stress acting on the element tangential to the boundary at point M can be
obtained by superposing the following three stresses on the element.

(1) A normal stress uniformly distributed along the boundary:

— L sin (01 + 09 ©

(2) A shearing stress uniformly distributed along the boundary:

- % cos (8 + 62) | )]
k1

(3) A stress of which the normal and shearing components are

_ P sin (82 — 61) and _F cos (82 — 61) (k)
xd xd

Observing that the angle between the force P and the tangent at Mis 6 — 6, it
can be concluded that the stress (k) is of magnitude P/xd and acts in the direction

opposite to the direction of the force P.

Assume now that there are several forces acting on the disk and each of them
produces a simple radial stress distribution. Then the forces to be applied at the
boundary in order to maintain such a stress distribution are:

(1) A normal force uniformly distributed along the boundary, of intensity

=Y Zsin 0+ 00 o
ks
(2) Shearing forces of intensity
=Y Ecos s+ 0 (m)
1

(3) A force, the intensity and direction of which are obtained by vectorial sum-
“mation of expressions (k). The summation must extend over all forces acting on

she boundary.
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‘Fhe moment of all the external forces with respect to O, from Fig. 74, is

P cos (6: + 02)d
2

and, as tpis moment must be zero for a system in equilibrium, we conclude that
the shearmgt forces (m) are zero. The force obtained by summa’tion of the stresses
(k), proportional to the vectorial sum of the external forces, is also zero fora s stelﬁ
in equilibrium. Hence it is only necessary to apply d

at the boundary of the disk a uniform compression (1) 2
in order to maintain the simple radial distributions.
1f the boundary is free from uniform compression, the
stress at any point of the disk is obtained by super-
posing a uniform tension of magnitude

)
D
\./tc-

EP .
ke (61 + 62)

on the simple radial distributions.

By using this general method, various other cases of
stress distribution in disks can easily be solved.! We
may select, for instance, the case of a couple acting on
the disk (Fig. 75), balanced by a couple applied at the
center of the disk. Assuming two equal radial stress
distributions at A and B, we see that, in this case
(1) and the summation of (k) are zero and only shearing,
forc.:es (.m) need be applied at the boundary in order to
lf?:xllr:t(arg;’::e simple radial stress distributions. The intensity of these forces,

(a)

Fia. 75.

2M;

2P
——cos (8, + 02) = — i (n)

xd
glhere?, M; is the moment of the couple. To free the boundary of the disk from
~ earing forces and trgnsfer the couple balancing the pair of forces P from the
l.u'(;:iullnfe'renfse of the disk to its center, it is necessary to superpose on the simple
S: al distributions the stresses of the case shown in Fig. 75b. These latter
0;:::32,tﬁr:(ifuced l;ly pure circumferential shear, can easily be calculated if we

at for each concentric circle of radi i i
e B o e of radius 7 the shearing stresses must give a

M
Trg2mt = My, 1y = Z}ﬁz (»)

These stresses may al i .
the stress functiony also be derived from the general equations (38) by taking as

oo Mo
from which 2% (@)
¢r=0'9=0, 7,0=QZ‘LT;=

1 3 .
8everal interesting examples are discussed by J. H. Michell, loc. #it
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38. Force at a Point of an Infinite Plate. If a force P acts in the
middle plane of an infinite plate (Fig. 76a), the stress distribution can
easily be obtained by superpeosition of systems which we have already
discussed. We cannot, however, construct a solution by simple super-
position of two solutions for a semi-infinite plate as shown in Figs. 76b
and 76c. Although the vertical displacements are the same in both
these cases, the horizontal displacements along the straight boundaries
are different. While in the case 76b this displacement is away from

p (b6) )
2
’ f
A 4
2
cc) (e)
Fia. 76.

the point O, in the case 76¢ it is toward the point 0. The magnitudes
of these displacements in both cases, from Eq. (71), is

1 —v
This difference in the horizontal displacements may be eliminated by
the cases 76b and 76c with the cases 76d and 76e in which
shearing forces act along the straight boundaries. The displacements
for these latter cases can be obtained from the problem of bending of 2
curved bar, shown in Fig. 46. Making the inner radius of this bar
approach zero and the outer radius increase indefinitely, we arrive at

combining
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the case of a semi-infinite plate. The displacement along the straight
boundary of this plate in the direction of the shearing force acting on
the boundary is, from Eq. (61),
D=
E , (b)

The constant of integration D must now be adjusted so as to make the
displacement resulting from (a) and (b) vanish. Then

Plr_l—v 1 —v
g - ag D P=—g " (©)

With this adjustment the result of superposing cases 76b, 76¢, 76d, and
76¢ is an infinite plate loaded at a point, Fig. 76a. A
The stress distribution in the plate is now easily obtained by super-
posing the stresses in a semi-infinite plate produced by a normal load
P/2 at the boundary (see Art. 33) on the stresses in the curved bar con-
taining the constant of integration D. Observing the difference in
measuring the angle 6 in Figs. 46 and 76 and using Eqgs. (60), the
stresses in the curved bar are, for 8 as in Fig. 76, . ’

=Dcoscﬁ'=1-—vPcos0

r

r 4 r
69=D00s0=1-—vP0050

r 4 r
TTG:Dsin():l—vPsinB

r 4o r

Combining this with stresses (66) cal
: culated for the load P/2 i
the following stress distribution in the infinite plate: /2 weobtain

=1——vPcosO_Pcos@_ 8+ v) Pcos @

47 r wr 4r r
=1—vPcos0
47 r (76)
1—»Psiné
4r r

or

()

Trg =

B .

bguilg:t;ng out frqm tl.le plate at the point O (Fig. 76a) a small element

oo ed by a cy_hnd}rlcal surface of radius r, and projecting the forces
g on the cylindrical boundary of the element on the z- and y-axes

we find
X = zﬁ)" (0r COS 8 — 7,9 sin 6)r d§ = P

Y=2ﬁ:(a,sin0+'rrgcoso)rd0 =0
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i.e., the forces acting on the boundary of the cylindrical element repre-
sept the load P applied at the point O. By using Eqgs. (13) the stress
components, in Cartesian coordinates, are found from Egs. (76):

-, = ECO: b =3+ » + 201 + ») sin? 4]
o= L8001~y — 201+ v) sin® 4] 7
= _gsi‘_;_f’u — » + 2(1 + ») cos? 6]

From solution (77), for one concentrated force, solutions for other
kinds of loading can be obtained by super-

P position. Take, for instance, the case shown

TQLL in Fig. 77, in which two equal and opposite

y 4 F? forces acting on an infinite plate are applied at
D two points O and O, a very small distance d

apart. The stress at any point M is obtained

by superposing on the stress produced by the

force at O the stress produced by the other

x force ab 0. Considering, for instance, an

Fre. 77. element at M perpendicular to the z-axis and

denoting by o, the normal stress produced on the element by the force at
0, the normal stress o,/ produced by the two forces shown in the figure is

da do do do, sin 6
! = — - = - d 2= — 7= . i
o2 Os (az + - d) d ¥ d (67‘ cos 8 30 F

Thus the stress components for the case of Fig. 77 are obtained from
Eqgs. (77) by differentiation. In this manner we find

6r = %[—(3 + ) cos? 0+ (1 —) sin? 6 + 8(1 + ») sin? 6 cos? 6]
dpP
9T gy

(@ — ») cos® 8 + (1 + 3v) sin® 8 (78)
— 8(1 + ») sin? 6 cos? 6]

Toy = ng—z [—(6 4+ 2») +8(1 + ») sin? 6] sin 6 cos @
Tt can be seen that the stress components decrease rapidly, asr increases,
and are negligible when r is large in comparison with d. Such a result
is to be expected in accordance with Saint-Venant’s principle if we have
two forces in equilibrium applied very near to each other.

By superposing two stress distributions such as given by Eqs. (78),
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we can obtain the solution of the problem shown in Fig. 78. The
stress components for this case are

dP
Oy = —2(1—V)4T"2(1'—2Sin20) .2
dP —-“{
Uy=2(1—v)m(l—2sin20) y 0
dP o ”]
T = —2(1 — ) Tt sin 260 P
The same stress distribution expressed in
polar coordinates is F a"zg
1G. N
_ dP
o= —2(1 — ) g ge =21 — ») 4%%; e =0 (79)

This solution can be made to agree with solution (46) for a thick cylin-
fier submitted to the action of internal pressure
if t.he outer diameter of the cylinder is taken
as infinitely great.

In the same manner we can get a solution
for the case shown in Fig. 79a. The stress
components are’

= = = ——-M
g = ag = 0, = 5o (80)
They represent the stresses produced by a

couple M applied at the origin (Fig. 79b).

y
pe_ O { .
(6) )l
x
Fia. 79. };’m 80,

jecltfe(lin;‘:eai of 3n infinite pl?,te we have to deal with an infinitely long strip sub-
(77) as if theaclmtn of & longitudinal force P (Fig. 80), we may begin with solution
the strip resultI’) a t‘; were 1‘nﬁn1te in all directions. The stresses along the edges of
opposite systex;1 ¢ '?‘)}?1 this procedure can be annulled by superposing an equal and
mined by usin, .th e stresses produced .by this corrective system can be deter-
R.C.J. Howlagndze hgeneral method desecribed in Art. 23. Calculations made by
P diminish ronidl show that jahe local stresses produced by the concentrated force
noreases, and I;t dy as the distance from the point of application of the load
Btresses (;ve i 1St&llceslgrez.iter than the width of the strip the distribution of

T the cross section is practically uniform. In the table below several

A <
- E. H. Love, “Theory of Elasticity,” p. 214, Cambridge, 1927.

*Loc. cit. Se
1025 ¢ also a paper by E. Melan, Z. angew. Math. Mech., vol. 5, p. 314.



values of the stresses oz and oy, are given,
strip is fixed at the end z = 4 = and Poisson’s ratiois }.
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caleulated on the assumption that the

z . T _r _ T - 0
¢ 3 9 18 30
I et
oz2¢
y=0 = _o.118| —0.902| ... 1 .- o
y=c ‘L;f—c = 40.159 | -+0.511 0.532 0.521 0.500
y=o0 | 2%~ 010 08t o Lol
z_ ™ ™ ™ ™ ™
¢ 30 18 9 3 2
or2c v
y=0| ZF= | 1.992 1.118 1.002
o22¢
y=¢c == 0.479 0.468 0.489 0.841 0.973
y=0 ‘i”gi = | _0.364 | —0.110 ] —0.049

Stresses produced in a semi-infinite plate by a foree applied at some distance
from the edge have been discussed by E. Melan.!

39. General Solution of the Two-dimensional Problem in Polar Coordinates.

Having discussed various particular cases of the two dimensional problem in polar
coordinates we are DOW in a position to write down the general solution of the
problem. The general expression for the stress function ¢, satisfying the com-
patibility equation (39) is?

¢ = aologr + bor? + cor? log r + dor26 + ao'

+ ‘—1211*0 sin 6 + (br® +art + b./r log r) cos @

- %7‘0 cos 0 + (dur® + e/t + di'r log r) sin 0
0
+ 2 (@ur™ A bar*? + ar + b'r ) cos nd

n=2

+ 2 (car™ 4 durm?® + ca'r7 T dn'r"+2) sin nf (81)
n=2

1 7. angew. Math. Mech., vol. 12, p. 343, 1932.

2 This solution was given by J. . Michell, Proc. London Math. Soc., vol. 31,
p. 100, 1899. See also A. Timpe, Z. Math. Physik, vol. 52, p. 348, 1905. An
analogous solution for the case of -an elliptical ring was given by A. Timpe, Math.

Z., vol. 17, p. 189, 1923,
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The first three terms in the first line i i ; 1
the stress distribution symmetrical W?tfht?;:;;ﬁ)‘,r:zstl)li I:rli);'frsle:: :v.l)l ; 39111131011 for
A}rt. 26). The fourth term gives the stress distribution for the cor m;tes (S?e
Fig. 5'7. The fifth fcerm gives the solution for pure shear (Fi 7512: % ST}(;WIl i
term in the second.hpe is the simple radial distribution for a loid in ’ih di . ﬁ.I'St
6 = '0. The remaining terms of the second line represent the sol :. Irection
portion of a circular ring bent by a radial force (Fig. 46). By a lfbl o ‘for :
all the te}‘ms of the second line the solution for a force ac;,in 2)’11 aCOI.n ﬁm'mlon o
was Obtalfled (Art. 38). Analogous solutions are obtained alfo frOIrlll tlﬁ 1;36 pl?te
gf exl/);esmr(l)‘r}ll (8fl),tt}fle Otnly difference being that the direction of the forceeis c}llr:nlézg.
y /2. e further terms of (81) represe i 5
force§, propox:tional to sin 76 and co)s nOI: a,ctiltlltg S;’i“:ﬁ‘;niii‘; ;ﬁzafr)l;icira;)ld ngrr}al
o.f a circular ring. Wfa had an example of this kind in discussing the st it ibu
tion around a small circular hole (Art. 32). g the stress distribu-
In the case of a portion of a circular rin ; fon )
ion (81) can be calcula‘ted without any dgifg;fﬂi;n::j;tstl?ef ﬁljsrglfizt:on o ;Xpres—
we hav? a complete ring, certain additional investigations of the d)'r CIOII uons.
are sometimes necessary in determining these constants. We shall s
generfa,l case of a complete ring and assume that the intel'lsities of th consider. the
sh.earmg forces at the boundaries r =a and r = b i ¢ normal a.nd
trigonometrical series: . are given by the following

() rma = Ao + 2 Ay cos né 4+ z By, sin né
n=1

]

n=1
(6r)rms = A + E A, cos nd -+ 2 B,/ sin né
n=1 n=1
© » (@)
(Trg)r=a = Co + 2 C,cos nl + 2 D, sin no
n=1 n=1
Grg)rer = Co’ + 2 C,' cos nf -+ E D, sin n6
) n=1 n=1
in which th
e constants Ao, As, Ba, . . . , are to be calculated in the usual manner

from the given distzibuti
the astr(;;sg 1::11111 distribution of forces at the boundaries (see page 49). Calculati
the values of t}I:ODents from expression (81) by using Egs. (38), and compa ing
we obtain a ﬁ;‘:s? components for r = a and r = b with those gi’ven e B paring
tion in all czlslescis‘lti; nur;lber of equations to determine the constants };f lg:eg(f;i
expression (81), a,nld fo”ll- ; 2. . Ff)r nf = 0]’1 i.e., for the terms in the first line of
i = 1.6, . '
fur';hglinvestigations are neces’sary: or the terms in the second and third lines,
aking the first Ii Y-
determined by tit; lll.Lle Of_ expression (81) as a stress function, the constant ay’ is
the boundaries (see agnitude of the shearing forces uniformly distributed alt)n
factor d is man Il)age 111). The stress distribution given by the term with thg
do = 0. For thg :)lzt?éjd fse‘z.})agef 93) and, in a complete ring, we must assum:
mination of th .. ,
e have only two equations, e remaining three constants a., be, and co

(0r)rma = Ao and (@r)rms = Ao
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The additional equation for determining these constants is obtained from the
consideration of displacements. The displacements in a complete ring should be
single-valued functions of §. Our previous investigation shows (see Art. 26) that
this condition is fulfilled if we put co = 0. Then the remaining two constants
a0 and be are determined from the two boundary conditions stated above.

Let us consider now, in more detail, the terms for which n = 1. For determin-
ing the eight constants ai, by, . . . , 4 entering into the second and the third
lines of expression (81), we calculate the stress components or and . using this
portion of ¢. Then using conditions (a) and equating corresponding coefficients
of sin 76 and cos nf at the inner and outer boundaries, we obtain the following
eight equations:

((11 + b1/)a—l + 2b1(l - 2(11’0/—3 = A1
((11 + bll)b_‘ + 2b1b — 2a1'b"3 = Al, (b)
(01 + d],’)a,—1 + 2d1a —_ 261'0«—3 = B,
(61 + dll)b_l + 2d:b — 261,1)—3 = Bl'

2dia — 2¢/a~® + d'a”t = —C1

2d1b — 201,17_3 + dllb—l P __Cll

2ba — 2a:'a”% + bl = D1 ©
2bb — 2a4b7% + b/b~t = DY

Comparing Egs. (b) with (¢) it can be seen that they are compatible only if

ael = Ay — D1
alb’l = A1’ —_ D]_,
cia”l = B: + Cy (d)
Clb——l = Bll + Cl’
from which it follows that

o(ds — D) = b4 = DY), aBi+C) =bB + ) @

1t can be shown that Eqgs. () are always fulfilled if the forces acting on the ring
are in equilibrium. Taking, for instance, the sum of the components of all the
forces in the direction of the z-axis as zero, we find

ﬁfr {[b(o'r)rnb - a((fr)r=u] cos 8 — [b("'ro)r—b - a(""@)f—a] sin 0} de =0

Substituting for o, and 7.6 from (a), we arrive at the first of Egs. (¢). In thesame
manner, by resolving all the forces along the y-axis, we obtain the second of Eqgs. ().

When a; and c; are determined from Egs. (d) the two systems of Egs. (b) and
(¢) become identical, and we have only four equations for determining the remain-
ing six constants. The necessary two additional equations are obtained by con-
sidering the displacements. The terms in the second line in expression (81) repre-
sent the stress function for a combination of a simple radial distribution and the
bending stresses in a curved bar (Fig. 46). By superposing! the general expres-
sions for the displacements in these two cases, namely Bags. (g) (page 90) and
Eqs. (g) (page 77), and, substituting a1/2 for —P/x .n Egs. (9 and by for D in

11t should be noted that 8 -+ (x/2) must be substituted for 6 if the angle is
measured from the vertical axis, as in Fig. 52; instead of from the horizontal axis,

as in Fig. 46.
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Eqgs. (g), we find the following many-valued i i
displacements u and v, respectively: Y forms in the expressions for the

al—v, . 2b,/
5 E t)sm0+—Flosin0
all-—v 2b’
5 F Bcos0+Tlacose

These terms must vanish in the case of a complete ring, hence
?

1—'11 2b1’
E %z ~0

a
2
or

b]_l - _ al(l - V)
me o

Considering the third line of expression (81) in the same manner, we find
?

a = — 20 =) T ) @

mi]jic;ugal:l(ln;i éf()}oa;;(: a(gz, tiog(zflhertwitthqs. (b) and (c), are now sufficient for deter-
: s in the stress functi

e ot xoression (81, ion represented by the second and the
noxi ;;)Sziidfi :l;z}a,lt 1;1 :he case of a complete ring the boundary conditions (a) are

e determination of the stress distribution, and it i
. . ' 1t i3 neces!

consider the d1sp1.acements. The displacements in a compléte ring must b peid t10
valued and to satisfy this condition we must have oHnee

o =0, b1'=—‘ﬂgzi”~), d1'=—c‘(14—_”) (82)

thz‘;ir:: (tﬁlsat,‘:i:)hi.con‘stants bl’land d,’ depend on Poisson’s ratio. Accordingly

! ution in a complete ring will usually depend i

ties of the material. It becomes i o tants onlh e

; : . es independent of the elastic constants onl

;fl [and ¢, vanish so that, from Eq. (82), b’ = dy’ = 0. This particular o
o T case oceurs

A1 = D1 and Bl = —Cl

W o e

o et 1}11:: such a condition when tl}e resultant of the forces applied to each boundar

o fng vamsh‘es. Take, for instance, the resultant component in the z-direc}:
orces applied to the boundary r = a. This component, from (a), is

2x
ﬁ) (or cO8 8 — 7rpsin 0)a df = axr(A; — Dy)

If it vanish =

the y-dhect(;znwiv Elm%) tA 1= D,. In the same manner, by resolving the forces in

We may ool u,d t1(1) ain B; = —q; v'vhen the y-component is zero. From this

of the staciis con:t :t the stress d}stlebution in a complete ring is independent

boundors ants of the material if the resultant of the forces applied to each
y 18 zero, The moment of these forces need not be zero,
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These conclusions for the case of a circular ring hold also in the most general
sase of the two-dimensional problem for a multiply-connected body. From general
investigations made by J. H. Michell,! it follows that, for multiply-connected
bodies (Fig. 81), equations analogous to Egs. (82) and expressing the condition
that the displacements are single valued should be derived for each independent
cireuit such as the circuits 4 and B in the figure.
The stress distributions in such bodies generally
depend on the elastic constants of the material.
They are independent of these constants only if the
resultant force on each boundary vanishes.? Quanti-
tatively the effect of the moduli on the maximum
stress is usually very small, and in practice it can be
neglected.® This conclusion is of practical impor-
tance. We shall see later that in the case of trans-
parent materials, such as glass or bakelite, it is possi-
. ble to determine the stresses by an optical method, using polarized light (see
page 131) and this conclusion means that the experimental results obtained with
a transparent material can be applied immediately to any other material such as
steel if the external forces are the same.

Fic. 8L

() (b)
Fia. 82.

Tt was mentioned before (see page 68) that the physical meaning of many-
valued solutions can be demonstrated by considering initial stresses in a multiply-
connected body. Suppose, for instance, that Eq. (f) above is not satisfied. The
corresponding displacement is shown in Fig. 82¢. Such 2 displacement can be
produced by cutting the ring and applying forces P. If now the ends of the ring
are joined again by welding or other means, a ring with initial stresses is obtained.
The magnitudes of these stresses depend on the initial displacement d.t A similar

1 Loc, cit.

2 Tt must be remembered that the body forces were taken as zero.

3 An investigation of this subject is given by L. N. G. Filon, Brit. Assoc. Advance-
ment Sci. Rept., 1921, See E. G. Coker and L. N. G. Filon, ¢ Photo-elasticity,”
Arts. 6.07 and 6.16.

4 A discussion of such stresses is given by A. Timpe, 7. Math. Physik, vol. 52,
p- 348, 1905. A general theory is given by V. Volterra, Ann. école norm., Paris,
series 3, vol. 24, pp. 401-517, 1907. See also A. E. H.Love, ¢‘Mathematical
Theory of Elasticity,” 4th ed., p. 221, 1927; J. N. Goodier, Proc. Fifth Intern-
Congr. Applied Mechanics, 1938, p. 129. .
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ef'?e(.:t is obtam?d by making a cut along a vertical radius and imposing an initial
d‘lspla.cc.ament of one end of the ring with respect to the other in the ver%ical 1(;1'1 o
tion (Fig. 82b). The initial stresses produced in the cases shown in Figs. 82 ll'ec(;
82b correspond to the many-valued terms of the general soluti her Eg \ () on
(¢) are not satisfied. fon when as. () and
The complete sol}1tion of these problems can be obtained by applying the result
of Art. 3.1. The displacements given by Eqgs. (g) of Art. 31 will be found to h .
the required type of discontinuity when applied to a ring (see Prob. 4, page 1;6)3‘Ve
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Fia. 83.

apé%caggrl:zztiﬁes of the Gex}eral Solution in Polar Coordinates. As a first
o piion of i .dgenera.l solutlop of the two-dimensional problem in polar coordi-
neting slons v ;ila It;r :, circuymr ring compressefi by two equal and opposite forces
art gy cuttii gerouiF;g’.wSIi”:e)I.ltri\(?:Vfl (;kiegufl w:;h the solution for a solid disk
b ' e of radius ¢ in this di
folrt(isnzzl:aéeax;d shltlaaémg forces dis.tributed round the edge of t(:ll:k},l;l‘: arTehl::Z
This T syst:;uc : ll))y superposing an equal and opposite system of forces.
fow tome o0 Fom.: e l:epresented with sufficient accuracy by using the first
obtained by win t}ll T series, Ther} the corresponding stresses in the ring are
Sogether oo L g the general solution of the previous article. These stresses
e stresses calculated as for a solid disk constitute the total stresses

1 See i 9 Vi
S. Tlmoshenko, Bull. Polytech. Inst, Kiew, 1 10, and Phil Mag ol. 44
. .y . 3

p. 41 22 See alS i
3y . 0 K. X X i
,10.1 9’ ' Wleghardt, S’Ltzbe1. Akad. ” 188., Wlen, VOI. 124: I&bt“
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in the ring. The ratios og: 2P /wb, caleulated in this manner for various points of
the cross sections mn and min, for the case b = 2a, are given in the table below.!

r = \ b \ 0.9 \ 0.8b \ 0.7b 0.6b 0.5b
Exact theory
—8.942

mn 2.610 1.477 —0.113 —2.012 —4.610
3.788 —2.185 —0.59%4 1.240 4.002 10.147

mini -

Hyperbolic stress distribution
mn 2.885 1.602 0.001 —2.060 —4.806 —8.653
min —17.036 —5.010 —2.482 0.772 5.108 11.18
Linear stress distribution
mn 3.90 1.71 —0.48 —2.67 —4.86 —~7.04
miny —8.67 —~5.20 -1.73 1.73 5.20 8.67

For comparison we give the values of the same stresses caleulated from the two
elementary theories based on the following assumptions: (1) that cross sections
remain plane; in which case the normal stresses over the cross section follow &
hyperbolic law; (2) that the stresses are distributed
according to a linear law. The table shows that for
the cross section mn, which is at & comparatively large
distance from the points of application of the loads P,
the hyperbolic stress distribution gives results which
are very nearly exact. The error in the maximum
gtress is only about 3 per cent. For the cross section
mm, the errors of the approximate solution are much
larger. It is interesting to note that the resultant of
the normal stresses over the cross section mim1 is P/w.
This is to be expected if we remember the wedge action
of the concentrated foree illustrated by Fig. 65d. The
distribution of normal stresses over the cross section
Tic. 84. mn and MmNy caleulated by the three above methods is
ghown in TFigs. 83b and 83c. The method applied
above to the case of two equal and opposite forces can be used for the general case
of loading of & circular ring by concentrated forces.?
As a second example we consider the end of an eyebars® (Fig. 84). The distribu-
tion of pressures along the edge of the bole depends on the amount of clearanct
between the bolt and the hole. The following results are obtained on the assump-

1The thickness of the plate is taken as unity.

21,. N. G. Filon, The Stresses in a Circular Ring, Selected Engineering Papers,
No. 12, London, 1924, published by the Institution of Civil Engineers.

s T1. Reissner, Jahrb. wiss. Gesellsch. Luftfahrt, p- 126, 1928; H. Reissner, and
F. Strauch, Ingem'eur-Archiv, vol. 4, p. 481, 1933.
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jon that there are only normal pressures acting on the i
) ) e inner 8 i
o the e anitudoss g nd outer boundaries

2P cos 6

P rma = T T T —I T

(ov) 4 for 2$0<§
=_2_lzcoso r 3r

(ﬂ'r)r—b p b for § s [/} S —2—-

i.e., the pressures are distributed along the lower half i
, of the inner edge and the
upper half of the outer edge of the eye-shaped end of the bar. Aftergexpanding

6
e —>] /1—0.70.5'

t

+0./69

Fia. 85.

gllzseecli::tribu;uor‘ls into trigonometri_c series, the stresses can be caleulated by using
mﬁf " r; /;o ution (81) of the previous article. Figure 85 shows the values of the
iyl ; 1 Ia, calculated for the cross sections mn and mang for b Ja = 4 and
e bo{mda,: sh((l)uld be noteq that in this case the resultant of the forces acting on
o t{, oes n?t vanish, hence the stress distribution depends on elastic
P e material. The above calculations are for Poisson’s ratio » = 0.3.

. edge Loaded along the Faces. The general solution (81) can be used

! AT
also for polynomial distributions of load on the faces of a wedge.? By calculating

1P is the force per unit thickness of the plate.

For eXpenmental determinabl f hll tr t1 (8} ena by hhe
ons O € strei d. 'b i y
L SS Q18I ution 1n € b rs
I ]boela'Stlc method see E. G. COkeI and L. N. G. Fﬂon, PhOtO—elaShicity, Alt-

6.18

Ték;;gnl(in I; TUa;leimu;‘s; an(i Y. }flosokawa, Rept. 12, 1926, Aeronaut. Research Inst.,
. . e stress distribution in steel € ebars i i

J. Mathar, Forschungsarbeiten, No. 306, 1928. Y was investigated Y

38ee 8. Ti “ s s . e
burg, 1914. imoshenko, ‘“Theory of Elasticity,” Russian edition, p. 119, St. Peters-
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the stress components from Eq. (81) in the usual way, and taking only the terms
containing r* with n > 0, we find the following expressions for the stress com-
ponents in ascending powers of r:

op = 2bo + 2dof + 2a: cos 26 + 2c¢; sin 20
4-6r(by cos 8 + dy sin 8 + a3 cos 30 -+ ¢; sin 30)
+12r2(b; cos 26 + ds sin 20 + a4 cos 40 -+ ¢4 sin 49)
(n + 2)(n + Dr{bs cos nd 4 d, sin 18 + @42 cos (n +2)0
+ ¢np2 sin (n + 2)6]
70 = —do + 2as 8in 20 — 2¢s cos 26
4+ r(2by sin § — 2dy cos 8 + 6as sin 30 — 6cs cos 36)
+ 72(6bs sin 20 — 6ds cos 20 + 12as sin 49 — 12c4 cos 46)
+ ron(n 4+ Dbasin né — n(n + 1)d, cas 78 + (n + H)(n + 2)
Gngesin (0 +2)0 — (n + 1){n + 2)cay2 cos (n + 2)6]

Thus each power of r is associated with four arbitrary parameters so that, if the
applied stresses on the boundaries, 8 = o and § = B, are given as polynomials in r,
the stresses in the wedge included between these boundaries are determined.

If, for instance, the boundary conditions are!

(0 gma = No+ Ny + N2+ - - -
(09)g-p = No + Nir + Nor2 + - - -

(1) pmee = So + Sor + S + - - - (@)
(Tro)o-ﬁ = 8¢ + Si'r + NP LIS RN
we have, by equating coefficients of powers of r,
2(bo -+ docx + a2 €08 2 1+ C2 sin 2a) = No ®)

6(by cos & + dy sin o + a3 cos 3e + ¢38in 8a) = N,
and generally

(n + 2)(n + 1)[ba cos na + dn Sin na + Gnyz €08 (n + 2)a
4 Cng2 8in (n 4 2)a] = Na

with three other groups of equations for s¢ at 8 = 8 and 79
at 8 = e and 0 = B. These equations are sufficient for calcu-
lating the constants entering into the solution (83).

Let us consider, as an example, the case shown in Fig. 86.
A uniform normal pressure g is acting on the face 6 = 0 of the
wedge and the other face 6 = § is free from forces. Using
only the first lines in the expressions (83) for a¢ and rr the
equations for determining constants bo, do, az, and ce are

2bo + 2a2 = —q
2bo + 2do8 + 2a2 cos 28 + 2c: gsin 28 =0
—do —2¢2 =0

—do + 2as sin 28 — 2cz cos 28 =0

1 The terms No, No/, So, 8o are not independent. They represent stress at the

corner r = 0 and only three can be assigned.
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from which (writing k¥ = tan 8 — g) we find

_q _ _gqtang t.
cz—l-zk—r 2 do=——2q701 2bo=—q+A—~q g;:ﬂ
Substituting in Eqgs. (83), we obtain!
1 1
a-a=%(—k+§tan6—0—%tanﬂcos20+%sin20)
_qf1 1 . 1

™o = i—étanﬂsm20—§cos20) ©

pu =ﬂ(,_k +lta,nﬁ—0—1sin20+1ta.n‘800520

Tk 2 2 2

The stress componénts for any other ferm in the
polynomial load distribution (@) may be obtained qsi
in a similar manner. - '

The method developed above for caleulating
stresses in a wedge is applicable to a semi-infinite
plate by making the angle 8 of the wedge equal
to =. The stresses for the case shown in Fig. 87,
for instance, are obtained from Egs. (¢) by substi-

RN
f

; " ) Fic. 87.
tuting 8 = = in these equations. Then
oo = —Q(r .y +1sin20)
T 2
— q
™ = — o 1 — cos 26) d)
or = -—g(-:r -8 —lsin20)
T 2
Problems

1. Verify Eq. (d) of Art. 25 in the case
¢ =zt —yt = (22 + yD)(z? — y?) =r'cos 20

2. Examine the significance of the stress function C¢ where (' is a constant.
Apply it to a ring @ < r < b, and to an infinite plate.

A ring is fixed at r = a and subjected to a uniform circumferential shear at
r = b forming a couple M. Using Eqs. (49), (50), (51), find an expression for
the circumferential displacement v at r = b.

) 3. Show that in the problem of Fig. 45, if the inner radius a is small compared
with the outer radius b, the value of oy at the inside is given by

aF b
Zr—(l -2 log —d')

and so is large, and negative when a is positive (the gap is being closed).

! This solution was obtained by another method by M. Levy, Compt. rend., vol-
126,'p. 1235, 1898.  See also P. Fillunger, Z. Math. Physik, vol. 60, 1912. An
8dpphcz.a/cion of stress functions of this type to tapered box beams is given by
E. 3emsner, J. Aeronaut. Sci., vol. 7, p. 353,-1940. Other loads on wedges are
considered by C. J. Tranter, Quart. J. Mechs. and Appl. M. ath., vol: 1, p. 125, 1948,
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What is the largest gap (value of &) which can be closed without exceeding the
elastic limit, if b/a = 10, E = 3 X 107 p.s.i., elastic limit = 4 X 104 p.si?

4. Use the results of Art. 31 to obtain formulas for the stresses due to closing
the parallel gap 5 in Fig. 88a, and due to the
sliding of amount 3 in Fig. 88b, in terms of 3.

5. Find by superposition from Eqs. (62)

La the stresses in the infinite plate with a hole
when the undisturbed stress at infinity is uni-
form tension § in both the z- and y-directions.

157 The results should correspond with Egs.
(@) 6) (45) for the special case b/a-— =, p; = 0,
Fra. 88. po = —S. Use this as a check.

6. Find expressions for the displacements
corresponding to the stresses (62), and verify that they are single-valued.

7. Convert the stress function (a) of Art. 33 to Cartesian coordinates and hence
derive the values of ¢z, oy, Ty Which are equivalent to the stress distribution of Egs.
(66'). Show that these values approach zero as the distance from the force
increases in any direction.

8. Verify that in the special case of & = =/2 the stress function (d), page 98,
agrees with Eq. (69), and investigate whether the stress distribution (e), page 99,
tends to agree with elementary bending theory for small .

9. Show by evaluating the force resultants that the stress distribution (e),
page 99, does in fact correspond to loading by a pure couple M at the tip of the
wedge.

10. A force P per unit thickness is applied by a knife-edge to the bottom of a
90-deg. notch in a large plate as indicated in Fig. 89. Evaluate the stresses,
and the horizontal force transmitted across an arc AB.

p 7

45°1.45°
20£'
B y 2
Fra. 89. Fie. 90.

11. Find an expression for the stress o on the section mn indicated in Fig. 90.
The wedge theory of the present chapter and the cantilever theory of Chap. 3
give different stress distributions for the junction rs. Comment on this.

12. Determine the value of the constant (C in the stress function

¢ = Clr¥(a — 0) + 12 sin 8 cos & — r? cos? 8 tan a]

required to satisfy the conditions on the upper and lower edges of the triangular
plate shown in Fig. 91. Evaluate the stress components s, Tzy for a vertical
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section mn. Draw curves for the case
] a = 20 deg. i
the curves given by elementary beam theory. e&- and drax sl for eomperison

Fra. 91.

13. Determine the value of the constant ¢ in the stress function
¢ = Cr2(cos 26 — cos 2a)
required to satisfy the conditions

ag = 0, g =80N0 =q
ap =0, g = —8onf = —a

corresponding to uniform shear loading on each edge of a wedge, directed away
t

from the vertex. Verify that no conce
€ . ntrated force or coupl
14. Find the stress function of the type Puple fets on the vertex.

asr® cos 30 4 bir3 cos 9
which satisfies the conditions

gg = 0, Trg =8ronfd =«
ag = 0, Tyg = —Sronf = —a

s being a constant. Sketch the loading for positive s.
15. Find the stress function of the type

asrt cos 40 -+ bart cos 20
which satisfies the conditions

ap =0, g =8rlonf =a

ag =0, Trg = —Sr2on 6 = —a

3 being a constant. Sketch the loading.
18. Derive the stress distribution

_ p( y Ty 2
oy, = — = {arctan = = P Yy
: ™ x+x2+y’)’ T TR Ly
,y=_£(mtan3_L
x z x4y

from the stress function [see Eq. (@), Art. 34)

- p
¢ = — - ((:r:2 + y?) arctan% - xy)
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and show that it golves the problem of the semi-infinite plate indicated in Fig. 92,
with axes as shown, The load extends indefinitely to the left.

21T [ x
o 6=arcfan%
Y
Fia. 92.

Examine the value of 7z, (@) approaching O along the boundary Oz, (b) approach-

ing O along the y-axis (the discrepancy 18 due to the discontinuity of loading at 0).
17. Show that the stress function

¢ = h [% y? log (22 + y?) + xy srctan y_ y*]
™ x

solves the problem of the sermi-infinite plate indicated in Fig. 93, the uniform shear
loading s extending from O indefinitely to the

s 2 left. Show that o. grows without limit as O is
(7] approached from any direction. (This is due to
the discontinuity of load at 0. A finite value is
y obtained when this is smoothed out, depending
Fra. 93. o?ot);he loading curve in the neighborhood
of 0.

18. By superposition, using the results of Prob. 16, obtain oz, oy, 72y for pressure
p on a segment —a <z <a of the straight edge of the semi-infinite plate. Show
that the shear stress is
ST . S—
@ —a)? + il +a)? + 7]

and examine the behavior of this stress as the point z =@,y =0 is approached
(a) along the boundary, (b) along the line z = a.

19. Using the results of Prob. 17, sketch the variation of ¢ along the edge y = 0,
for a uniform shear load s applied to the segment —a < z < aof the edge.

20. Show that the stress function

1 1 o 1
¢ = P [(§ % + a:yz) arctan g + 3 y?log (= + 9®) — ?:x’y]

" Zra

solves the problem of the semi-infinite plate indicated in Fig. 94, the linearly
increasing pressure load extending indefinitely to the left.
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21, Show that if the pressure loadin, 1
| t g of Prob. 20 is repl i
replacing p, the appropriate stress function is eplaced by shear loading, »

=2
¢ = 27a [xyz log (=* + %) + (a2 — y"') arctan% — 3xy2]

22. Show how the distributions of load indi in Fi ‘
o indicated in Fig. i
superposition from loading of the type indicated in Fig.lﬁg)élgs mey be obtained by

£ l-—a—-l |2 \ A\

rat—b—ta- fata
Fia. 95.

23. Show that the parabolic loading indi s o
function p ¢ loading indicated in Fig. 96 is given by the stress

P { zy? ry? e |1
o —— 1 _ w L 2 2
e[ ae e (- ga+4n) ]

™
g 1 x2 2
e+ (1- £+ )

for pressure, and

yz 2

Y (g4 _ r 2

- {6&2( a? — 8z* + y7) log 5 + 3 ayB + 54 (* — 3y* — 3a%a + %—2}
for shear, where

nt=@ -0ty =4+
2ay

PRI S =9 = 2zy
g2 — e B 1 + 6; = arctan m

a = 6 — 8, = arctan

24, i i
along ts]io:,vert?atllg the problem of Fig. 72 there is a tensile stress ¢, = 2P /xd
ical diameter, except at A and B. Account for the equilibrium of

the semicircular
part ADB b ideri ..
the manner of Figs. 65¢ and d.y considering small semicircles about 4 and B in

26. Verify that the stress function

P 1
: {aprcoso—z(l —v)rlogrcoso—%rOSinG
d d? 1
+ZIOgT—3—2(3—7);COSG}
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ions for a force P acting in a hole in an infinite plate

i dary condit ]
s e oot ind d that the circumferential stress round the hole is

with zero stress at infinity, an

P
nt @t CHAPTER 5

except at A (Fig. 97). THE PHOTOELASTIC METHOD

Show that it also corresponds to single-valued displacements.

a 42. Photoelastic Stress Measurement. The boundaries of the

plates so far considered have been of simple geometrical form. For
more complex shapes the difficulties of obtaining analytical solutions
become formidable, but these difficulties can be avoided by resorting
to numerical methods (which are discussed in the Appendix) or to
experimental methods, such as the measurement of surface strains by
extensometers and strain gauges, or the phofoelastic method. This
method is based on the discovery of David Brewster! that when a piece
of glass is stressed and viewed by polarized light transmitted through
it, a brilliant color pattern due to the stress is seen. He suggested that
these color patterns might serve for the measurement of stresses in
engineering structures such as masonry bridges, a glass model being
examined in polarized light under various loading conditions. This
suggestion went unheeded by engineers at the time. Comparisons of
photoelastic color patterns with analytical solutions were made by the
physicist Maxwell.2 The suggestion was adopted much later by C.
Wilson in a study of the stresses in a beam with a concentrated load,3
and by A. Mesnager in an investigation of arch bridges.* The method
was developed and extensively applied by E. G. Coker?® who introduced
celluloid as the model material. Later investigators have used bake
lite, and more recently, fosterite.®

In the following we consider only the simplest form of photoelastic
apparatus.” Ordinary light is regarded as consisting of vibrations in

Fige. 97.

n the circumferential stress round the

. 25 by integratio
36. Deduce o B H g and check the result by means of Eqgs.

hole due to uniform pressure p in the hole,

(4(;)7' Tind the general form of f(r) in the stress function 6f(r), and find the expres-

i to a
sions for the stress components o, 0p, Trg- Could such a stress function apply to

closed ring?

1 D. Brewster, Trans. Roy. Soc. (London), 1816, p. 156.

2 J. Clerk Maxwell, Sci. Papers, vol. 1, p. 30.

3 C. Wilson, Phil. Mag., vol. 32, p. 481, 1891.

4 A. Mesnager, Ann. ponis et chaussées, 4¢ Trimestre, p. 129, 1901, and 9¢ Series,
vol. 16, p. 135, 1913.

8 The numerous publications of Prof. Coker are compiled in his papers: Gen.
Elec. Rev., vol. 23, p. 870, 1920, and J. Franklin Inst., vol. 199, p. 289, 1925. See
also the book by E. G. Coker and L. N. G. Filon, “Photo-elasticity,” Cambridge
University Press, 1931.

¢ M. M. Leven, Proc. Soc. Expl. Stress Analysis, vol. 6, no. 1, p. 19, 1948,

” More complete treatments may be found in the following books: ‘“Handbook
of Experimental Stress Analysis,” 1950; M. M. Frocht, “Photoelasticity,” 2 vols.,
1941 and 1948; and the book cited in footnote 5.
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all directions transverse to the direction of the ray. By reflection
from a piece of plate glass covered on one side with black paint, or by
transmission through a polarizer—a Nicol prism, or Polaroid plate—we
obtain a more or less polarized beam of light in which transverse vibra-
tions in a definite direction prevail. The plane containing this direc-~
tion and a ray is the plane of polarization. This is the kind of light used
in the photoelastic investigation of stress. We shall consider only

monothomatic light.

L P M A S L PG M QA s
(a) 5)
Fiac. 98.
Figure 98a represents diagrammatically 2 ‘plane polariscope- A
beam of light originating ab L passes through a polarizer P, then
through the transparent model M which modifies the light according
to the stress, then. through an analyzer—another polarizer A—to a

screen S, on which a pattern of interference fringes (Figs. 100 to 104) is

formed.

- ' x
a'x X3
at é ¢ L & ap
“in ‘%r ™ - %3
By %Y
i
da c \
) ' ¥2\Qp i
(o) (b) (c)
F1a. 99.

In Fig. 99a, abed represents a small element
vertical and horizontal for convenience. Aray

being through the paper. The vibratio
be represented by the transverse «“displacement”’

s = a cos pt (a)

in the direction OA, where p
the color of the light, and t is the time.

of the left-hand face of

the model M, the directions of the principal stresses os, oy being drawn
of light polarized in the

plane OA (Fig. 99) arrives from P, the direction of the ray in Fig. 99
n is simple harmonie and may

is 2 times the frequency, depending on
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'The displacement (a) in the plane OA is resolved into components
with aryphtudes OB = a cos a and OC = ¢ sin « in the planes Oz, O
respectively. The corresponding displacement components are e

T = a cos a cos pi, Yy = a sin «a cos pt ()

The effect.of the principal stresses ¢, and o, acting at the point O of
the plate, is to change the velocities with which these components are
p;opalgated through the plate. Let v, and v, denote the velocities in
the planes Oz and Oy. If h is the thickness of the plate, the times
required for the two components to traverse the thickness ,are
h h

t e t _—

L= 2= (0
S13ce 1the light waves are transmitted without change of form, the
f- t11s1p ac;melnt, x1, of the light leaving the plate at time ¢ corresp,onds
o the z-displacement of the li i i
po of the light entering the plate at a time ¢; earlier.

Z1 = a cos a cos p(t — t), Y1 = a sin a cos p(t — £2) (d)

On leaving the plate, therefore, these components have a phase dz
ence A= p(.tg — t). - It was established experimentally that fge:
1,glven matferlal at a given temperature, and for light of a given wave
er.lgtb, this phase difference is proportional to the difference in th
g‘rmmpal :'stress.es.. It is also proportional to the thickness of the plat Y
he relationship is usually expressed in the form P

_ 2mh
A = ~ - Clo, — ay) ()

h . .
:Ivl ; ;3:1 )\8;;5 the vs;zimvtz len%h (in vacuo), and C the experimentally deter:
ess-optical coefficient. C depends on th 1
teﬁﬁerature as well as the material.  wave length and
planeeo?nallyzter A transmits- only vibrations or components in its own
e © t};IO arlzat%on. If this is at right angles to the plane of polariza-
et eApolamzer,1 and zf. the model is removed, no light is trans-
s thg znd ‘the screen is dark. We now consider what occurs
i model is present. The components (d) on arrival at th
yzer may be represented as e

T3 = @ COS « COS ¥, 92 = a sin « cos (Y — A) ¢

since they retain the i
phase difference A i :
Here y denotes pt + constant. in traveling from M to A.

1y :
he polarizer and analyzer are then said to be “crossed.”
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The plane of polarization of A is represented by mn in Fig. 99a, for
convenience. It is set perpendicular to 0A. The components of the
vibrations (f) which are transmitted by A are the components along
Om, which are, using Egs. (),

£ Sin @ = 3@ sin 2a €OS ¥, —yscos @ = —%0 sin 2a cos (¥ — A)
The resultant vibration along mn is therefore

%a sin 2« [cos ¢ — coS Yy — )] =—a sin 2a sin % sin (1[/ — %)

The factor sin (4/ - %) represents the simple harmonic variation with

time. The amplitude is

@ sin 2« sin -Az— )

1t follows that some light will reach the screen unless either sin 2a =
or sin A/2 = 0. If sin 2a = 0 the directions of the principal stresses
are parallel to the (perpendicular) directions of polarization of P and
A. Thus rays which pass through such points of M will be extin-
guished and the corresponding points on the sereen S will be dark.
These points usually lie on one or more curves, indicated by a dark
band on S. Such a curve is called an ‘“isoclinic.” Very short lines
parallel to the axes of P and A may be drawn at numerous points on it
to record the (parallel) directions of the principal stresses at these
points. By setting P and 4 in different (perpendicular) orientations,
different isoclinics are obtained. The short lines then cover the field
like a pattern of iron filings over a magnet, and it is possible to draw
curves which are tangential at each point to the principal axes of stress.
The latter lines are trajectories of the principal stresses.
If sin A/2 =0, then A = onw where n =0, 1, 2, . . .« When
A = 0, the principal stresses are equal. Points where this occurs are
called isotropic points, and will of course be dark. Points at which
n = 1 form a dark band, or fringe, of the first order, points for which
n = 2 afringe of the second order, and so on. These fringes are called
isochromatics (because, when white light is used, they correspond to
extinction of a certain wave length and therefore to a color band). It
follows from Eq. (¢) that ¢z — oy 0D & fringe n = 2 has twice the value
of ¢, — o, on a fringe n = 1, and so on. To evaluate the principal
stress differences it 1s therefore necessary to know the order of the
fringes, and the stress difference represented by the fringe of the first

order, or fringe value.
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The fringe value ma, i
y be determined by loadin ip i
- . - a’ St i
tension. Sll}ce the': stress is uniform there are nogfring(f;p tllllle Sm}llp}e
%1ecilfil)pp§ar1ng uniformly bright or dark on the screen. At zer(jv 1 °§
; SVZL ) S(Zr ark(i'ﬂAs the stress is increased, it will brighten, then darl(i)a
e the Valzis 1O§r;znc:h(h(?re simply the tensile stress) a,;;proaches t‘;:;
. urther increase of load it brigh
: > ghtens on
daél'(;r}ls agaln1 whefn the stress is twice the fringe value af:i ’STLOI(')‘:; then
imilar cycles of brightness and darkn i ] :
: : ess will clearl
f;);n; of adr'lf(;numform stress field as the load is increa,yse(:icEil rrit 'an
Theser(e}ssl ifference a,.t the point reaches a multiple of the fringe :al,l ¥
The tOy(; :s atl individual points correspond, in the view of the whl;lee:
, to gradual movement of the fringes, including the entrance of new

F1a. 100.

frin, is 1
foregesé aseiélgfnll(.)ad dls gncreased. The orders of the fringes may there
ine i i .

fringen y observing this movement and counting the

Fori ip i

in Fis 111131(;)anc:3r iall,estglp 11111 f)}ll‘e bending gives a fringe pattern as shown

: . . arallel fringes accord with i

om ] ges a with the fact that in th -

. disterzﬁs)‘g;p away from 'ch_e points of application of the load: pt(;fe

ing the oo ion is the same in all vertical cross sections. By wa,,tch

now Trims Senaas the load is gradually increased we should observe tha;,

tomany o m%%eiar at thfe top and bottom of the strip and move
iddle, the fringes as a whole becoming more and more

closel i
¥ packed. There will be one fringe at the neutral axis which

remains dark through is wi
(n = 0). oughout. This will clearly be the fringe of zero order

43. Circul i

st i :.(;' P;)lal_':iscope. We have seen that the plane polariscope

soclin o Weﬁ) ovi es,'for a chosen value of «, the correspondin
as the isochromatics or fringes. Figure 100 shoul(gi
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therefore show darkness wherever the orientations of the principal
stresses coincide with the orientations of the polarizer and analyzer.
Figure 100 was actually obtained in a circular polariscope, which is a
modification of the plane polariscope designed to eliminate the iso-
clinics.! It isindicated diagrammatically in Fig. 98b, which corresponds
to Fig. 98a with the addition of two quarler-wave plates Qp, Qa. A
quarter-wave plate is a crystal plate having two polarizing axes, which
affect the light like a uniformly stressed model, introducing a phase
difference A as in Eq. (f) — but the thickness of the quarter-wave
plate is chosen so that A = x/2. Using Eq. (f) with this value of A
for the light leaving Q», we observe that a simple result is obtained by
choosing a, now denoting the angle between the plane of polarization
of P and one of the axes of Qr, as 45 deg. Then we may write

@ = :j—i cos ¥, Yy = —\%5 cos (a,b — g) = :/a_i siny ()
Here x5’ corresponds to the “fast’” axis of the quarter-wave plate. A
point moving with these displacement components (¢ always having
the form pt + constant for a given point along the ray) moves in a
circle. Such light is therefore described as circular polarized.

The components (h) are along the axes of polarization of Q». Using
g for the angle between x5’ and the direction of ¢, in the model (Fig.
99b), and A once more for the phase difference caused by the stressed
element, we have, for the light leaving the model, due to z.’ only

Ty = _a_§ cos Bcosy, Yz = \—j—?sin B cos (¥ — A) (@)

and for the light due to y;’ only

5 = _:j'—ésinﬁsin ¥, Yz = —a—_cosBSin W —4) )

\/2
Adding the components in Egs. (¢) and (j) we find for the light leaving
the model
a , a . ,
= — = ——— 8Nl — A k
T3 \/zcow, ys = 58 W ) (k)

where ¢/ = ¢ + 8.

1If the polarizer and analyzer rotate, their axes remaining perpendicular, the
fringes remain stationary and the isoclinics move. If the rotation is rapid the
isoclinics are no longer visible. The circular polariscope achieves the same effect

by purely optical means.
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B.efore examining the effects of @, and A upon the light it is con
venient to represent the motion (k) as a superposition of two circular

motions. This may be done as foll ing ¢’
and a//2 by b, Eqs. (k) give o Denoting ¢ = (4/2) by ¢,

x3=bCOS<l//”+é>= é 7 A
o) b{ cos 5 ¢0s ¢/ — sin 5 sin ¢u> 0

=bsi ) __é _ A . , .
Ys sin (¢ 2) =h (cos§ sin ¢/ — s1n§cos 1//’) (m)

EvAh/lg? r?prlise.nt ‘?heruperposition of a eircular motion of radius b cos
, clockwise in Fig. 99b (where the ra
: ' v passes downward th
th%‘lf)aper), and a fllrcular motion of radius b sin (A/2) countercloc;v?r?sg(eh
e may now show that if the polarizin i i ;
Y g axis of 4 is set at 45 deg. ¢
tget};;;)l:rlzmg gxish of Qu4, one of these circular motions is transmi%tec(l)
creen S, the other extinguished, and th i i
chromatics without isoclinics—is obta,in(;d ® desired result—iso-
Th i .
princfp(;(;rzgzgl:?zs Z3, Ya dui qu. (D) and (m) are along the directions of
: a model. change of axes for a cire i
: . ula,
% EI ng:lrel% r(;::ult in a change of the phase angle ¢’/ by a soz(t)zlr(:tn
us the clockwise circular i '
s e motion can be represented by components
Ty = ccosy, Y4 = csin ¢ (m)

along the axes of Q4 where y i i
- g ) 15 again of the f
Identifying 2, with the fast axis of Q,, we orm. pé + constent,

from Q. shall have on emergence

Ts = ¢ cos ¢, y5=csin<1//—1—2r) = —ccosy (0)

¥ having again changed by a constant.

If we now set the anal i
yzer (A) axis at 45 deg. to Oz4 and O i
99¢), the components of the displacements (o) along it 4gi\rrle v (Fle

¢ cos 45° cos Y — ¢ cos 45° cos ¥

or éi:fs"d T.hus jche 1cllockwise circular motion is extinguished
ldering in the same way the count i ‘ :

- erclock
motion of Eqgs. (I) and (m), t.e., e part Of' the’

r_ . :
Zy = —csin y, y4/ = —ccosy (n;)

we fi i i
nd that the transmitted displacement along the analyzer axis is

—c cos 45° sin ¢ — ¢ cos 45° sin ¥

. o — Y YT

g INSTITUTUL POLITEHNIG,
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and the amplitude is thus

V2c¢ or /2 b sin % or asin % (p)

remembering that b denotes a/+/2 and that a is the amplitude leaving
the polarizer. No account has been taken of course of loss of light in
the apparatus. Comparing this result with the result (g) for the plane
polariscope, we observe that the factor sin 2a is now absent, and there-
fore the isochromatics appear on the screen, but no isoclinies.

Fia. 101,

If A is zero, the amplitude (p) is also zero. Thus if there isno model,
or if the model is unloaded, the screen is dark. We have a dark field
setting. If the analyzer axis is turned through 90 deg. with respect to
Q. we should have a light field and light fringes taking the place of the
former dark fringes. The same effect is brought about in the plane
polariscope by having the polarizer and analyzer axes parallel instead
of at right angles.

44. Examples of Photoelastic Stress Determination. The photo-
elastic method has yielded especially important results in the study of
stress concentration at the boundaries of holes and reentrant corners.
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In such cases the maximum stress i
i . ress is at the boundary, and it
obtained du:ectly by the optical method because one (,)f the g >
stresses vanishes at the free boundary principa!
Figure 101 shows the frin :
 the ge pattern of a curved bar! bent b

]l}ll ] f The outer radius is three times the inner. The order nlfrrfl?;zlei
the fringes marked on the right-hand end show a maximum of 9 at bot?h

F1a. 103.

top and

trill))utionb(())ft’cl())m.d . The regu.lar spacing corresponds to the linear dis-

markes Al (11}11 ing stress in the straight shank. The fringe orders
g the top edge show the stress distribution in the clirved

1 E‘ :
E. Weibel, Trans. A.8.M.E., vol. 56, p. 637, 1934.
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part (the complete model continues above this top edge, which is its
axis of symmetry), indicating a compressive stress at the inside repre-
sented by 13.5, and a tensile stress at the outside represented by 6.7.
These values are in very close agreement, proportionally, with the
theoretical “exact-solution” values in the last line of the table on
page 64.

Figures 102, 103 represent! the case of bending of a beam by a force
applied at the middle. The density of distribution of dark fringes
indicates high stresses near the point of application of the load. The
number of fringes crossing a cross section diminishes as the distance of

Fic. 104.

the cross section from the middle of the beam increases. This is due
to decrease in bending moment.

Figure 104 represents the stress distribution in a plate of two differ-
ent widths submitted to centrally applied tension. It is seen that the
maximum stress occurs at the ends of the fillets. The ratio of this
maximum stress to the average stress in the narrower portion of the
plate is called the siress-concentration factor. It depends on the ratio
of the radius R of the fillet to the width d of the plate. Several values
of the stress-concentration factor obtained experimentally?® are given
in Fig. 105. It is seen that the maximum stress is rapidly increasing
as the ratio R/d is decreasing, and when R/d = 0.1 the maximum
stress is more than twice the average tensile stress. Figure 106 repre-

1 M. M. Frocht, Trans. A.S.M.E., vol. 53, 1931
2 See paper by Weibel, loc. cit.

Stress concentration factor

THE PHOTOELASTIC METHOD

STRESS CONCENTRATION FACTORS
TENSION

o-Dfd=3
o-D/d=15
N e
-—{ D a
I e
\\.‘E
—
01 02 03 0.4 05 06
Ratio R/d

Tia. 105.

Fia. 106.
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sents the same plate submitted to pure bending by a couple applied at
the end and acting in the middle plane of the plate. Figure 107 gives
the stress-concentration factors for this case.

45. Determination of the Principal Stresses. The ordinary polari-
scope, as we have seen, determines only the difference of the principal
stresses, and their directions. When it is required to determine the
principal stresses throughout the model, or at a boundary where there
is unknown loading, further measurement, or calculation, is required.

: STRESS CONCENTRATION FAGTORS
26 PURE BENDING

4 o-D/d =3
O-D/d =15

2 C 5 v

Stress concentration factor
/

0 0.l 0.2 0.3 04 0.5 0.6
Ratio R/d
Fie. 107.

Many methods have been used, or proposed. Only a brief description
of some of these will be given here.!

The sum of the principal stresses can be found by measuring the
changes in the thickness of the plate.? The decrease in thickness due
to the stress is

sh =2 +a) @

whence ¢, + o, may be calculated if Ak is measured at each point where
the stresses are to be evaluated. Several special forms of extensometer
have been designed for this purpose.® The pattern of interference
fringes formed when a model is placed against an optical flat, so as to

1 For further information see the references cited in footnote 7 on p. 131,
2 This method was suggested by Mesnager, loc. cit.
3 8ee M. M. Frocht, “Photoclasticity,” vol. 2.
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form an air film with thickness variations determined by the thickness
variations in the plate, yields the required information in a single
photograph.

The differential equation satisfied by the sum of the prinecipal
stresses, Eq. (b) on page 26, is also satisfied by the deflection of a
membrane of constant tension, such as a soap film, and if the boundary
values are made to correspond, the deflection represents ¢, + o, to a
certain scale.! In many cases the boundary values of ¢, -+ ¢, required
for the construction of the membrane can be found from the photo-
elastic fringe pattern. The latter gives ¢, — 0y. At a free boundary
one principal stress, say oy, is zero, and ¢, + o, becomes the same as
o, — oy Also at a boundary point where the loading is purely normal
to the boundary and of known magnitude, it constitutes one principal
stress itself, and the photoelastic measurement of the difference suffices
to determine the sum. The same differential equation is satisfied by
the electric potential in flow of current through a plate, and this can be
made the basis of an electrical method.? Effective numerical methods
have been developed as alternatives to these experimental procedures.
These are discussed in the Appendix. The principal stresses can also
be determined by purely photoelastic observations, more elaborate
than those considered in Arts. 42 and 43.2

46. Three-dimensional Photoelasticity. The models used in the
ordinary photoelastic test are loaded at room temperature, are elastie,
and the fringe pattern disappears when the load is removed. Since
the light must pass through the whole thickness, interpretation of the
fringe pattern is feasible only when the model is in a state of plane
stress—the stress components then being very nearly uniform through
the thickness. When this is not the case, as in a three-dimensional
stress distribution, the optical effect is an integral involving the stress
at all points along the ray.?

. This difficulty has been surmounted by a method based on observa-
t}ons made by Brewster and by Clerk Maxwell, that gelatinous mate-
rials, such as isinglass, allowed to dry under load, then unloaded, retain
a permanent fringe pattern in the polariscope as though still loaded and
still elastic. Resins such as bakelite and fosterite loaded while hot,
then cooled, have been found by later investigators to possess the

:g P. Den Ha.rtog., Z. angew. Math. Mech., vol. 11, p. 156, 1931.

: ee R. D, Mmdlm, J. Applied Phys., vol. 10, p. 282, 1939.
] ”See ’?he a_rtlcle by D. C. Drucker in ‘“Handbook of Experimental Stress Analy-
18, which gives a comprehensive account of three-dimensional photoelasticity.

*J. Clerk Maxwell, Sci. Papers, vol. 1, p. 30.

8.
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same property. The explanation! is that these materials have the
structure of a strong elastic skeleton, or molecular network, which is
unaffected by heat, the spaces being filled by a mass of loosely bonded
molecules which softens on heating. When the hot specimen is loaded
the elastic skeleton bears the load and is elastically deformed without
hindrance. On cooling, the softened mass in which this skeleton is
embedded becomes ‘‘frozen,” and holds the skeleton almost to the

F1a. 108.

same deformation even when the load is removed. The optical effect
is likewise substantially retained, and is not disturbed by cutting the
specimen into pieces. A three-dimensional specimen may therefore
be cut into thin slices, and each slice examined in the polariscope. The
state of stress which produced the optical effect in the slice is not plane
stress, but the other components 7., 74, o, are known to have no effect
on a ray along the z-direction, i.e., normal to the slice. The fringe
pattern shown in Fig. 108 was obtained from such a slice cut centrally

from' a-round shaft (of fosterite) with a hyperbolic groove.? The

maximum stress obtained from this pattern is within two or three per
cent of the theoretical value. TFigure 109 shows another fringe pattern

! M. Hetényi, J. Applied Phys., vol. 10, p. 295, 1939.
? Leven, loc. cit.
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NUT WITH
TAPERED LIP

CONVENTIONAL NUT
Fia. 109.

of the same type, obtained from a (bakelite) model of a bolt and nut
fastening.! The lower nut was a conventional type. The upper one

has a tapered lip and shows a lower stress concentration than the con-
ventional nut.

' M. Hetényi, J. Applied Mechanics (Trans. A.S.M.E. ), vol. 10, p. A-93, 1943.
Results for several other forms of nut are given in this paper.



CHAPTER 6
STRAIN-ENERGY METHODS

47. Strain Energy. When a uniform bar is loaded in simple tension
the forces on the ends do a certain amount of work as the bar stretches.

Thus if the element shown in Fig.
dx o, dydzA

a 110 is subject to normal stresses
22— o, only, we have a force ¢, dy dz
dz Iy . ax which does work on an extension

o B = e, dr. Therelation between these

(a) (6) two quantities during loading is

Fic. 110. represented by a straight line such

as OA in Fig. 110b, and the work done during deformation is given

by the area 1(o. dy dz) (e, dz) of the triangle 0AB. Writing dV for this
work we have

dV = }o.e, dx dy dz (a)

Tt is evident that the same amount of work is done on all such elements,
if their volumes are the same. We now inquire what becomes of this
work—what kind or kinds of energy is it converted into?

In the case of a gas, adiabatic compression causes a rise of tempera-
ture. When an ordinary steel bar is adiabatically compressed there is
an analogous, but quite small, rise of temperature. The corresponding
amount of heat is, however, only a very small fraction of the work done
by the compressive forces.! For our purposes it is sufficiently accurate
to disregard this small fraction. Then none of the work done is
accounted for by heat, and we may say that it is all stored within the
element as strain energy. It is assumed that the element remains
elastic and that no kinetic energy is developed.

The same considerations apply when the element has all six compo-
nents of stress, ¢,, 0y, 0, Toy, Tysy Tz acting on it (Fig. 3). Conservation
of energy requires that the work done do not depend on the order in
which the forces are applied, but only on the final magnitudes. Other-
wise we could load in one order, and unload in another order corre-

1 If this were not so there would be a substantial difference between adiabatic
and isothermal moduli of elasticity. The actual differences are very slight. See
G. F. C. Searle, “Experimental Elasticity,” Chap. 1.

146
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sponding to a larger amount of work. Thus a net amount of work
would have been gained from the element in a complete cycle.

The calculation of the work done is simplest if the forces, or stresses,
all increase simultaneously in the same ratio. Then the relation
between each force and the corresponding displacement is still linear,
as in Fig. 110b, and the work done by all the forces is

dV = Vodx dy dz ®)
where

VO = %(6161 + Oyéy + €, + TzyYzy + TysYyz + sz'Y:cz) (C)

Thus V, is the amount of work per unit volume, or strain energy per
unit volume.

In the preceding discussion the stresses were regarded as the same on opposite
faces of the element, and there was no body force. Let us now reconsider the
work done on the element when the stress varies through the body and body force
is included. Considering first the force ¢ dy dz on the face 1 of the element in
Fig. 110q, it does work on the displacement u of this face, of amount 4 (e.u): dy dz,
where the subscript 1 indicates that the functions ¢, 4 must be evaluated at thP:
point 1. The force o, dy dz on the face 2 does work —3(o,u)2dydz. The total
for the two faces

(o)1 — (o2u)s] dy dz
is the same, in the limit, as

19
332 (o2u) dz dy dz (d)

Con.lputing the work done by the shear stresses .,, .. on the faces 1 and 2, and
adding to (d), we have the work done on the two faces by all three components
of stress as

19
532 (osu + 7249 + 75w) dz dy dz
where » and w are the components of displacement in the y- and z-directions.

'fl'he work done on the other two pairs of faces can be similarly expressed. We find
or the total work done by the stresses on the faces, ’

1179
5 [a—x (0au + 729 + 7oaw) + % (o + 72w + 72yu)
a
-+ a_z (0';11) + rocu + “'yz”)] dr dy dz (e)
As the body is Joaded the body forces X dz dy dz etc. do work

+(Xu + Yo + Zw) dz dy dz o

The total work don i
; 1w e on the element is the sum of (¢) and (f). On carrying out the
differentiations in (e) we find that the total work becomes e
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[, w . aw . (o du ow v
;Z[Vza‘*'ffva_?;'l'a'zaz‘*"rzy ax+ay)+7yz ay'i'az

ox

doy , O7ye y 97ay 00, | 97z 0Ty )]
+"(a_y”+‘a?+ax +Y)+“’(az+ax+ay +2) |dudydz

ou ow doz BTy _{)_1:,5
+ T2s 5z—+6—z)+u(_+6—y‘+ £y +X)

But on account of the equations of equilibrium (127) derivedin Art. 76 the brackets
multiplying u, v, w are zero. The quantities multiplying the stress components
are, from Eqgs. 2, ez, - - « , Yayy - - - . Thus the total work done on the element
reduces to the value given by (b) and (¢). These formulas therefore continue to
give the work done on the element, or strain energy stored in it, when the stress is
not uniform and body forces are included.

By means of Hooke’s law, Eqgs. (3) and (6), we can express V,, given
by Eq. (), as a function of the stress components only. Then

Ve = §1E (02 + o + 0.%) — % (0204 + 040, + 0202)
+ '2LG (ra? + 15" + 72?)  (84)

Alternatively we may use Egs. (11) and express Vo asa function of the
strain components only. Then

V, = %)\62 + G(Gf + €y2 + €z2) + '%G('Yz'ﬁ + ‘szz + 'Yzzz) (85)

in which
Ev
e=etete M TN

This form shows at once that V, is always positive.

It is easy to show that the derivative of V,, as given by (85), with
respect to any strain component gives the corresponding stress compo-
nent. Thus taking the derivative with respect to e, and using Eq.

(11), we find
= e + 2G€z = Oz (g)

av,

de,
For the case of plane stress, in which ¢, = 72: = 7, = 0, we have

from (84)

’ 1 v 1

Vo = 5E (022 + o) — F =% + 5G Tay® (86)
The total strain energy of a deformed elastic body is obtained from

the strain energy per unit volume ¥V, by integration:

V = [[[V.dxdydz | (87)
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It represents the total work done against internal forces during load-
ing. If we think of the body as consisting of a very large number of
particles interconnected by springs, it would represent the work done
in stretching or contracting the springs. .

By using Eq. (84) or (85) it can be represented either as a function
of stress components or as a function of strain components. The
application of both these forms will be illustrated in the following
discussion.

The quantity of strain energy stored per unit volume of the material is some-
times used as a basis for determining the limiting stress at which failure occurs.!
In order to bring this theory into agreement with the fact that isotropic materials
can sustain very large hydrostatic pressures without yielding, it has been proposed
to split the strain energy into two parts, one due to the change in volume and the
other due to the distortion, and consider only the second part in determining the
strength.?

We know that the volume change is proportional to the sum of the three normal
stress components [Eq. (8)], so if this sum is zero the deformation consists of dis-
tortion only. 'We may resolve each stress component into two parts,

oz =0’ +p,  oy=0¢/+p, =o' +p
where
=3z + oy +0.) =30 (h)
Since, from this,
o) +o/ +o/ =0

the stress condition ¢.’, o/, o.’ produces only distortion, and the change in volume
depends entirely® on the magnitude of the uniform tension p. The part of the
total energy due to this change in volume is, from Eq. (8),

31 ~2 1 -2
92£=_(_W_’sz= 6EV(0'z+oy+d,)“ @

Bubtracting this from (84), and using the identity
920y + 040y + 0u0p = _%[("'z - 01)2 + (oy — 05)* + (6. —02)?] + (02 + ay? + 0.?)
we can present the part of the total energy due to distortion in the form

16-2'1’ [(a” - 0-11)2 + (‘7'11 d 0':)2

1 -2
Vo — g (e oy + 0t =
+ (o: — 02)?] + % (ray® + 72 + 7457 (88)

!'The various strength theories are discussed in 8. Timoshenko, “Strength of
Materials,” vol. 2.

M. T. ?—Iuber, Czasopismo technizne, Lwé6v, 1904. See also R. v. Mises, Gottin-
gen Nachrichten, Math.-phys. Klasse, 1913, p. 582, and F. Schleicher, Z. angew.
Math. Mech., vol. 5, p. 199, 1925.

3 2 . . .
) The shearing components 7y, 7y, 7. produce shearing strains which do not
nvolve any change of volume.
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In the case of simple tension in the z-direction, a- alone is different from zero, and
the strain energy of distortion (88) is (1 + »)/3E-a;%. In the case of pureshear,
say between the zz, and ye-planes, 72y alone is different from zero and the energy of
distortion is (1/2M)7.,2  Ifitis true that, whatever the stress system, failure occurs
when the strain energy of distortion reaches a certain limit (characteristic of the
material), the ratio between the critical value for tensile stress alone and for
shearing stress alone is found from the equation

L'r 2 = .1_2,, 2
2G™v ~ "3E °°
from which
oy = —J—_?;.f, = 0.5570 )

Experiments with steel show® that the ratio between the yield point in tension
and the yield point in shear is in very good agreement with that given by ().

Saint-Venant’s principle (see p. 33) can be shown by consideration of strain
energy to be a consequence of the conservation of energy.? According to the
principle, two different distributions of force having the same resultant, acting on
a small part of an elastic body, will produce the same stress except in the immediate
neighborhood of the loaded part. 1If one of these distributions is reversed, and
combined with the other, there will be zero stress except in this neighborhood.
The combined loads are self-equilibrating, and the principle is in fact equivalent
o the statement that a self-equilibrating distribution of force on a small part of an
elastic solid produces only local stress.

Such & distribution of force does work during its application only because there
is deformation of the loaded region. Let one surface element of this region be
fixed in position and orientation. If p denotes the order of magnitude (e.9.,
average) of the force per unit area, and @ & representative linear dimension (e.g.,
diameter) of the loaded part, the strain components are of order (p/E) and the
displacements within the loaded part are of order pa/E. The work done is of
order pa? - pa/E or p’a*/E.

On the other hand, stress components of order p imply strain energy of order
p?/E per unit volume. The work done is therefore sufficient only for a volume of
arder @3, in accordance with the statement of the principle.

Tt has been supposed here that the body obeys Hooke’s law and is of solid form.
e former restriction may be dispensed with, E in the above argument then
denoting merely the order of magnitude of the slopes of the stress-strain curves
of the material. If the body is not a solid form, as for instance a beam with a very
thin web, or a thin cylindrical shell, a self-equilibrating distribution of force on
one end may make itself felt at distances many times the depth or diameter.?

1 S8ee the papers by W. Lode, Z. Physik, vol. 36, p. 913, 1926, and Forschung-
sarbesten, No. 303, Berlin, 1928.

2 J. N. Goodier, Phil. Mag., series 7, vol. 24, p. 325, 1937; J. Applied Phys., vol.
13, p. 167, 1942. .

3V. Z. Vlasov, “Thin Walled Elastic Bars,” Moscow, 1940; J. N. Goodier and
M. V. Barton, J. Applied Mechanics (Trans. A.S.M.E.), vol. 11, p. A-35, 1944;
N. J. Hoff, J. Aeronaut. Sci., vol. 12, p. 455, 1945.
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The above argument can be repeated without change for a load with non-zero
resultant, so long as there is a fixed surface element within or near to the loaded
part. 'Thus if a deformable material is bonded to a rigid one, pressure applied to a
small part of the former near to the attachment will produce only local stress.!

48: 'Pril.lciple of Virtual Work., In the solution of problems of
elasticity it is sometimes advantageous to use the principle of virtuac
wo.rk. In tl}e case of a particle, this principle states that if a particle
is in equilibrium the total work of all forces acting on the particle in any
virtual displacement vanishes. As a virtual displacement of a particlé,
free to move in any direction, any small displacement can be taken.
If 5.u, 61)., dw are components of a virtual displacement in the z-, y-, and
z-.dlre?tlons and ZX, Y, ZZ are the sums of projections on the same
d}rectlons of forees, acting on the particle, the prineiple of virtual work
gives

~ duZzZX =0, & ZY =0, owZZ =0
These equations are satisfied for any virtual displacement if
X =0, ZY =0, 2Z =0

Thus we arrive at the known equations of equilibrium of a particle.
Inapplying the principle of virtual work the acting forces are considered
as constant during a virtual displacement. If some of the forces acting
on a point are elastic reactions, as reactions of bars in the case of a
hinge of a truss, we assume that virtual displacements are so small that
the change in magnitudes or directions of reactions can be neglected.
An elastic body at rest, with its surface and body forces, constitutes a
system of particles on each of which acts a set of forces in equilibrium:
In any virtual displacement the total work done by the forces on any
particle vanishes, and therefore the total work done by all the forces of
the system vanishes. o
A virtual displacement in the case of an elastic body is any small dis-
placen}ent compatible with the condition of continuity of the material
and Wl.th the conditions for the displacements at the surface of the
body, if such conditions are prescribed. If it is given, for instance
that a (.:elztain portion of the surface of the body, say a built-in end of s;,
beam, 1s immovable or has a given displacement, the virtual displace-
menf for this portion must be zero. ’
i Let us consider, as an example, the case of a plane stress diStriBﬁtioﬁ
n a plate. Denote by u and v the components of the actual displace-
?ents due to the loads and by éu and v the components of a virtual
1splacement from the loaded position of equilibrium. These latter

! Goodier, J. Applied Phys., loc. cit,
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components are arbiirary small quantities satisfying the conditions of
continuity of an elastic deformation, i.e., they are continuous functions
of x and y.

For any system of displacements the work done against the mutual
actions between the particles is equal to the strain energy stored, .e.,
the strain energy corresponding to the displacements. If we change u
and v by du and é&s, therefore, the work done against the mutual
actions between the particles is the difference hetween the strain
energy corresponding to % + du, ¢ 4 ov, and the strain energy corre-
sponding to « and ». The virtual displacements &u, d produce the
change in strain components

8 du é &v _dd&

35: - A aey’ - ay ! 671'&' dxr +

d Su
ax’

ay

The corresponding change in strain energy per unit volume, from
expression (85), is
§Vp = a—VO Se. + Ve de, -+ v, Yy = 05 8¢, F 0y 86y + Ty By (@)
de; - dey Yy
The change of the total strain energy of the body is then [[ &V dx dy,
in which the integration is taken over the whole area of the plate of unit
thickness.

As already stated, this change in strain energy measures the work
done against the mutual actions between the particles. In order to get
the work done by the mutual actions the sign must be reversed.
Hence the work done by these forces during the virtual displacement is

—[[8Vodxdy {h)

In calculating the work done by external forees during a virtual dis-

placement, consideration must be given the forces applied at the

boundary of the plate and the body forces, Denoting by X and Y the

components of the boundary forees per unit area, the work done by

these forces on the virtual displacements having components du and v
may be written down at once as

JXou+Tonyds B ('

in which the integration is taken along the boundary s of the plate.
Similarly the work done by the body forces is

SJ(X su + Y &) dzdy ()

in which X and ¥ are the components of the body foree per unit volume
of the plate, and the integration is taken over the whole area of the
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plate. The condition that the total work done during the virtual dis-
placement vanishes, now takes the form, from (3), (c), and (d),

J(Xou+ P oyds+ [f(Xou+ Y &) dedy — [[6Vodedy = 0 (89)

Binee, in applying the principle of virtual work, the given forees and the actual
stress components corresponding to the position of equilibrium are considered as
constart during a virtual displacement, the variation sign & can be put before the
integral signs in Eq. (89}, and, changing signs throughout, we have

M[fVodzdy — [f(Xu + Yv) dzdy — [(Ru + Pr) ds] = 0 (89")

"The first term in the bracket is the potential energy of deformation. The second
and the third terms together represent the potential energy of forces acting on the
body if the potential energy of these forees for the unstressed condition (u=v¢=0)
is taken as zero. The complet expression in brackets represents the iotal potential
energy of the system.

Hence in comparing various values of the displacements u and v, it can be stated
that the displacements which actuslly oceur in an elastic system under the sction
of given external forces are those which lead to zero variation of the total potential
energy of the system for any virtual displacement from the position of equilibriym,
1.6, the total potential energy of the system at {he position of equilibrium is &
maximum or & minimum. To decide whether the energy iz a maximum or &
minimum, the small quantities of higher order, which were neglected! in our previ-
vus discussion, should be considered. If in this wuy it can be shown that for
any virtual displacement the ehange in the total potential energy of the system is
positive we have the case of a minimum. If this change is always negative we
have the cage of a maximum. For stable equilibrium it is always necessary to
demand a positive work for any virtual displacement of the system from this
positien, hence in this case the total potential energy of the system at this position
is & minimum,

An equation analogous to (89) can easily be written down for a three-
dimensional stress distribution.

The principle of virtual work is especially useful for finding the
deformation of an elastic body
produced by given forces. To f— Z —

illustrate the application of the g Al L 't*ldx e s

method let us consider here a '
few simple examples, the solu- W_LM
tions of which are already well Fre. 111
known.

The first is the deflection curve of a perfectly flexible elastic string
AB stretched by forces S between fixed points 4 and B (Fig. 111) and
loaded by a distributed vertical load of intensity ¢. We assume that

! We neglected them when we assumed that stress compoenents and forees remain
constant during any virtual displacement.
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the initial tension of the string is so large that the increase in tensile
force due to additional stretching during the deflection ean be neglected.
Then the increase in strain energy due to the deflection is obtained by
multiplying the initial tensile forces S hy the stretch of the string due
to the deflection. Taking coordinates as shown in Fig. 111, we find

ds — dr = da:[l + (dy) ] dx 2(3?) dz

The stretching of the string is

f (ds — dz) = 2 f (jg) dz

and the corresponding increase in strain energy of the siring is

s f (jg) d @

To get the total strain energy of the string the constant strain energy
due to initial stretching would have to be added to expression {¢). The
principle of virtual work in this case gives the following equation,
analogous to Eq. (89):

!
ﬁq&ydm—%f; (jy) dr =0 (f;

Calculating the variation of the second term, we find

I z
dy - dy dy d 8y
Joo(@) oe -2 [doiar =2 [ e

Integrating by parts and taking into account that at the ends of the
string éy = 0, we find

i 10
@) e - [ = [0

Substituting mnto Eq. (f), we obtain

S[dzysydx+fq5yd:c-0

i a2 A
[]( a??§+q)6yd:c=0

or
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This equation will be satisfied for any virtual displacement 8y, only if
d
84 = {9)

Thus we obtain the known differential equation of a vertically loaded
string.

The principle of virtual work ean be used not only for establishing a
differential equation for the deflection
curve, as in the example given above, ’
but zlso for the direct determination L_C
of deflections.! Take, for example, a ?
prismatical bar supported at the ends |
and loaded by a force P (Fig. 112). ¥
In the most general case the deflection Fre. 112,

curve of such a bar can be represented in the form of a trigonometric
series,

— %

£an |

y—a;sm +Gzﬁln2—w—+assm3—?r+--- )]

Substituting this in the well-known formula for the strain energy of
bending of a prismatical bar,? we find

dy Elrt \
V=g (da:“) dr = g 2 nia,” (&)

a=1

Let us consider a virtual displacement from the actual deflection curve
obtained by giving to any coefficient @, in the series (k) a variation
da,. Then

. nwr
8y = Bu, sin 7 )
The corresponding change of strain energy, from Eq. (k), is
oV 5 Efxt -
o @ = 5w ‘a,, da, {m)

and the work done by the external force P during the virtual displace-
ment (I) is
nwe

P 8a, sin - (n)

. ' Bee 8. Timoshenko, Bull. Polytech. Inst., Kiew, 1909. Sec also 8. Timoshenke
Btrength of Matermls " vol. 2, p. 44, 1941 '

? Bee 8. Tlmoahenko, “Strength of Ma.tena]s " vol. 1, p. 297, 1941,

e
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i m\mrumL POLITEMNG

TIMISOARA
| R s Y



156 THEORY OF ELASTICITY

By using (m) and (n) the equation of virtual work hecomes

Elxt
203

. B
nta, 8@, — P 8a, sin — =0

!

from which
2P sin n_;-c
O = T EIrmt
Substituting in the series (&), we find the deflection curve
nEe . NEE

e MM ©
Y= EInt e /

r=]

This series rapidly converges, and a few terms give a satisfactory
approxxmatmn Taking, for instance, the load P at the middle of the
span (¢ = 1/2), the deflection under the load is

W) ;1;3(1+ + +)

By taking only the first term of this series, we obtain

W) 1= b
Ve.ulT BIEI

We have a factor 48.7 while the exact value is 48, so that the error made
in ‘using only the first term of the series is about 14 per cent.
0 In the preceding discussion we had to consider
' @ displacement in only one direction and we
& represented it by a sine series (#). A similar
method can be applied in more complicated cases.
Let us consider a rectangular plate with fixed
Y edges, Fig. 113, and acted upon by body forces
Fia. 113, . .

parallel to its plane. General expressions for the

displacements u and v ¢an be taken in the form of series,

% = EzAmsm—Wusm%y
(®)
b= Y Buwsin T2 sin 2

Each term of these series vanishes at the boundary, so the boundary
conditions are satisfied. To calculate the coefficients Ann, Bmn We pro-
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ceed as in the case of the beam and take virtual displacements in the
form

du = 84, sin T sin nEy
a b

or = 5Bm,‘ sm ?—n-L Sm m
a b

The equation (89) of virtual displacements then gives

8Amn X sin 7T giy 7TY
/f sin 7% gin 5 dz dy m"ﬂAm,,f/V dz dy

(@)
Ean Y _—
[f sin 7% g, BT 7 ™Y dz dy ""‘aB,,,,.[/V dx dy

For the calculation of strain energy in the case of plane stress we use
the formula

=/[ Vadxdy=ffl:z_(T.gTﬂ)(ezz_,_eyg_l__Z%xév)

E
+ 0+ ) 'y,,,’:l drdy (r)

SBubstituting in it!

€ = — EE—HA,.,.cos—rzsinm
a b
o B )Y T B in T e 1T
o
Yo -———{— v ZE A...,,sm——ccnszlL?’lr
+EE m,,cosﬂsmnﬂ
a b
and performing the integrations we find
V= szab [2 E ( n?
A2~ Y (;;2 4(1 + v) bz)
+ E Z " ( 1 __m
21 — vy bz 4(1 + ») a?

'It iz not always legitimate to differentiat
¢ a Fourier sertes term by t
Sufficient conditions may be found in the book “ Modern Analysis” by F. TJ’r “?]1::-

taker and G. N. W
problem. atson, p. 168. These conditions are fulfilled in the present
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Substituting this expression for the strain energy into Egs. (¢) we
obtain

Babr? m? n? o ft . mmr_. mwy
Amn =7 (aT(l = T T ﬁ) - f f Asin =g sing dedy

Eabr® m2 nt I b .y |, ATy
B 5 (2a2(1 - + = v”)—) = ﬁ ]; Y sin — - sin == dzr dy

We see that for any kind of volume forces the coefficients in expressions
(p) can be readily calculated and the complete solution of the problem
can be obtained.

The method of virtual displacements can be used for finding approxi-
mate solutions of two-dimensional problems when displacements at the
boundary are given. Assume that the displacements « and v can be
represented with sufficient accuracy by series :

u = ¢,(z,y) + E U m{T,Y)

(s)
v = ulz,y) + z b (2,9

which satisfy the preseribed boundary conditions. For example, we
can select ¢, and ¥, so that they will give at the boundary the required
displacements, and the rest of the functions ¢ and y can then vanish at
the boundary. For the calculation of the coefficients a1, . . . ; @n,
by, . . . , bn we use the principle of virtual displacements (89). Tak-
ing virtual displacements in the form

N = Ot Sm(2,4), B0m = Obw Yim(T,y) ®

we can write as many equations of equilibrium, similar to equations (g)
in the preceding example, as the number of the coefficients in the
series (). These equations will be lincar with respeet to ay, . . . ,
Gm, by, . . - , bm, and solving them we will find the values of the coefh-
cients in the series (s), representing the approximate solution of the
problem.?

In using the principle of virtual displacements (89) it is assumed that
the strain energy per unit volume V., is represented as a function of the
strain components [Eq. (r)] and these are calculated by using expres-

1 Thiz method of solving problems in ¢lasticity was proposed by W. Ritz and was
successfully used by him in an investigation of bending of rectangular plates.
See J. reine u. angew. Math., vol. 135, pp. 1-61. Sec also “Gesammelte Werke,”
p. 192, Parig, 1911,

STRAIN-ENERGY METHODS 159
sions (8). The caleulation of the variation of the strain energy can be

simplified if we observe that

sV = [f (oz 8e. + oy 86y + T4y dvay) dx dy

_ K2 J 9 d
ff[ozaxﬁu+a,@ﬁv+fw(§§6u+£6v)]dxdy

Integrating by parts and observing that §u and $» vanish at the bound-
ary we obtain

_ do, ar a a
5V = — Te 4 Do Ty 4 T
f”(ax ay)5“+(@+f) 5”"]‘”“

Taking for the virtual displacements expressions (£} we then obtain the
necessary equsations for ecalculating the coefficients a,, . . ., a.n,
b1, . . ., b, in the following form:

do, ~
8m [f Xéulz,y) de dy = —da. ff (6—: + %) énlz,y) dx dy

oo | [ Yoot dway = o | (55 + 52) o) doay
ar

g, , drzy
doy Iy

.»{;s an example of the application of these equations let us again con-
sider a rectangular plate (Fig. 113) and assume that three sides of it are

fixed and along the fourth side (y = b) the displacements are given by
the equations )

I

(90)

u =0, v=CbsinI§

The boundary conditions will be satisfied by taking

. METE . W
u:EZ Ay sin 2 sm—:—y

. TE . .
v = Cy sin — -+ 22 B, sin Y gin Y
a a b
i Eguations of virtual displacements in this form are sometimes called Galerkin’s
equations, However both forms of equations represented by Eqs. (g) and Egs.

(90) are indicated b Mz i . b
Werke,” p. 228‘6 Y W. Ritz in the above-mentioned paper. See “Cesammelte

(u)
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The corresponding stress components will be
E du vy F 4w AT L nEy
d==1—v’(6_x+v¢-‘}§ —'l—vz(zz g a b
. T
+ v 22 Bm,.%sinﬁgfcos?%@ + stm%—)
E  for auy _  E B N mEE nwy
""=1—u2(a_y+”5£)‘1—p2(22 Sl T b
mr mrr . nwy
+08in%+v22A“"?cosTSlnT)
i G N (EEA o X sin TOT g 2TH
’”:§(1+p)(a_y+a_x T 201+ ) b a b
. T xT
+223mn?cos@?:—xsm%y+0yacosF)

Substituting into Eqgs. (90) and assuming

. r . N . mMET . Ry
du = 84, sin mTT EID L-y: & = &B,, sin — sin 7

b
we obtain, after integration,

Exab m? n2 )A
T4 (a”(l —v2)+2bﬁ(1 ¥
o fe . mmz nwy _
+LLXsm~E—-sm-—5— dedy =0
Krxiab n? m* )B
- (52(1 —5 ¥ 2aid ) P
a ]
—%Lﬁ ysm%sin%msin%y&dy
. ML . nwy _
+[[Ysm—-&—sm T dedy =0

If the body forces vanish we find that all coefficients A... vanish also.
The coefficients B.,, are different from zero only when m = 1. Then

Ertab n? i )B
1 (b2(1 —5 T s ) B
Cxt [° nry Crb? cos nr

=% LV W T

Determining B, from this equation and substituting into the
formulas {«) we obtain the displacements produced by the assumed
displacements at the boundary.
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General considerations of the total energy of a system were applied
by A. A. Griffith in developing his theory of rupture of brittle materials,®
It is known that materials always show a strength much smaller than
might be expected from the molecular forces. For a certain glass
Griffith found a theoretieal strength in tension of the order of 1.6 X 108
p.s.J., while tensile tests with glass rods gave only 26 X 10® p.si. He
showed that this discrepancy between theory and experiments can be
explained if we assume that in such materials ag glass there exist micro-
scopie cracks or flaws producing high stress concentrations and con-
sequent spreading of the ecracks. For purposes of calculation Griffith
takes a crack in the form of a very narrow elliptical hole, the major axis
of which is perpendicular to the dircetion of the tensile force. Con-
sider a plate fixed along the sides ab and ed,
and stretched by uniformly distributed < ”‘; kb did, 7
tensile stress S, acting along the same sides
(Fig. 114).  If a microscopic elliptical hole A le
AB of length [ is made in the plate, ab and el
ed remaining fixed, the initial strain energy <
due to the tensile stresses S will be reduced. /¥ X1 VYN
This reduction can be caleulated by using Fra. 114,
the solution for an elliptical hole,? and for a plate of unit thickness it is
equal to

1252
- S )

If the crack lengthens, there is a further reduction of strain energy
stored in the plate. However, the lengthening of the crack means an
increase of surface energy, since the surfaces of solids posaess a surface
tension just as liquids do. Griffith found, for instance, that for the
kind of glass used in his experiments the surface energy 7T per unit sur-
face area was of the order 3.12 X 10~ in. Ib. per square inch. Now if
the lengthening of the crack requires an increase of surface energy
which can be supplied by the reduction of the strain energy, the
lengthening can occur without increase of the total energy. The con-
dition that the crack extends spontaneously is that these two quantities
of energy are equal, or, using (v}, '

av w82 :
-a-dl= 5% dt=2d4lT

YA, A. Griffith, Trans. Roy. 8oe. (London), series A, vol. 221, p. 163, 1921.
See also his paper in Proc. Intern, Congr. Appl. Mech., Delft, 1924, A bibliography
of the subject can be found in “Handbuch der physikalischer und technischen
Mechanik,” vol, 4, part 2, 1931, article by Adolf Smekal, e S

*See p. 201,
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5. = 2L ()

Experiments in which eracks of known length were formed with a glass-
cutter’s diamond showed a very satisfactory agreement with Eq. {w).
It was also shown experimentally that, if precautions are taken to
eliminate microscopic eracks, a much higher strength than ususl ean be
obtained. Some glass rods tested by Grifith showed an ultimate
strength of the order of 900,000 p.s.i., which is more than half of the
thecretical strength mentioned above.

49. Castigliano’s Theorem. In the previous article the equilibrium
configuration of an elastic body submitted to given body forees and
given boundary conditions was compared with neighboring configura -
tions arrived at by virtual displacements du, év from the position of
equilibrium, It was established that the true displacements corre-
sponding to the position of stable equilibrium are those which make the
total potential energy of the system a minimum.

Let us eonsider now, instead of displacements, the stresses correspond-
ing to the position of equilibrium We take again, as an example,
the case of a plane stress distribution. We know that the differ-
ential equations of equilibrium (18}, together with the boundary condi-
tions {20), are not sufficient for determining the stress components o,
ay, T~ By taking various expressions for the stress funetion ¢ in Eqs.
(29) we may find many different stress distributions satisfying the
equations of equilibrium and the boundary conditions, and the question
arises: What distinguishes {he true stress distribution from all the other
statically possible stress distributions?

Let ¢, 5y, 7o, be the true stress components corresponding to the posi-
tion of equilibrium and de,, b¢,, é7,, small variations of these compo-
nents such that the new stress components o, + 8o, 6y + 80y, Toy + 674y
satisfy the same equations of equilibrium {18}, Then, by subtracting
the equations for one set from those of the other, we find that the
changes in the stress components satisfy the following equations of
equilibrium: .

from which

3 do, + 3 81y -0
- ar dy (@)
9 bay + 8 01y _ 0
3y oz
Corresponding to this variation of stress components there will be some
variation in the surface forces, Let 6X and 3¥ be these small changes
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in boundary forces; then, from boundary conditions (20), we find

bool+ brym = 53X
daym - b7, 1 = 5F ®)

Consider now the change in strain energy of the body due to the
above changes in stress components. Taking the strain energy per

unit volume as a function of the stress components (86}, the change of
thiz energy is ’

av 1% v
8V, =2"° 7o e
o 30, do, + 30, doy + e i1 - ()
in which
vV, 1
Tﬁzﬁ(gz_ I"'("":r.') = Ex
av, 1
E =E('71.r_ vog} = €
oV, 1
a = G T Yo
giving us
Vo = e 80, + ¢, b0y, + 4., b1,
and the total change in the strain x
cnergy due to changes of stress com-
ponents is
B } A jds
3V = [[&Vodzdy = [[(e, bo. ——aY P
teboy + by drdy (@) |V v

Let wus calculate this change in ¥
energy, taking into consideration the Fre. 115.

boundary conditions {6). The first term ; . .
. m in {d '
parts, {d) gives, integrating by

// €& bo, dr dy = [dyfg—g bo. dr = fdyfu b0
o @ do,
—ffu p dedy (e)

In which the expression lu 30| represents the difference of the values of

the function u ¢, at two o i 1
; e 8 pposite points of the boundary, such ast
points A and B in Fig. 115. We then have Y such s the

aylu bo.| = dy(u do)a — dylu dc.) 5 = ds(u S, cos Nz),
. + ds(u b, cos Nz), (f)
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where cos Nz = [is the cosine of the angle between the external rtormal
N and the 2-axis, and ds is an element of the boundary. Summing up
such expressions as given in (f) we find

[ dylu ¢, = Ju bo.lds
and Eq. (¢) becomes

& doy
f[e,ﬁu,dxdy=[uﬁa,lds—f[u a: dz dy @

in which the first integral is extended along the boundary and the sec-

ond over the area of the plate. ' _
In the same manner the second and the third terms on the right side

of Eq. (d) may be transformed and we find

o
[fe,ﬁa,dzdyr-fdx 5%55vd9=fd$|”3"sf
0 B,
——ffvaaa;”dxdy=fvaa,mds—ffu ay"dxdy
H ou
i = — d —— 8Tuy
[[rwmmtzts= [ [ Goratas | o [ 5 e 0
= fdy|uﬁr,y|—fjvaaa;”"dxdy—l—fdx]u&wl
-—[fuag‘r’”dxdy=fvarn.ids+fuﬁrwmds
Y
3 87y _ f dbray o
_[fvawdm@fuay 4

Substituting (g) and (k) in Eq. (d} we obtain

8V = f [4(305 L + 87y m) + v(o, m + d7 )] ds

3 b0, O b1y d day “T’")]dd

_[”“(ax T oy “(ay T )|

in which the first integral is extended along the boundary and the sec-
ond over the area of the plate. Making use of Egs. (a) and (b) we

finally obtain the following expression for the change of strain energy
due to variation of stress components:

8V = [(usX +vs¥)ds (91)
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The right side of this equation represents the work produced by the
changes of external forces on the actual displacements.

The true stresses are those which satisfy this equation. An analo-
gous equation can be cbtained for the three-dimensional case, with a
third term w 3Z added in the bracket in Eq. (91), and the integral
extending over the boundary surface instead of the boundary curve.

If we have concentrated loads instead of a continucus distribution of
surface forces, the integration in Eq. {91) should be replaced by a sum-
mation. Letting Py, Ps, . . . , be independent concentrated loads
and dy, ds, . . . , the actual displacements of the points of applications
of the loads in the directions of these loads, Eq. (91) becomes

8V =d 8Py + da 8Py + -« - - (92)

In this discussion we have taken the most general variations of the
stress components fulfilling the equations of equilibrium (a).

Let us consider now g special ease when the variations of the stress
components are such that they ean be actually produced in an elastic
body by proper changes in the external forces. We assume that the
stress components are expressed as functions of the external loads Py,
Py, . . ., and we take those changes of stress components which are
due to the changes 8P, 8Py, . . . , of these forces. Considering only
cases when the stress components are linear funetions of the external
loads? Py, Py, . . . , and substituting these functions in Eq. (84), we
obtain the expression for the strain energy as 2 homogeneous quadratic
function of the external forces.

Tt should be noted that the reactions at the supports, which can be
determined from the equations of equilibrium of a rigid body, will be
expressed as functions of the given loads Py, Py, . . . and will not enter
into the expression for the strain energy. If there are redundant con-
straints, the corresponding reactions should be considered together
with the loads Py, Ps, . . . as statically independent forces.

Having an expression for the strain energy in terms of the external
forces, the change of this energy due to changes in the forces is

8V

av
5V—a—&5P1+a_‘P26P2+ R

! We exclude for instance such cascs as the bending of thin bars by lateral forces
with simultaneous axial tension or eompression. In these eases the stresses
produced by the axial force depend ou the deflections due to the lateral forces
and are not linear functions of the external loads,
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Substituting this in Eq. (92), we find

av av
(a—ﬁi—dl)apl'i' m‘dﬂ)apg —0 (?:)
The forces Py, Ps, . . . are, as explained above, statically independent

and their changes 8Py, 6Ps, . . . are completely arbitrary. We ean
take all but one of them equal to zero; hence Eq. (f) requires

v av

é}: = dl, 'm = d2 (93)
We see that if the strain energy V of an elastic system is represented as
a funection of statically independent external forces Py, Py, . . . , the

partial derivatives of this function with respect to any of these forces
give the actual displacement of the point of application of the force in
the direction of the force, This is the well-known Castigliano’s theorem.
B0. Principle of Least Work. In deriving Eq. (91) we assume any
changes in stress components satisfying the equations of equilibrium.
If we assume now that the changes are such that the surface forees
remain unchanged, then, instead of Eqgs. (b} of the previous article, we
obtain
dod + drom =0
doym + Sl =0
and Eq. (91) becomes
V=0 (94)

This means that if we have a body with given forces acting on the
boundary, and if we eonsider such changes of stress components as do
not affect the equations of equilibrium and the boundary conditions,
the true stress components are those making the variation of strain
energy vanish. It can be shown that these correct values of the stress
components make the strain energy @ minimum. Then Eq. (94)
expresses the so-called principle of least work.

This equation holds also if & portion of the boundary is held rigidly
fixed by the constraints and the changes of stress components are such
that there are variations of surface forces along this constrained portion
of the boundary. Since the displacement along the constrained
boundary is zero, the right side of Eq. (91) vanishes, and we arrive
again at Eq. (04).

The principle of least work is used very often in elementary treat-
ments of statically indeterminate systems.! If X, ¥, Z, . .. are

! Bee, for instance, 8. Timoshenko, “Btrength of Materials’ vol. 1, 1940, or
Timoshenko and Young, “ Theory of Structures.”
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forces or couples acting in redundant elements or at redundant con-
straints of an elastic system, the magnitudes of these statically inde-
terminate quantities can be caleulated from the condition that the
strain energy of the system, represented as a function of X, Y, Z, . . .
must be & minimum, .e., we have the equations

vV

3V v _ av
X =

0, v =0 a7 =0 (95)

Several applications of the principle of least work in the solution of
two-dimensional problems will be discussed in the following articles,

61. Applications of the Principle of Least Work—Rectangular
Plates. As an example let us consider a rectangular plate. Previ-
ously (page 46) it has been shown that by using trigonometric series
the conditions on two sides of a rectangular plate ean be satisfied.
Solutions obtained in this way may be of practical interest when applied
to a plate whose width is small in

. e fr—a@———a—

comparison with its length. If -
both dimensions of a plate are of 7] f —

e & —
the same order, the conditions on i ———
all four sides must be considered. ~— 51; ——
In the solution of problems of this = “=— | "
kind the principle of minimum - -
cnergy can sometimes be success- Y
fully applied, : Fre. 116.

Let us consider the case of a rectangular plate in tension, when the
tensile forces at the ends are distributed according to a parabolic law!
(Fig. 116). The boundary conditions in this case are:

Forz = +a,

Fory = 43, ()

sz:O, LTU=O

The strain energy for a plate of unit thickness is, from Eq. (86),

1
V= 3E f/ lo2* + 0y — 2vaem, + 2(1 + »)r,?] de dy ]

It should be noted that for a simply connected boundary, such as we
have in the present case, the stress distribution does not depend on the

! Bee 8. Timoshenko, Phil. Mag., vol. 47, p. 1095, 1924,
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elastic constants of the material (see page 25} and further caleulations
can therefore be simplified by taking Poisson’s ratio » as zero. Then,
introducing the stress function ¢, and substituting in (b)

vo . _oe L #
N T T bz hid oz oy

voan [ LG + (@) w2 (@) e o

The correct expression for the stress function is that satisfying condi-
tions (a) and making the strain energy (¢} a minimum.

If we apply variational calculus to determine the minimum of (¢}, we
shall arrive at Eq. (30) for the stress function ¢. Instead of this we
shall use the following procedure for an approximate solution of the
problem. We take the stress function in the form of a series,

Tz =

we find

= ¢ + a1d1 T+ asds + azdps + - - - ()

such that the boundary conditions (a) are satisfied, a1, s, a3, . . .

being constants 10 be determined later. Substituting this series in .

expression (¢) we find 7 as a funetion of the second degree in o), as,
a3 . ... The magnitude of the constants can then be calculated
from the minimum conditions

v _ AV _ oV

a'T«l_r E_O:

a s 0: et (8)
which will be linear equations in ey, o2, a3 . . . .

By a suitable choice of the funetions ¢, ¢, . . . , we can usually
get a satisfactory approximate solution by using only a few terms in the
series (d). In our case the boundary conditions {a) are satisfied by
taking

since this gives

2 2 2 1
crv=a—¢2°=0, rw=—a¢°=0, a;=%—£)=8(l~g-)

The remaining functions ¢, ¢z, . . . , must be chosen so that the
stresses corresponding to them vanish at the boundary. To ensure
this we take the expression (z? — a?)%{y? — b%)? as a factor in all these

Ll
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functions; the second derivative of this expression with respect to =
vanishes at the sides y = +b, and the second derivative with respect
to ¥ vanishes at the sides # = t+a; the second derivative 92/8z dy
vanishes on all four sides of the plate. The stress function can then be
taken as

¢ =55 (1 ~ é?)) (@t = @2 — 9%a + ae?
+foag?+ - - ) ()
Only even powers of £ and y are taken in the series because the stress

distribution is symmetrical with respect to the z- and y-axes. Limiting

ourselves to the first term ey in 0 02 04 06 08 1D

series (f), we have 0 T /s
025 :
1 % g
¢ =35 (1‘6172) 0th i
- [)* 4
+ ay(z® — a?)(y? — b*)? H
065 A
The first of Eqs. (¢) then becomes g
086 i / "‘
64 , 256 , 640\ _ S AT A
(G5 ) - b LA L
Y
For « square plate (¢ = b) we find Fra. 117,
a; = 0.04253 §

a®

and the stress components are

y? ) 7\ 2
a,=s(1-—)_01mﬂ( . (1-"’—2)
a a
2 2y 2
—0.17028(1—-33 (1 —yz)
a a
= 0680'3”’1 V(1 -%
T = —0.68055 g {1 — 5 =

The dlstnbutlon of ¢ O the cross section z = 0 is represented by
curve II? (Flg 117},

To obtain a closer approximation, we now take three terms in the
series (f). Then Eqgs. {(¢), for calculating the constants ai, as, as, are

dy

! Curve I represents the parabolic stress distribution at the ends of the plate.
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4
al(@+25ﬁb”+64b‘)+aﬂ,(6_4+§§b)

7 49 q? 7 at 77 ' 49 at
64 b2 G4 b5 )
+“8“”(z§ai+ﬁa) = &

64 . 640t 192 | 2565 192 b4
o (ﬁ + “7“5:) + a? (—143 twEtr a_4)
b4 4 HE
asaz(ﬁ“ 6 b) 5

77 ar ' 77 a®
H q 4
a (04 64 b L og? (64 | 64 b )

7 11 g4 77 T7at
192 5% | 256 b4 | 192 b® S
+“3“”(7@+Wa‘4+f433) = ais

For a square plate these give

a; = 0.04040 S—ﬁ; ay = a3 = 0.01174 %
a a

The distribution of o, on the cross section & = 0 is given by

2 2
(02)ams = S(l - %2) — 0.16168 (1 -3 g—z)
2 1
+ 0.0235 (1 124415 %4)

In Fig. 117 this stress distribution is shown by the curve III.?

As the length of the plate increases, the stress distribution over the
cross section x = 0 becomes more and more uniform. If we take for
instance ¢ = 2b, we find, from Eqs. (g),

il a; = 0L.018264 i

] = 0.07983 (Iﬁ_bz’ a"b"'

ey az = 0.1250
The corresponding values of . over the cross section z = 0 are given
below:

% =0 0.2 0.4 0.6 0.8 1.0

¢, = 0.6008 0.6845 0.6698 0.6535 0.6498 0.6758

This distribution is represented in Fig. 117 by the dotted line. We see
that in this case the deviation from the average stress, 8, is very small.
! Similar results were obtained by C, E. Inglis, Prec. Roy. Soc. (London),

series A, vol. 103, 1923, and by G. Pickett, J. A pplied Mechanics {Trans. A.8.M .E.)
vol, 11, p. 176, 1944,
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To deal with other symmetrical distributions of forces over the edges
z = +a we have only to change the form of the function ¢, in expres-
sion (f). Only the right-band expressions in Egs. (g) have to be
changed.

As an example of stress distribution nonsymmetrical with respect to
the z-axis, let us consider the case of bending shown in Fig. 118! in
which the forces applied at the ends are (s.)av. = Ay® (curve b in
Fig. 118b). Clearly, the stress system will be odd with respect to the

N IE
-

ot O e et s 3] y
¥

fx) &)
Fia, 118,

e O —trbt— Qo]

x-axis and even with respect to the y-axis. These conditions are satis-
fied by taking a stress function in the form

. ¢ = "ﬂlﬁAys + (xE —_ a?)z(y? —_ b2)2
oy + agyz® + as® + agy® + - - ) (B)

The first term, as before, satisfies the boundary conditions for &.
Using Eq. (h) with four coefficients a1, . . . , a4 in Eqgs. (¢), we find
for a square plate (a = b)

o T
v = g?‘f ~ 2403 {% 7 — (1 — £)%0.08392(57° — 31)

+ 0.004108(217% — 209® + 37)]
— £(1 — £)0.07308(52° — 39) + 0.04179(214° — 204% + 3n)]} (k)

where £ = z/aand 5 = y/b. The distribution at the middle cross sec
tion z = 0 is not far from being linear. It is shown in Fig. 1185 by
curve q.

§2. Effective Width of Wide Beam Flanges. As anothor example of the applica-
tion of the minimum-cnergy principle to two-dimensional problems of rectaneles,
let us consider a beam with very wide flanges (Fig. 119). Such beams are encoun-
tered very often in reinforced concrete structures and in the struetures of hulls of
ships. The elementary theory of bending assumes that the bending stresses are

{These ealculations are taken from J. N. Goodier’s doctor's thesis, Michigan
Univ., 1931. See also Trans. A.8.M.E,, vol. 54, p. 173, 1532.
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proportional to the distance from the neutiral axis, ¢.c., that the stresses do not,
change along the width of the flange. But if this width is very large it is known
that parts of the fianges at a distance from the web do not take their full share in
resisting bending moment, and the beam is weaker than the elementary theory of
bending indieates, Tt is the usual practice in caleulating stresses in such beams to
replace the actual width of the flanges by a ecertain reduced width, such that the
elementary theory of bending applied to such a transformed beam cross section
gives the correct value of maximum bending stress. This reduced width of flange
i5 called the effective width., In the following discussion & theoretical basis for
determining the effeciive width is given.l

A 2

p
a— T
.7--;‘/:1 i ;\i\. . N
%e ; T
CAY A
/ x -
4 >
fc/
Y T
|
i
2
il &)
‘ o
I
| | |
¥ ] 1
x
Fra, 119

To make the problem as siruple as possible it is assumed that we have an infinitely

long continuous beam on equidistant supports.  All spans are equally loaded by
loads symmetrical with respect to the middle of the spans. One of the supports
of the span shown in Fig, 119 is taken as the origin of coordinates, with the z-axis
in the direction of the axis of the beam. Due to symmetry, only one span and
one half of the flange, say that corresponding to positive y, need be considered.
The width of the flange is assumed infinitely large and its thickness & very emall in
comparison with the depth of the beam. Bending of the flange as a thin plate
can then be neglected, and it can be assumed that during bending of the beam the
forces are transmitted to the flange in its middle plane so that the stress distribution
in the flange presents s two-dimcensionsl problem. The corresponding stress
function ¢, satisfying the difierential equation-

3%p

4 d
2+t =0 @

dxay? oyt

! The subject wasinvestigated by T. v. Kérm4n ; see * Festschrift Augnst Foppls,”
p- 114, 1923,  Also G. Schnadel, Werft und Reederei, vol. 9, p. 92, 1928; E. Reissper,
Der Smhlbau 1934, p. 206; E. Chwalla, Der Stakibau, 1936; L. Beschkine, P‘ubls
Intern. Assoc. Bridge and Struciural Engineering, vol. 5, p. 65, 1988,
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can be taken for our symmetrical ease in the form of the series

A=

= E Ja () cos n—;’i ®

A=l

in which f,{z) are functions of y only. Substituting in Eq. (a), we find the follow-
ing expression for fa{y):
ey N rry

nxy
ful) = Ane” I +B, (1 +"‘""y) T Cel +D,‘(1+“’y P

To satisfy the condition that stresses must vanish for an infinite value of y, we
take Uy, = D, = 0. The expression for the stress funetion is then

S fae
n=1

The coefficients A, and B, will now be determined from the condition that the
true siress distribution is that making the strain energy of the flange together
with that of the web a minimum. Substituting

ﬂ‘Jr‘y' nry

T] cos *TE @

(1 +mry g

a=¢. a’;b _ _ 9%

T VT Y T T Thray

in the expression for strain energy
Rofwfu ,
Vi=2- 2_"E o 0 [e:? + 0 — 2vaz0y -+ 2(1 + ¥)ro,lde dy

and using Eq. (d) for the stress function, the strain energy of the flange ist

L Untd Byt AR, | Ad
Vl_%z 2 (?"‘ 26 T 26 e
=

In considering the strain energy of the web alone, let A be its eross-sectional area,
T its moment of inertia about the horizontal axis through the centroid €, and ¢ the
distance from the centroid of the web to the middle plane of the flange (Fig. 119).
The total bending moment transmitted at any eross section by the web together
with the flange can be represented for our symmetrical case by the serics

M=Mo+Mlcos”—f+M,cosg—’g—x+--- T

In this series M, is a statically indeterminate quantity depending on the magnitude
of the bending moment at the supports, and the other coefficients My, M, . . . ,
are to be caleulated from the conditions of leading. Letting N dencte the com-
pressive force in the flange (Fig. 110¢), the bending moment M can be divided into

! The integrals entering into the expression for strain energy are calculated in the
paper by Kdrmdn, loc. cit.
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two parts: & part M’ taken by the web and a part M”, equal to Ne, due to the
longitudinal forces N in the web and flange., From statics the normal stresses
over any cross gection of the complete beam give a couple M, hence

N+2hf°°a,dy=o
e {g)

M'—zheﬁ)"u,,dy=u

where —2he A N ay dy = M" ig the part of the bending moment taken by the flange.

The strain energy of the web is

[ Nde % M1z
Ve = ﬁ) 2AE T Jo T3ET (R}

From the first of Egs. {g) we find

- — © - _ % 4 = |‘3"_¢'0
N 2hf0 oudy = 21;]; hay =2 2

From expression {d) for the stress function it may be seen that
-
¢ = 3¢ = 3 I= nrz
Go).=o G o D Anens ™
ne=]
Henee

N=2h2n—;A,‘cusnTﬂ

nm]
M =M+2heﬁ)”a,dy nM+Ne=M+2heE*$A,.m’l‘gf
a=1
or, using the notation
2h "% Ay = Xu
we may write
N = Z X co n—;-f
nm]
» ® 63
M ==M+sZX..msp%:f =M.,+Z(M,.+ex..)cosi‘ll’f
A=l =1

Substituting in (h) and noting that

2 2t
]; coﬂ’%dz=l, j; cuﬁnizzcos’%cdx=0(whenm#ﬂ)

we obtain

a=l

o LN M N
L —mzlxui‘*‘ Er +2EIZ(M" +8Xn)’
=
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Adding this to the strain energy (e) of the flange, and introducing in this latter the
notations
22 A, =X, 22T B.=7.

we find the following expression for the total strain energy:

2Vt 4+ (L + ) XoFa + (1 + XY + ﬁﬁ E X,

T
V=%E
nw=] n=1
M2 {
+ 75 tamr EI(M- +eX,)® (D)
o

The quantities Mg, X, Fa are to be determined from the minimum condition
of the strain energy (f). It can be seen that M, appears only in the term M %/Ef,
and from the minimum requirement for {{) it follows that M, = 0.

From the condition

av

..._._.-=0

aY,

it follows that
2Y. + (1 + ")Xu =0
¥ - — 14»

2X"

Bubstituting this and M, = 0 in Eq. {I) we get the following expression for the

atrain energy:
5 342 -\ R
Vege — 1 E"'X"z"'zAEZX'
a=1 a=1

+ o7 E (Mn + eXo)* (m)
r=1

From the condition that X, should make ¥ a minimum it follows that

av
X, = °
from which we find
M, 1
Xl__71+i+m’.3+2’—” ™
Ae? Ale? 4

I:et us consider a particular case when the bending-moment diagram is a simple
<osine line, say M = M, cos {mx/I). Then, from Bq. (n),

X, = M, 1
v T e I xf 3428 —
"tHa TR T
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and, from Eq. (k), the moment due fo the force N of the flange is

M” = —eN = —eX T 7
; eN eX1 cos = 1y L gl 342 o0 (p)
Aer ' hey] 4

The distribution of the stress o, along the width of the flange can now be caleu-
lated from {d) by taking all coeflicients 4, and B, except A.and B,, equal to zero,
and by putting (following our notations)

.S S e -
=g BimoTgm A=

R 101061
dh

Ay

This distribution of ¢ is shown by the curves in Fig. 1192, The stress o, dimin-
ishes ag the distanee from the web increases,

Let us now determine a width 2x of the flange (Fig. 1194}, of a T-beam, such
that a uniform stress distribution over the cross section of the flange, shown by ihe
shaded area, gives the moment M caleulated above, Eq. (p). This will then be
the effective width of the flange.

Denoting, as before, hy M’ and M" the portions of the bending moment taken
by the web and by the flange, by o, the stress at the centroid € of the web, and by
o, the streas at the middle plane of the flange, we find, from the elementary theory
of bending,

Me
g. = oz + a (q)
and, from the equations of statics,
2rhe, + 0. A =0
Ao = M” )

The expressions for the two portions of the bending moment, from Egs. (¢) and
{r), are

I I 2xh
M =E(cr. — o) =E(1 +T)rr,
M = 2\hes,
The ratio of M to the total bending morﬁent is

M 2hhede 1

- ANk

i = = (=}
M+ M I 20 1 1
2Ahes. + (1 t7) 1tiatous

To make this ratio equal to t-ix-e_-'_raﬁ_o M_" /M ag_féhléd from thé exact solution {2},
we must take ) - :
I al 34+ 2v — »?

ket T Rell T 47
From this we obtain the following expression for the effective width 2x:

4

SRS T
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Taking, for instance, » = 0.3, we find
2% = 0.181(2])

i.e., for the assumed bending-moment diagram the effective width of the flange is

approximately 18 per cent of ihe span. .
Tn the case of a continuous beam with equal concentrated forces at the middle

of the spans, the bending-moment diagram will be as shown in Fig, 120, Repre-
senting this bending-moment diagram

by a Fourier series and using the general P
method developed above, we find that

the efiective width at the supports is / \
—oss.— 2 / \
M =085 —m oy N P

F I
£ £

Tra. 120

i.¢., somewhat less than it is for the
case of a moment diagram in the form
of a cosine line. '

§3. Shear Lag. A problem of the same general nature as that discussed in
Art. 52 occurs in aireraft structures. Consider a boxz beam, Fig. 121, formed from
iwo channels ABFE and DCGIH to which arc attached thin sheets ABCD and
EFGH, by riveting or welding along the edges. If the whole beam is built in
at the left-hand end, and loaded as a cantilever by two forces P applied to the
channels at the other end, the elementary bending theory will give a tensile
hending stress in the sheet ABCD uniform across any section parallel to BC.
Actually, however, the sheet acquires its
tensile stress from shear stresses on its
edges communicated to it by the channels,
as indicated in Fig. 121, and the distribu-
tion of tensile stress across the width will
not be uniform, but, as in Fig. 121, higher
at the edges than at the middle, This
departure from the uniformity assumed
by the elementary theory is known as
“shear lag,” since it involves a shear
deformation in the sheets. The problem has been analyzed by strain-energy
and other methods, with the help of simplifying assumptions.!

Fia. 121.

Problems

1. Find an expression in terms of o, oy, 7.y for the strain cnergy V per unit
thickness of a eylinder or prism in planc strain (e = 0).

2. Write down the integral for the strain energy V in terms of polar coordinates
and polar stress componenis for the case of plane stress [ef. Eq. (1), Art. 511

The stress distribution given by Eqs. {80) solves the problem indicated in Fig.
122, 8 couple M heing applied by uniform shear to the inside of a ring, and a

L E. Reissncr, Quart. Applied Math., vol. 4, p. 268, 1946; J. Hadji-Argyris, (Brit.)
Aeronaul, Research Couneil, Reports and Memoranda, No, 2038, 1944; J. Hadji-
Argyris and H. L. Cox, ibid., No. 1969, 1044, References to earlier investigations
8re given in these papers.
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balancing couple to the outside. Ewaluate the strain energy in the ring, and by
equating this to the work done during loading deduce the rotation of the outside
circle when the ring is fixed at the inside (ef. Prob. 2,
page 125).
M 3. Fvaluate the strain energy per unit length of a
eylinder ¢ < r < b subjected to internal pressure pu
[see Eqs, (46)]. Deduce the radial displacement of
the inner suriace.
Obtain the same result by use of Eq. (50) (taking
v = () and the stress-strain relations of plane stress.
4, Interpret the equation

[fVodzdy = 5[[(Xu + Yv)dzdy + §/(Xu + Fo) ds

and give the justifieation of the factors § on the right.
5. Show from Eq. (84) that if we have a ease of plane stress and a corresponding
case of plane strain {e. = 0} in which the stresses o., o, Ty are the same, the
strain encrgy is greater {per unit thickness) for the plane stress.
6. In Fig. 123, (a) represents a strip under compression, in which the siress
therefore extends throughout, In (b) the deformable strip is bonded to rigid plates

fa) b} tc}
Fia. 123,

Fia. 122,

on its top and bottom edges, Will there be stress throughout the strip or only
locally at the enda? 1In {¢) the upper edge is free, as in (g}, but the lower edge is
fixed, as in (b}. Will the stress be loeal or not?

7. From the principle that a system in stable equilibrium has less potential
energy than that corresponding to any neighboring configuration, show without
caleulation that the strain energy of the plate in Fig. 114 must either decrease or
remain the same when g fine cut AB is made.

8. State the Castigliano theorem expressed by Eq. (91) in & form suitable for
use in polar coordinstes, the boundary forces X and P being replaced by radial
and tangential components 8 and T, and the displacement components by the
polar components « and & of Chap. 4,

9. "“Equation (91) is valid when sV, 5%, 57 result from any small changes in the
stress components which satisfy the conditions of equilibrium (@) Art. 49, whether
these changes violate the conditions of compatibility (Art, 15) or not. In the
latter case the changes in the stress are those which actually occur when the
boundary forces are changed by $X, 57, Is this statement correet?

Assuming that it is, show that the radial displacement of Prob. 3 can be caleu-
lated from the formula

1 a¥

(W rea = G a_P:

CHAPTER 7

TWO-DIMENSIONAL PROBLEMS
IN CURVILINEAR COORDINATES

b4. Functions of a Complex Variable. For the problems solved
8o far, rectangular and polar coordinates have proved adequate. For
other boundaries—ellipses, hyperbolas, nonconcentric circles, and less
simple curves—it is usually preferable to employ different coordinates,
In the consideration of these, and also in
the construction of suitable stress func-
tions, it is advantageous to use complex
variables.

Two real numbers z, ¥ form the complex
number z -+ iy, with i representing +/ —1. Since
i does not belong to the real-number system,
the meaning of equsality, addition, subtraction,
multiplication, and division must be defined.!
Thus, by definition, z 4 fy = &’ + iy means
z =1z, y =y, and ¢* means —1. Otherwise
the operations are defined just as for real
numbers, For instance

(z+d)* =2t + 22y + ({y)* =22 — y* + 22y  sincei? = —1
Converting to polar coordinates, as in Fig. 124,

z=g + iy = r(cos ¢ + i sin 8} . {a)
Bince
e = 140+ 5 (0 + 9y L oy
2 3l rYAL
and
= =19 = —{ 1t =], ete.,
we have
i — 1 1 . 1
gﬂ_lmmaz.g.aei_ .. +1(g_mgl+ e

=cos # 4 ¢ sin §

From Eq, (a) therefore
2=z + iy = rei? (b}
* The definitions represent operations on pairs of real numbers, the use of 1 being

1":115\341‘81)!' 8 convenience, Bee for instance E. T, Whittaker and G. N, Watson,
odern Analysis,” 3d ed., pp. 6-8,
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Algebraie, trigonometric, exponential, logarithmie, and other functions can be
formed from z ar well as from a real variable, provided an anslytical rather than a
geometrical definition is adopted. Thus sin £, cos 2, and e may be defined by their
power series. Any such funection can be separated into “real” and “imaginary™
parts, that is, put in the form a{z,y) + i8(x,y} where a{r,y), the real part, and
B{x,y), the imaginary part,’ arc ordinary real functions of = and y (they do not
contain ¢). For instance if the function of z, f{z), is 1/z, we have

_ 1 ¥ — iy (=0
A e Y T IC R z’+y tioty

Similarly, observing thsat cosh iy = 4(e¥ - ¢ %), sinh iy = }{e* — ev}, and
et = cog ¥ + I sin y, we find

ginh z = sinh (z + iy} = sinh x eosh iy + cosh z sinh 4y
sinh # cos y 4 7 cosh z sin y
cosh {x 4 fy) = cosh x cosh iy 4 sinh = sinh &y
cosh T cos y + 7 sinh z aln ¥

cosh z

As an lustration of the general method for converting a complex denominator to
a real one, consider the function coth z. We have

cosh z _ cosh (z + 4y) sich (z — iy}
sinh z sinh {(z + iy} sinh (z — iy)
_ (cosh r cos y 4 1 sinh z sin y)(sinh z cos y — i cosh z sin y)

~ (#inh = cos ¥ -+ 7 cosh z sin ¥)(sinh 2 c0s ¥ — ¢ cosh z sin )

coth #z =

The denominator is the same as the real quantity (sinh = cos ¥)2 + {cosh z sin y)*.
When the sumerator ia multiplied out, and i? replaced by —1, the separation into
real and imaginary parts is completed. The result can be simplified to
_ sinh 22 — {sin 2y
coth 2 = cosh 2x — cos 2y @
An alternstive procedure is indicated by Fq. (p}) of Art. 62.
The derivative of f{z) with reapeet to z is by definjtion

df(2) _ i, flz 4 A7) — f(3)
7 a7 @)

lim
Az—0)
where Az = Az 4+ 7 Ay and Az — 0 means, of course, both Ax— 0 and Ay — 0,
We can slways think of =z, ¢ as the Cartesian coordinates of a point in a planc.
Then Az, Ay represcnt a shift to a neighboring point. It might be expected at
firgt that () could be different for different directions of the shift. Nevertheless,
the limit in (d) is calculable directly in terms of 2 and Az just as if these were real
nutnbers, and the corresponding results, such as

d 4 .
|3 p— p—
ﬂ!z(z}—2z, ;in e =cos 2

must appesar, independent of the choice of Az, and of Az and Ay, We may say,
therefore, that all the functions we may form from z in the usual way will have

1 It should be observed that this is real in spite of its name.
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derivatives which depend on z only, being the same for all directions (of dz} at the
point z.  Buch functions are called analytic.

The quantity £ — iy may be regarded as a function of z, in the sense that if 2 is
given, z and y are given, and so & — ¢y i3 determined. However, # — iy cannot be
formed from 2z as for instance #r, ¢* are formed. Its derivative with respect to z
is the limit of {Ar — § Ay)/{Azr + 7 Ay) a8 Ax, Ay — 0. This is not independent
of the direction of the shift Az, Ay If we take this shift in the r-direction, so
that Ay = 0, we obtain 1 as the value of the limit. If we take the shift in the
y-direction, Az = Oand the limitiw —1. Thus z — iy is not an anaiytic function of
z -+ iy. Analytic functions together with x — 4y will be used later in the con-
steaction of stress functions.  Any funetion invelving ¢ will be referred to as a
“ gomplex function,”

An analytie funetion f(z} will have an indefinite integral, defined as the funetion
having f{z) as its derivative with respect to 2, and written [f(z) dz. For instance
if f(z} = 1/z we have

f%dz:logz—l—c

the additive constant C being now a complex number A + 7B, containing twe
real arbitrary constants A and B.
65. Analytic Functions and Laplace’s Equation. An analytic function f{z)
can be regarded as a function of x and y, having partial derivatives. Thus
i _d G2 _ g 9% 4
327 = pfE) - =@ 5= =) (a)
since dz/8x = 1. Similarly
9 = e 9% ey
L@ = 1@ 2 = i@ (b)
since dz/ay = 1.
But If f(z} is put in the form a(z,y) 4 i8(z,y), or for brovity « -+ i3, we have

] B 6‘a r?ﬁ
/@ =i amd g =54l (0
Comparing Egs. {¢) with Eq. (z) and Eq. (5) yields
. f A N A 35
z(ax+aax)— +i (d)
Rermnembering that «, 5 are real, 42 = —1, and that the equality implies that real
and imaginary parts are separately equal, we find
doe 6,6 e a8 .
9z "9 ay - Bz €
¥ ay ax

These are called the Cauchy-Riemann equations. Fliminating @ by differentiating
the first with respect to x, the second with respect to ¢, and adding, we obtain

0%

az’+ =0 )
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An equation of this form is called Laplace’s equation and any solution is called a
harmonic function. In the same way elimination of & from Eqas. (e) yields

72 Tagt @

Thus if two functions « and 8 of # and y are derived as the real and imaginary
parts of an analytic function f(7), each will be a solution of Laplace’s equation.
Laplace’s equation is encountered in many physieal problems, including those of
elasticity [see for instance Eq. (b), Art. 16].

The functions « and g are called conjugaie harmonic functions. It is evident
that if we are given any harmoniec funciion «, Egs. {¢) will, but for a consiant,
determine ancther function 8, which will be the conjugate to a.

As examples of the derivation of harmonic functions from analytie functions of ¢,
consider ¢, z*, log 2, » being a real constant. We have

gint = g% g=mr = g~ cod NE -F fe ™ 8in nz

showing that e eos nz, ¢ ™ Ein nx are harmonic functions. Changing #» to —n
we find that e™ cos nz, e sin nz are algo harmonie, and if follows that

sinh ay sin nz, cosh ny sin nr, sinh ny cos nx, cosh ny cos ne  (h)

are harmonic since they can be formed by addition and subtraction of the fore-
going functions with factors 3. From

2t = (re¥}r = ragind = ro 003 g + ir" sin nd
we find the harmonic functions

™ cos né, r* gin né, 7" cos n#, = gin no (%)
From
log z = log re'? = log r + 18
we find the harmonie functions
log r, ¢ @
It is easily verified that the functions {7) and (f) satisfy Laplace’s equation in
polar coordinates [see Eq. (d), page 57), i.e.,

ot 1oy | 1%
'5;3‘?‘;'5;_4";;@-—0 .(k)

Problems

1, Determine the real functions of % and y which are the real and imaginary
parts of the complex functions 22, 2%, tanh z,

[#* — ¥ 2zy; #* — 3zt Bety — ¢
ginh 2z{cosh 2z -+ cos 2y)~Y, ein 2y(cosh 2z + coa 2y

2. Determine the real functions of r and & which are the reql and imaginary
parts of the complex functions 272, 2 log 2.

[¥* cos 26, ¥t sin @;  log r cog § — r@sin 8, r log r sin # - 1§ cos 8]
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8. If ¢ is a complex variable, and z = ¢ cosh §, find

% sinh n{

Writing ¢ = £ + 97 find the real and imaginary parts of this derivative when
¢ and n are real.
4 Mfz=2+iy, r =&+ in,and z = da coth %t where a is reul, show that

asin % _ a sinh %

x=ﬁ e —
cosh £ —cos 7 ¥ = Zosh t—cosq

b8, Stress Functions in Terms of Harmonic and Complex Functions.
If ¢ is any function of & and y, we have by differentiation

8 _ ey oy oy
('a—xz“l‘a—yg (N)_x(a_.:cz-f-'@é)_{—Q,% (@)

If ¢ is harmonic, the parenthesis on the right is zero. Also dy/dxisa

) . ) a0\ [\ _ 8 fow | aW\ _
harmonie funetion, since (@ + 6—!}2) (ﬁ) - (552; + i) = 0

Thus another application of the Laplacian operation to (@) yields

32 62 62 32 _
(Zr Z) @+ 2 e =0 ®
which iz the same as

34 a o _
(2 +2 g+ ) @) = 0

Comparison with Eq. (a), page 29, shows that 2y may be used as a
stress function, ¢ being harmonie. The same is true of ¢, and also,
of course, of the function ¥ itself.

It can easily be shown by differentiation that (z? 4 y*)¢, that is
%, also satisfies the same differential equation and may therefore be
taken as a stress function, ¢ being harmonie.

For instance, taking the two harmonic functions

siph ny sin nz, cosh ny sin ng

‘from the functions (k), page 182, and multiplying them by y, we arrive

by superposition at the stress function (d), page 47. Taking the
harmonic functions () and (j), page 182, as they stand or multiplied by
Z, ¥, or %, we can reconstruet all the terms of the stress function in
polar coordinates given by Eq. (81), page 116.

) The question of whether any stress function at all can be arrived at
n this fashion remains open, and will be answered immediately, in the
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process of expressing the general stress function in terms of two
arbitrary analytic functions.
Denoting the Laplacian operator

a2 a?

ot " oy
oy V2, Eq. {a) on page 29 can be written V3(V2¢} = 0 or Vip = 0.
Writing P for V2¢, which represents o, + o,, we observe that P is a

harmonie function, and so will have a conjugate harmonic funetion .
Consequently P + 4Q is an analytic function of 2, and we may write

fz) = P+ iQ (&)

The integral of this function with respect to z is another analytic func-
tion, 4 ¢(z) say. Then, writing p and g for the real and imaginary parts
of ¢(z), we have

p(2) = p +ig = 1ff(2) dz (d)
so that ¢'(z) = 4f(z). We have also

1%y = =16 = PO

Equating real parts of the first and last members we find

ap 1
ﬁ—zp (e)

Since p and ¢ are conjugate functions, they satisfy Eqs. (¢) of Art. 55,
and so

dq 1
=3P )

Recalling that P = V2, Eqs. (¢} and (f) enable us to show that
¢ — zp — yq is a harmonic function. For

ap dq |
2 — — — — — =2
Ve —ap ~yq) = V¢ — 24 2. 3y 0 )

Thus for any stress fu.nctic_)n ¢ we have
¢ —Ip —HYI =D
where p; is some harmonic function. Consequently
¢ =zp+ys+m (96)

which shows that any stress function can be formed from suitably
chosen conjugate harmonic functions p, ¢ and a harmonic funetion py.
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Equation (96) will prove useful later, but it may be observed that
the use of both the functions p and g is not necessary. Instead of Eq.
{¢) we can write

2 — 2 —_
V(¢ — 2zp) = V¢ 46:1: 0
showing that ¢ — 2zp is harmonic, say cqual o p, so that any stress
function must be expressible in the form

¢ = 2zp + pa (k)
where p and ps are suitably chosen harmonic functions. BSimilarly,

considering ¢ — 2yq, we may show that any stress function must also
be expressible in the form

¢ = —2yg+ ps
where g and p; are suitably chosen harmonie functions,

Returning to the form (96), let us introduce the function ¢ which is
the conjugate harmonic to p;, and write

x(z) = p + i
Then it is easily verified that the real part of

& —iy)p + ) + 01 +in

is identical with the right-hand side of Fq. (96). Thus any stress func-
tion is expressible in the form’

= Re [#(2) + x(2)] (97}

where Re means ‘‘real part of,”” Z denotes x — 7y, and ¢(2) and x(2) are
suitably chosen analytic functions. Conversely (97) yields a stress
function, that is a solution of Eq. {a), p. 29, for any choice of ¥(z) and
x{z). 1% is applied later to the solution of several problems of prac-
tical interest.
Writing the “complex stress fun(,tmn” in brackets in (97) as

2z V’( )} x(@)
and observing that £z = #%, and xp(z)/z is still a function of 2, we find
that any stress function ean also be expressed as
rps + ps
where p,, p; are harmonic.

' E. Goursat, Bull, ses. math. France, vol. 26, p. 206, 1808. N, I. Muschelidvili,
Math, Ann., vol. 107, pp. 282-312, 1932,
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57. Displacement Corresponding to a Given Stress Function. It
was shown in Art. 39 that the determination of the stress in a multiply-
connected region requires the evaluation of displacement to ensure that
it is not discontinuous, that is, to ensure that the stress is not partly
due to dislocations. For this reason, as well as for cases where the
displacements are of interest in themselves, we require a method of
finding the displacement functions « and v when a stress function is
given,

The stress-strain relations for plane stress, Eqs. (22), (23), may be
written

Eg—:=o'¢—wy, E

3 = gy — ¥0x ()

dv ou
o(L+2) - Q

Inserting the stress funetion into the first, and recalling that P = V2¢,
we have

gl ¥ 62¢=(P_62_¢)_ 3%

az oyt ox dx? rre

= -1+ P) +P ()

and similarly

E—_—(1+v) +P (@)

But from Eqgs. (f) and (g) of Art. 56, we can replace P in Eq. {¢) above
by 4 dp/dx, and in Eq. (d} by 4 3¢/8y. Then, after division by 1 + »,

au ¢ 4 9p av Gt 4 aq
w" " TTiye Ly T T Titva @
and these imply, by integration,
] 4
wu=—Fr e, - - inw o

where f(y) and fi(x) are arbitrary functions. If these are substituted
in the left of Eq. (b), we obtain

3¢ op ¢\, 1df | 1dfi _
Bxay+ﬁ—_1»( + )+2dy+2d:c Tev )

But the first term on the left is equal to 7., and the parenthesis
vanishes because p and ¢ are conjugate harmonic functions satisfying
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the Cauchy-Riemann equations (Art. 56). Hence
d
f + f 1

which implies

a _ dft _

a = A, iz —A
where A is a constant. It follows that the terms f(3) and f,(z) in Eq.
(f) represent a rigid body displacement. Discarding these terms we
may write Egs. (f) as!

_ 64: 4 _ 6¢ 4
2Gu = 57 26 + T55¢ (k)

on the understanding that a rigid-body displacement can be added.
These equations enable us to find % and ¢ when ¢ is known. We have

first to find P as V3¢, determine the conjugate function § by means of
the Cauchy-Riemann equations

P _oQ P _ _ 99

az a8y oy  om
form the function f(2) = P + i@, and obtain p and ¢ by integration of
J(zyasin Eq. (d), Art. 56. The terms of Eqs. (%) can then be evaluated.

The usefulness of Egs. (k) will appear in later applications, for which
the method of determining displacements used in Chaps. 3 and 4 is not
suitable.

68. Stress and Displacement in Terms of Complex Potentials, So
far the stress and displacement components have been expressed in
terms of the stress function ¢. But since Eq. (07) expresses ¢ in terms
of two functions $(z), x(2), it is possible to express the stress and dis-
placement in terms of these two “complex potentials.”

Any complex function f(z) ean be put into the form & + 78 where o
and 8 are real. ‘To this there correspends the conjugate,? a — 8, the
value taken by f(z) when 7 is replaced, wherever it occurs in f(z), by
—1i. This change is indicated by the notation

, j& =a—1i8 (@)
Thus if f(z) = ¢ we have
j‘(z) = gt = g-inlr—iy) — g—ink . gny (b)

19;? E. H. Love, “Mathematical Theory of Flasticity,” 4th ed., Arts. 144, 146,

* The word is used here with s significance quite distinct from that in the term
°°BJUgate harmonic functions,”
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This may be contrasted with
@) =&

to illustrate the significance of the bar over the f in Eq. (a).
Evidently

f(z) + 7@ = 2a = 2 Re f(2)

In the same way if we add to the function in brackets in Eq. (97) its
conjugate, the sum will be twice the real part of this function. Thus
Eq. (97) may be replaced by

26 = () + x(2) + 283 + 1@ 98)
and by differentiation

9 _ W@ + ¥ + X @+ A IO T KO

9 _ s (@) — v@) + X @) — V@ + 3@ ~ X))

These two equations may be combined into one by multiplying the
second by 7 and adding. Then '

36 , .04 _ oo
5}'4‘15@—#’(2)4'2'} @) + (@ {e)
Combining Eqs. (k) of Art. 57 in the same way we find
2G(u + iv) = — %%Jr a¢)+__ (p + 1g)

or, using Eq. (d) of Art. 56 and Eq. (¢} above,
2G(u + w) = ’I/(Z) — (3 — %@ (99)

This equation determines % and v for plane stress when the complex

_potentials ¢(z), x(z) are given. For plane strain #/(1 — ») is sub-

stituted for » on the right of Eq. (99) in accordance with Art. 19.

The stress components o., a,, 7, can be obtained directly from the
second derivatives of Eg. (98). But, in view of later application to
curvilincar coordinates, it is preferable to proceed otherwise. Differ-
entiating Eq. (¢) with respect to z we have

L T V@@ V@ + @ @

dx?
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Differentiating it with respect to ¥ and multiplying by ¢ we have

gt e @O VOO ©

Simpler forms are obtalned by subtractlng and addmg Eqgs. (d) and (e}.
Then'

o +ay =20/ (0) + 2 (2) = 4 Re ¢'(2) (100)

oy — 0 — 2irgy = 207 (Z) + X7 (3] {101)

“hanging £ to —7 on both sides of Eq. (101) yields the alternative form
oy = 05 + 2ty = 2[8"(z) + x"(2)] (102)

On separation of real and imaginary parts the right side of Eq. (102}, or
(101), gives ¢, — oy and 2r. The two equations (100} and (102)
determine the stress components in terms of the complex potentials
¥(z) and x(z). Thus by choosing definite functions for ¢(z) and x(2)
we find a possible state of stress from Eqs. (100) and (102), and the
displacements corresponding to this state of stress are casily obtained
from Eq. (99). '

As a simple iHlustration of this method, consider the polynomial stress system
dizcussed on page 32. A stress function in the form of a polynomial of the fifth
degree will evidently be obtained from Eq. (98) by taking

¥(2) = (@ Fdbs)et,  x(&) = (s + )@
where as, by, €5, s are real arbitrary coefficients. Then

') = d(as + ibe)zd, x'(z) = Bles + dds)2?
”(Z) 12{a; + ’ibs)zg, X”(Z) = 20(cs + in‘ff,)za

and Fgs. (100) and (102) yield

o + oy = 4Redia; + ibe)2?
16 Re (a5 + ibs)z® — Byt + {8z — v7)]
16as(x% — 3zy?) — 16b:(3zty — y*) \
2[12(as + iba)Z22 + 20(es + ide)2?]
24ay + ibe)(x — dy)(z + iy)? + 20{cs + ids}(x + i)?
[24apz(a® + y2) — 24bsy(x? + y?) + 20c.(x® — 3xy?)
— 20d5(3x% — )] + i24asy(z? + ) + 24ha(s® + o)
4 20cq(3%y — ¥ + 20ds(z® — 3xy®)}

1

Ty — Oy + 21:1".“;

[/ I I |

The expressions in brackets give oy — o and 2., respectively. The displace-
ment components corresponding to this stress distribution are easily obtained from
Eq. (99), which yields

2G(u + i) =

. ; : (a5 1 the)z* — Alas — ihe)a3d — 5les — #ds)34

. ! These results and Eq. (§9) were obtained by G. Kolosoff in his doctoral disserta-
tion, Dorpat, 1909. Bee his paper in Z. Math. Physik., vol. 62, 1914,
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59. Resultant of Stress on a Curve. Boundary Conditions. In
Fig. 125 AB is an are of a curve drawn on the plate. The force acting
on the arc ds, exerted by the material to the left on the material to the

cdx) TiSht, proceeding from A to B,
O %
may be represented by compo-
4 nents X ds and ¥ ds. Then,
= from Eqs. (12) of Art. 9,

z X =g, o5 +Tysina @)
Fels Y =gy5in a4+ 14 co8 a

fal (6) where o is the angle between the

Fra. 125. left-hand normal N and the z-

axis. To ds correspond a dz and a dy as indicated in Fig. 125b. In

traversing ds in the direction AB z decreases and dz will be a negative

number. The length of the horizontal side of the elementary triangle
in Fig. 125b is therefore —dw. Thus

_dy . __dz
cos @ = = sin @ = — o= (B
Inserting these, together with
I S
Tz =gt T gt T ax By

in Eqs. (4), we find

g dy, @ do_ o (ae\dy 0 (06 @_i(@)
T oyt ds " ezoy ds oy\dy/ds ' 8z \dy/ds  ds\dy ©

7 Fode ¢ dy _ g_(aqb)

dr* ds Sz oy ds ds \8zr

The components of the resultant force on the arc AB are therefore
B B B
F,=f de=f i(a—-qb)ds=[a—-¢]
A 4 ds ay 3‘9’ A (d)
B B B
- ras = — | L%}y - — |22
oo [ va-- 4 (2)as = - |22],

the square bracket representing the difference of the values of the
enclosed quantity at B and at A.
The moment about O, clockwise, of the force on AB is, using Eqs. {c},

B B B
M=f x}-"ds-—f y)-fdsr-—»j I::z:al(f’—-d3 —’r-yd(aj]
A A A 0%
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Integrating by parts yields!

_ B I 36
= [of -2+l @

It will be evident from Egs. {¢) that if the curve AB represents an
unloaded boundary, so that X and ¥ are zero, 9¢/9z and 9¢/dy must
be constant along AB. If there are prescribed loads on AB, Eqgs. (¢)
show that they can be specified by giving the values of d¢/dx, 3¢/0y
along the boundary. This is equivalent to giving the derivatives
d¢/ds along, and 3¢/dn normal to, AB. These are known if ¢ and
d¢/3n are given along AB.2

Now let the arc be continued to form a closed curve, so that B
coincides with 4, but is still regarded as the point reached after trav-
ersing the arc, now a closed circuit, AB. Then Eqs. (d) and (¢) give
the resultant force and moment of the stresses acting on the piece of
the plate enclosed by the cireuit. If these are not zero, d¢/dx and
3¢/dy do not return to their starting values (4) after completing the
circuit (B). They are therefore discontinuous functions, such as the
angle ¢ of polar coordinates. This will be the case only when loads
(equal and opposite to F,, F,, M) are applied to the piece of the plate
within the closed circuit.

In terms of the complex potentials ¢(z), x(z) of Eq. (98) the two
equations {d} may be written as

B B

dy oz |4 ax ' ° @ A
or, using Eq. (¢) of Art. 58
F.+iF, = —i¥(2) + 2@ + @)1 (103)
Eq. (¢) becomes
M = Re [—-22V(2) + x(z) — 8/ (2))2 (104)

E(E[u.ations (103) and (104), applied to a complete circuit round the
origin, show that if ¢(z) and x{z) are taken in the form z* where n is a
positive or negative integer, F,, F,, and M are zero, since the functions

thl Equatlons_ (d) and (e) serve to establish an analogy between plane stress and
e slow _motwn of & viscous fluid in two dimensions. See J. N. Goodier, Phil.

M t:g., series 7, vol. 17, pp. 554 and 800, 1934.

of e'll‘he'se boundary conditions lcad.to an analogy with the transverse deflections

i astic plates.  An account of this analogy, with references, is given by R. D.
indlin, Quart. Applied Math., vol. 4, p. 270, 1046,
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in brackets return to their initial values when the circuit is completed.
These functions by themselves could not represent stress due to loads
applicd at the origin. The function log z = log r 4 70 does not return
to its initial value on completing a eircuit round the origin, since 8
increases by 2r. Thus if ¢(z) = €' log 2, or x(z) = Dzlog z, where C
and D are (complex} constants, Eq. (103) will yield a non-zero value
for F, + iF,. Similarly x(z) = D logz will yield a non-zero value of
M if D is imaginary, but a zero value if D is real.

60. Curvilinear Coordinates. Polar coordinates r, 8 (Fig. 124) may
he regarded as specifying the position of a point as the intersection of a
circle (of radius ) and a radial line (at the angle ¢ from the initial line).
A change from Cartesian lo polar coordinates is effected by means of
the equations

Vit Fyl =, a,rct-an% = § (@)

The first, when r is given various constant values, represents the
family of circles. The second, when 81s given various constant values,
represents the family of radial lines.

Equations (a) are a special case of equations of the form

Fizy) =&  Falzy) = ®)

Giving definite constant values to & and n, these equations will repre-
cent two curves which will intersect, when Fi(x,y), F o(z,) are suitable
functions. Different values of ¢ and 9 will yield different curves and a
different point of intersection. Thus each point in the zy-plane will
be characterized by definite values of § and —the values which make
the two curves given by Egs. (b} pass through it—and £ 7 may be
regarded as “coordinates’ of a point. Since given values of £, 9 define
the point by means of two intersecting curves, they are called curvi-
linear coordinates.

Polar coordinates, with the associated stress components, proved
very useful in Chap. 4 for problems of concentric eircular boundaries.
The stress and displacement on such a boundary become functions of #
only, since r is constant. If the boundaxries consist of other curves, for
instance ellipses, it is advantageous to use curvilinear coordinates one
of which is constant on each boundary curve.

If Fgs. (b) are solved for x and y, we shall have two equations of the
form

z = f1i(&n), y = f2(En) ©

L The general theory of curvilinear coordinates was developed by Lamé in the
hook “f.egons sur les coordonndes curvilignes,” Paris, 1859.
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and it iz usually most convenient to begin with these. Consider, for
example, the two equations

z = ¢ cosh £ cos 7, # = ¢ sinh £ sin 5 {eh
where ¢ is a constant. FElimination of 5 yields

x? it
¢ cosh? £ + ¢? sinh? g

=1

Tf £ is constant this is the equation of an ellipse with semiaxes ¢ cosh
£, ¢ sinh £, and with foei at . = +¢.
For different values of ¢ we obfain
different ellipses with the same foci—
that is, a family of confocal ellipses
(Yig. 126). On any one of these el-
lipses ¢ is constant and 5 varies
{through a range 2u), as on a circle in
polar ¢oordinates r is constant and 8
varies. In fact in the present ease g
is the eccentrie angle! of a point on the
ellipse. Y
If on the other hand we eliminatie § Fie. 126..
from Fqs. (d), by means of the equation cosh? £ —sinh? § = 1, we have

il LY]

By
y

x? 2
R \
ctcos’y  cisin’g (e}

For: a constant value of 5 this represents a hyperbola having the same
foci as the ellipses. 'Thus Eq. (¢) represents a family of confoeal hyper-
holas, on any one of which % is constant and £ varies. These coordi-
nates are called elliptic.

The two equations {d) are equivalent to x + #y = ¢ cosh (¢ + @) or
z = ¢ cosh ¢ (n

where { = £ iy, This is evidently a speciul case of the relation

z = f(£) g ()

fThiS’ besides defining z as a function of ¢, may be solved to give { as &
unction of 2. Then £ and » are the real and imaginary parts of a func-

1 . .
o It a,fﬁ are the polar coordinates of a point on the circle circumseribing an
thep:f] o Serzuta}i(es a, b, the perpendicular from this point to the z-axis intersects
1pse at the point £ = @ cos 8, y = b sin 8; ¢ i called t} i
. - 1 ¥ 3 .c * : r
this porns o e e : e eccentric angle of

. P ._.._.._-_,_,.__..—-v-ﬂ s

; WS ITUTUL POLITER

T MO ARA
giaLIGTECA CENTRALA

e e
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tion of z, and therefore satisfy the Cauchy-Riemann equations (g) of
Art. 55, also therefore the Laplace equations (f) and (g) of Art. 55.

The curvilinear coordinates to be used in this chapter will all be
derived from equations of the form (g}, and as a consequence will
possess further special properties. The point z, ¥ having the eurvi-
linear coordinates £, 7, a neighboring point z + dz, ¥ + dy will have
curvilinear coordinates £ 4 d&, 7 + dn, and since there will be two
equations of the type (¢) we may write

9y
dr = 62 d£+ dy = Ed£+ dy (h)
If only £ is varied, the increments dz, dy correspond to an element of
arc ds; along a curve n = constant, and

ax dy .
3t dg, dy =3;d¢ (4)

dr = FT:

Thus
wm==wm+wwﬁ=[@®-+( ]wa* ()

Since z = f(¢) we have

33_6_23 +
Y i - LIS =IO )

where

ﬂo_ﬂm

Now any complex quantity can be written in the form J cos a + &f
sin a, or Jeis, where J and o are real.  With

) = Je 0]
Eq. (k) yields
8x
(-3-5—-Jcosa, E—Jsma {m)
and then Eq. (j} gives
ds; =J dE
The slope of ds; is, using Eqs. () and (m),
dy _ dy/ok
do = 3zjap  mn e )

Thus o, given by Eq. (), is the angle between the tangent to the curve
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» = constant, in the direction ¢-increasing, and the z-axis (Fig. 127).
In the same way, if only 5 is varied, the increments dx and dy of Eqgs.
(k) eorrespond to an element of arc ds, along a curve £ = constant, and

instead of Egs. (1) we have
N )

_ 6z dy
dx = 3 dx, dy = an dn

Proceeding as above we shall find
that

—J sin o, . .
& increasing

and that ds, = Jdn, and Frereasing
dy/dr = — cot « Fic. 127.

Comparing this last result with Eq. (n), we see that the curves
t = constant, n = constant, intersect at right angles, the direction
y-increasing making an angle (x/2) 4 « with the z-axis (Fig. 127).

Consider for instance the elliptic coordinates defined by Eq. (f).
We have

f'(f) = esinh { = ¢ sinh £ cos 9 + dc cosh £ sin n = Je™*
Comparing the real and imaginary parts of the last equality we find
J cos & = ¢ sinh £ cos g, J sin & = ¢ eosh £ sin g
and therefore

J? = ¢(sinh® £ cos? n + cosh? £sin? 4) = §e*(cosh 28 — cos 2y) (0}
tan e = coth £ tan 3 (p)
61. Stress Components in Curvilinear Coordinates. Equations
{99), (100), and (102) give the Cartesian components of displacement
and stress in terms of the complex potentials (z), x{(z). When curvi-
linear coordinates are used the complex potentials can be taken as
funetions of ¢, and z itself is given in terms of { by the equation of the
fuype of Eq. (¢) of Art. 60 defining the curvilinear coordinates. There
is thus no difficulty in expressing ¢., 0, 7oy in terms of £ and 4. It is
usually convenient, however, to specify the stress as

o, the normal component on a curve ¢ = constant;
oy, the normal component on a curve = constant;
Ttq, the shear component on both curves.

Tlhese components are indicated in Fig. 128. Comparing this and
Fig. 127 with Fig. 12, we see that o; and ¢, correspond to ¢ and r in
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Fig. 12. We may thercfore use Eqgs. (13), and thus obtain
ot = Haz + 0,) + (o, — 6,) €08 2a T 7y SiD 2a
Ttn = — (6. — o) sin 2o + T4y €08 2a

Replacing « by (x/2) + o we find similarly
oq = w0z + 0y} — F{oz: — o) €08 2a — Ty sin 2o

and from these we easily obtain the following equations:!

L + Gy = O + Oy . (105)
6y — 0y + 2irg, = €% (o — 0, + 207y) (106)
The factor ¥ for curvilinear coordinates defined by z = f({) can be
found from Eq. () of Art. 60.
This, with its conjugate, obtained
by changing ¢ to —¢ throughout,
gives -
7 = Jew, F(E) = Je
80 that

y 13
e =L aon)
) 7o
qﬂcrﬁgs?:;’f/\f‘?gf:éng For example, our elliptic coordi-
Fra. 128. nates give f'(¢) = csinh §, and
e = S0 0)
sinh {

With the value of ¢%e so determined, Eqs. (105} and (106) express
&g, Ty Tig N terms of o, 0y, Toy

The displacement in curvilincar coordinates is specified by means of a
component u; in the direction f-inereasing (Fig. 127y and a fzomponent
u, in the direction 7-increasing. If w and v are the Cartesian compo-
nents of the displacement, we have :

ar = u cos a + v sin o, U, = P COS @ — USN &
and therefore :
e + du, = e (u + ) - (108)

Using Eq. (99) with z = f(¢), and Eq. (107), this enable's us to
express u; and u, in terms of £ and n when the complex potentials v(z)
and x(2) have been chosen.

1 Equations {105}, (108), and (108) were abtained by Koloeoff, loc. .
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Combining ¥qs. (99), (100}, and (102) with (105), {166), and (108)
vre have the following equations for the stress and displacement compo-
nents (with 7 replaced by —1 in the last):

or + oy = 2['(2) + ¥ (&) = 4 Re ¢'(2) (109)
6q — op + 20ty = 20%° (7 (2) + x7(2)] (110)

2G(uy — iuy) efa[§;:¢(z)_W(Z)_x»(z)] (L

I

We shall use these equations in the solution of several problems
involving eurved boundaries.

Problems

1. Bhow that for polar coordinates, given by z = ef, Eq. (107) becomes
ettt = ¥ oand o« = = 8,

Z. Ohtain the sclutions of the following problems in polar ecordinates by means
of the complex potentials indicated. Lvaluate the stress and displacement com-
ponents. Capitals denote constants, not necessarily real,

{a) Aring (@ < r < b) with equal and opposite couples M applied by means of

shear stress to the two boundaries (Fig. 122). ¢(z) = 0, x{2) = 4 log 2.

{#) The ring under internal pressure pi, external pressure p, (sec page 59).

${(z) = Az, x(z) = Blogz.

(¢} The pure bending of a curved bar, and the “rotational dislocation™ of the

ring, a8 in Arts. 27 and 29,  $(z) = Azlogz 4 Bz, x(z) = Clog 2.
{d) The problem solvedin Art. 31. ¢{z) = dz? + Blogz, x(z) = Czlogz + Dz
{¢) The plate under tension with a circular hole (Art. 32). ¢z} = Az + B/s,
x(z} = Clog z -+ De2 4 F /22
() The radial stress distribution of Art. 33. ¢(z) = Alogz, x(z) = Bzlog 2.
{g) The force at a point of an infinite plate (Art. 38). x(z) = 4 log 2,

x(2) = Bzlog z

62. Solutions in Elliptic Coordinates. Elliptic Hole in Uniformly
Stressed Plate. The elliptic coordinates £, 5, already considered in
Art. 60 and shown in Fig. 126, were defined by

_ z = ccosh {, P =§-+1y (a)
which give
z = ¢ cosh £ cos 7, Yy = ¢ 8inh & sin 3
and
dz . siq . Sinh ¢
i ¢ sinh ¢, glic = Ginh ¢ {b)

The coordinate ¢ is constant and equal to £, on an ellipse of semiaxes ¢

cosh £, csinh £, If the semiaxes are given as ¢ and b, e and £, can be
found from

ccosh £, = q, ¢sinh ¢ = b {c)

and therefore if one member of the family of ellipses is given, the whole
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family of ellipses and also the family of hyperbolas (see page 193) are
definite. If £ is very small the corresponding ellipse is very glender,
and in the limit & = O it becomes a line of length 2¢ joining the foci.
Taking larger and larger positive values of £ the ellipse becomes larger
and larger, approaching an infinite circle in the limit § = <. A point
on any one ellipse goes once around the ellipse as n goes from zero (on
the positive z-axis, Fig. 126) to 2r. In this respect resembles the
angle 8 of polar coordinates. Continuity of displacement and stress
components requires that they be periodic in 5 with period 2x, so that
they will have the same values for n = 2r as they have for n = 0.

Consider now an infinite plate in a state of uniform all-round tension
8 disturbed by an elliptical hole of semiaxes a and b, which is free from
stress.! These conditions mean that

g =0y =8 at infinity (¢ — ) (d)
op =74, = 0 on the elliptical boundary of the hole, where £

has the value £, (e}

From Eqgs. (100) and (102) we find that the condition (d) is satisfied if

2Re¢'(2) = §, 2y’ (2) + x''(z) = 0 at infinity (f

Since the stress and displacement components are, for continuity, to
be periodic in 5 with period 2, we arc led to consider forms for ¥(z) and
x(z) which will give a stress function with the same periodicity, and
such forms are

sinh ng, .e., sinh nf cos ng -+ ¢ cosh nf sin ny
cosh nt, i.e., cosh n§ cos ny 4 ¢ sinh nf sin ng

where n is an integer. The function x(2) = Bc%, B being a constant,
is also suitable to the problem.

Taking ¢(z) = Ac sinh , with A a constant, and using the first of
Egs. (b) for d¢/dz, which is the reciprocal of dz/df, we find

d¢ _ ,cosh§
d—z—ASinhg_—Acothg' (g)

At an infinite distance from the origin £ is infinite, and coth { has the

¥'(z) = Accosh { *

1 Solutions for the plate with an clliptical hole were first given by Kolosoff,
loc. cit.; and C. E, Inglis, Trans. Inst. Naval Arch., London, 1313; Engineering,
vol. 95, p. 415, 1913. Sce also T. Poschl, Math. Z., vol. 11, p. 95, 1921, The
method employed here is that of Kolosoff. The same method was applied to
several two-dimensional problems of elasticity by A. C. Btevenson, Proc. Roy. Soc.
(Londen), series A, vol. 184, pp. 129 and 218, 1945, Other references are given.
later in the chapter. :
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value unity. The first of conditions {f) is therefore satisfied if 24 = §.
From (g) we find further

4 1
Yz} = — === (k)
and ¢ sinh?® ¢
g — 4 Cosh§
') = —A sinh? ¢ {2)

Taking x(z) = Be*, where B is a constant, we have

n . DBe " cosh ¢
x'(z) = smhp X (2) = —B Smh? ¢ )
Equations () and (5} show that 8" () and x” () each vanish at infinity.
The second of conditions (f) is therefore now satisfied.
The condltfon (e} ean be satisfied by suitable choice of the constant
B. Bubtracting Eq. (110} from Eqg. (109) we have

oy — irgy = Y(2) -+ ¥ (2) — et [ (2) + X' (2)] (k)
and e%e is given by the second of Eqs. (). Thus
i cosh {  cosh | sinh ¢ cosh § cosh
e~ Ve = A (sinh I3 + sinh f) + sinh f(A sinh? §"+ B sinh? ?)
1 . . - -
= éi—‘m {A [Slnh §' Slnh (; + f) + cosh ;]
+ Becosh ¢} (3)

At the boundary of the elliptical hole £ = g,and ¢ + § = 2¢, § = 2¢, —
Then (I) reduces to 4 =28— .

1

Sinh? ¢ sinh ¢ (A cosh 2&, + B) cosh ¢

Condition (¢) is therefore satisfied if

B = —— A = — 1
We now have 4 cosh 26 35 cosh 2, (m)

¢¥(z) = §Sc sinh ¢, x(z) = —§8c¢? cosh 2§, ¢ (n)

All the boundary conditions have now been satisfied. But we can-
not be sure that the complex potentials (n) represent the solution of
our problem until we know that they imply no discontinuity in the dis-
Placement. The Cartesian components of displacement can be found
from Eq. (99), which in the present case gives

3 -

2G(u + @) = A¢ sinh ¢ — Ac cosh { eoth § — Be {c)

I sinh {
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with A = 8/2, and B as given by Eq. (m). Tl}e Pyperbolic func_tio:Ea
have real and imaginary parts which are periodie inn. Thus a circuit
round any ellipse £ = constant, within the plate, will bring « and-v back
to the initial values. The complex potentials (n) therefore provide the
solution of the problem. .

The stress component ¢, at the hole is easily found from Eq. (109),
since o4 at the hole is zero. Inserting the value of ¢/ (z) from Eq. (g,
with A = §/2 we have

ot + o = £ Re'(2) = 28 Re coth {
But _ ) s
eftin 4 et (eH"'\‘? 4+ g—E—"r) . (ef'w — g & w) ('p)

coth § =~ = (g — e F ) (o877 — )

Multiplying out the brackets in numerator and denominator, this

reduces to ginh 2§ — £ sin 29

coth § = < F 28 = cos 21

H
e 28 sinh 2£

ot T 0% = Tooh 28 — cos 25

and at the boundary of the hale
28 5sinh 2§,
(on)emte = cosh 2§, — cos 2y

The greatest value, oceurring at the ends of the major axis, where

n = 0 and 7, and cos 27 = 1,18
_ 28 sinh 2,
@adrar. = o 9E, — 1

Tt is easily shown from Eqgs. {¢) that

b a? 4 b*
e? = a* — b sinh 2§, = %; cosh 2& = e

and with these we find that

ha @
(Fpmax. = ZSE

which becomes larger and larger as the ellipse is made more and more

slender. )
The least value of (g,)z—z occurs at the ends of the minor axes
where cos 29 = —1. Thus

28 sinh 2%, b
o 4osmbak g9’
(@)oo cosh 2¢, + 1 a
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When a = b, s0 that the ellipse becomes a circle, both (0,)m.. and
(o) mia. Teduce to 28, in agreement with the value for the circular hole
under uniform all-round tension found on page 81.

The displacements ¢can be evaluated from Eqg. (n) and {(111) or (99).
They are of eourse continuous, being represented by single-valued con-
tinuous functions,

The problem of uniform pressure S within an elliptical hole,! and
zero siress at infinity, is easily obtained by combining the above solu-
tion with the state of uniform stress op = 0, = —8, derivable from the
complex potential ¢(z) = —8z/2.

63. Elliptic Hole in a Plate under Simple Tension. As a second
problem, consider the infinife plate in & state of simple tensile stress 8
in a direction at an angle 8 below
the positive z-axis (Fig, 129), dis-
turbed by an elliptical hole, withits &
major axis along the x-axis, as in
the preceding problem. The ellip-
tical hole with major axis perpen-
dicular or parallel to the tension?
is a special case. The more gen-
eral problem is, however, no more
difficult by the present method.
From its solution we can find the effect of the elliptical hole on any state
of uniform plane stress, specified by principal stresses at infinity in any
oricntation with respeet to the hole.

Let Oz', Oy’ be Cartesiun axes obtained by rotating Ox through the

angle 8 so as to bring it parallel to the tension S. Then by Fgs. (105),
(106)

Fra. 129,

ox + oy = 0z + gy, oy — oy + 2y = ¥o, — o, + 247,
Since at infinity 6 = S, oy = 7.y = 0, we have
oz +ay = 8, oy — 0z + Jry = —8Se~¥ at infinity
and so, from Egs. (100j an& (102),

4 Be IP’_(Z) = S, 2[§‘|"’”(Z) + xu(z)] = — K 2if at inﬁnity (&)
At the boundary of the hole £ = £ we must have ot = 15 = 0. .

! Nonunﬁom preasure within an elliptieal hole is considered by I, N. Sneddon
and H, A. Eiliott, Quart. Applied Muath., vol. 4, p. 262, 1946,
?Bee the papers cited in the footnote on p. 198.

| oeiTuTUL POLITER?
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{
!
\ gIBLIGTECA CENTRALA



202 THEORY OF ELASTICITY

All these boundary conditions can be satisfied by taking ¢¥{(2), x(2)
in the forms?

4¢(z) = Ac cosh ¢ + Be sinh {
4x(z) = Cext + Dc? cosh 2¢ + Ec? ginh 2¢

where 4, B, €, D, E are constants to be found.

Since z = ¢ cosh ¢, the term Ac cosh { in the expression for 4¢(z) is
simply Az. Tt will contribute to the stress function [Eq. (97)] a term
Re AZzor Re Ar?. 'This is zero if A is imaginary, and therefore A may
at once be taken as real. The constant ¢ must also be real. For if
we insert the above expressions for ¢(2), x(2) in Eq. (104), taking for
the curve AB a complete circuit round the hole, we find that all terms
except the term in C yield zero because the hyperbolic functions are
periodic in 7 with period 2r. The term in € is Re [Cex(t + im))i-

This vanishes for a complete circuit only if C is real.
The constants B, D, E are complex, and we may write

B = B1 + ‘iBg, D = D1 + z-Dz, E = E1 + ‘E:Eg (b)

Substitution of the above forms for ¥(z), x(z) in the conditions (a)

yields
A+B =8 2D+ E=-8" ()

Subtracting Eq. (110) from Eq. (109) to obtain ¢ — ¢rg,, we find

4(e; — iryy) = cosech {[(24 + B coth ) sinh §
+ (B + B cosech? ¢) cosh § + (C' + 2E) cosech ¢ coth ¢
— 4D sinh ¢ — 4F cosh {]

At the boundary of the hole £ = £ and ¥ = 2§ — t. If this value of ¢
is inserted in sinh { and cosh { in the above expression, and the func-
tions sinh {28 — &), cosh (26 — ) expanded, the expression in square
brackets reduces to

(24 sinh 2« -~ 2iB; cosh 2a — 4F) cosh ¢
— (24 cosh 2¢ — 2iB; sinh 2a + 4D) sinh §
+ (C + 2E + B cosh 24} coth { cosech {

This, and consequently oz — ir¢, at the hole, vanishes if the coeflicients
of cosh ¢, sinh {, coth { cosech ¢ vanish. We have thus three equations,
together with the two equations (¢}, to be satisfied by the constants
A, B, C,D, E. Since A and (' are real, there are actually nine equs-

1 Stevenson, loc. cil.
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tions t? be satisfied by eight constants—A, C, and B,, By, Dy, Dy, Ey,
E:, which are the real and imaginary parts of B, D, £, They are con-
sistent, and the solution is

A = Se cos 28 D = — 18e% cosh 2(¢, + i8)
B = 8(1 — e2t—2¥) E = }8e? ginh 2(£, + i8)
¢ = —8(cosh 2§, — cos 28)

The complex potentials of this problem are consequently given by

Ap(z) = Scle?® cos 28 cosh ¢ + (1 — ¢2&+28) sinh {]
4x(z) = —8c*{cosh 2%, — cosh 28)¢ + 3e*» — cosh 2(¢ — &, — i9)]

The displacements can now be determined from Eq. (111). It may be
seen at once that they are single-valued.

The stress o, at the hole can be obtained from Eq. (109) since at the
hole ¢; is zero. Then

sinh 2§, + cos 28 — €% cos 2(8 — 7)
cosh 2§, — cos 29

(U‘I) E""Eo = S
When the tension § is at right angles to the major axis (8 = x/2),

_ e | sinh 2601 + %)
(e ez = Se [cosh 28, — cos 29 !

and the greatest value, occurring at the ends of the major axis

(cos 29 = 1), reduces to
8 a
(l + 2 b)

This increases without limit as the hole becomes more and more slender
When o = b it agrees with the value 38 found for the circular hole on'
page 80. The least value of the stress round the elliptical hole is —8
at the ends of the minor axis. This is the same as for the circular hole’
When the tension S is parallel to the major axis (8 = 0) the greatest:
Eaiue of o, round t-he hole is found at the ends of the minor axis, and is
th( + 2b/a). Th.l‘s appl-'oaches S when the ellipse is very slender. At
;‘ ends of the major axis the stress is —8 for any value of ¢/b.
the l;? :ﬂ‘gct. of th(? ellipf;ical hole on a state of pure shear S parallel to
s nd y-axes is easily found by superposition of the two cases of
glon S at § = r/4 and ~8§ at # = 3r/4. Then

@ime, = —28 e 5in 2n
cosh 2£a — CO8 21}
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This vanishes at the ends of both the major and the minor axes and has
the greatest values
(a + b)®

ab

+8

at the points determined by tan n = tanh £ = b/a. When the ellipse
is very slender these values are very large, and the points at which they
occur are close to the ends of the major axis.

Solutions have been found for the elliptical hole in a plate subjeet to
pure flexure in its plane>” and to & parabolic distribution of shear as in
a thin rectangular beam ? for an elliptical hole with equal and opposite
concentrated forces at the ends of the minor diameter,® and for rigid
and elastic “inclusions” filling the hole in a plate under tension.*
More general series forms of the real stress funclion ¢ in elliptic coordi-
nates have been congidered.®  Their equivalent complex potentials can

be constructed from the functions

I T I T T used or mentioned here, together

with the analogues of the simple

s A functions quoted in the Problems

on p. 197, when dislocations and
concentrated forces and couples

- N
? ?0 ///'__“'--..

- x are to be included.
l\\ 64. Hyperbolic Boundaries.
S Notches. It wasshown in Art. 60
ARE AN that the eurves n = constant in

elliptic coordinates are hyperbolas,
and in Art. 62 that the range of 9
meay be taken as 0 to 2, that of &
being 0 to .

Let 4, be the constant value of 3 along the hyperbolic arc BA of Fig.
130. It will be between © and x/2, since both z and y are positive
ulong BA. Along the other helf of this pranch of the hyperbola, BC,

Fia. 130,

LK. Wolf, Z. tech. Physik, 1922, p. 160,

t H. Neuber, Ingenieur-Archiv, vol. 5, p. 242, 1934. This sclution and several
othera relating to ellipses and hyperbolas are given in Neuber’s book ‘‘Kerb-
spannungslehre,” Berlin, 1937.

3 P, 8, Symonds, J. Applicd Mechanics {Trans. A.8.M.E.), vol. 13, p. A-183, 1946,
A solution in finite form is given by A. E. Creen, ibid., vol, 14, p. A-246, 1947.

«N. I. Muschelitvili, Zeit. angew. Math. Mech., vol. 13, p. 264, 1933; L. H.
Donnell, ““Theodore von Kdrmdn Anniversary Volure,” p. 203, Pasadena, 1941

sF. (3. Coker and L. N. G. Filon, “Photo-¢lastieity,” pp. 123, 535, Cambridge
University Press, 1931; A, Timpe, Math. Z., vol. 17, p. 189, 1923,
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the value of % is 2r — 9,. Along the half ED of the other branch, » is
T — 1o, and along EF it is 7 + 5,.

Consider the plate ABCFED within these hyperbolic boundaries, in
a state of tension in the direction Oy.! The tensile stress at infinity
must fall to zero to preserve a finite tensile force across the waist EOB.
Complex potentials which permit thig, and satisfy the other necessary
conditions of symmetry about Ox and Oy, and freedom of the hyper-
holic boundaries, are

v(z) = —34i ¢, x{z) = —§A¢§ — Bed sinh ¢ (a)
where 4 and B ure real constants, and z = ¢ cosh {. These give
! J— ?:A # 1 . 1
¥ (z) — 2¢ sinh ¢ X (z) = - §A3 ¢ - (Q 4 -+ B)I coth ¢ (b)

E_qua-tion (103) of Art. 59 shows that the hyperbolic boundary 4 =
vill be free from force provided the function ’

¥(z) + 20'(2) + %'(5) ()
is eonstant along it, or equivalently if the conjugate of this function is
constant. The conjugate is, from Eqs. (@) and (h),

1 ,.cosh ¢ 1 .

5 A Y (5 A+ B) icoth ¢ (@)
On the hyperbola 4 = %, we have { = { — 2in,, and with this the
expression becomes

An, — 34 sin 29, — (34 cos 2y, + 34 + B)i coth ¢

Ay —

(\Einich is a constant if the quantity in parentheses is made to vanish
s '

B = —4 cos?y (e)

To find the resultant force transmitted we may apply Eq. (103) of
Art, 59 to the narrow section EOB, TFig. 130, more precisely to the
lower part of the limiting ellipse £ = 0 between the hyperbolas y = 5,
and y = r — ,. On this ellipse { becomes g, { becomes —in, and we
have from Eq. (103}, (¢) and (d)

F. — iF, = {[Ag — (4 + B) cot y|125 ™

T=ae

= {[A(r — 29, + 2 cot y,) + 2B cot 3,]

1 L
Tec;irhlb problem {also the case of shear londing) was solved by A. A, Griffith
o 3 Re;{)t. Aeronaut. Research Comm. (Great Britain), 1927-1928, vol. II, p 668"
Wl H. Neuber, Z, angew. Math, Mech., vol. 13, p, 439, 1933; or ’ ot :

whre,” b 35 Berlin, 1038, " erbspannungs:
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Since A and B were taken as real, F is zero and, using Eq. ()
Fy = —‘A(‘ﬂ' - 2110 + sin 2170)

which determines A when the total tension Fy is assigned, The stress
and displacement components are easity found from Eqgs. (109), (1103,
(111). The first gives

4A cosh ising

"¢ cosh 2§ — cos 2y

o “ oy = —

The value of o; along the hyperbolic boundary is found by setting
7 = m, in this expression. It has a maximum, —24 /¢ in 7., at the
waist where ¢ = 0. Neuber® has expressed this as a function of the
radius of curvature of the hyperbola at the waist. He has solved, by
another method, the problems of bending and shear of the plate as well
as tension.

5. Bipolar Coordinates. Problems involving two nonconecentric
eircular boundaries, including the special case of a circular hole in a
semi-infinite plate, usually require the use of the bipolar coordinales £,
7, defined by

z = 1a coth &t t=¢t+1n {a)

Replacing coth § by (e¥ -+ ¢3) /(e — e~3%) and solving the first
equation for ¢, it is easily shown that this is equivalent to

2z + 10 ®)

z — ia

¢ = log

The quantity z -+ fa is represented by the line joining the point —ia to
the point z in the xy-plane, in the sense that its projections on the axes
give the real and imaginary parts. The same quantity may be repre-
sented by riei® where ry is the length of the line, and 8, the angle it
makes with the z-axis (Fig. 131). Similarly z — e is the line joining
the point 7a to the point z, and may be represented by rs* (Fig. 131).
Then Eq. (b) becomes

£+ in = log (E e"ale‘*"’*) = log L iy — B2
Ty Te
go that
E=loglh =16 —6 ()
Tg

170c. cit, For a comparisen of Neuber's results with photoelastic and fatigue
tests of notched plates and grooved shafts see R, E. Peterson and A M. Wahi,
J. Applied Mechanics, vol. 3, p. 15, 1936, or 8. Timoshenko, “Strength of Mate-
rials,” 2d ed., vol. 2, p. 340. Sec aleo M. M. Frocht, ** Photoelasticity,” vol. 2.
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I.t ma.y_b? seen from Fig. 131 that ¢, — #, is the angle between the two
l}nes joining the “poles” —ia, 7a to the typical point z, when this point
lies to the right of the y-axis, and is minus this angle W,hen the point lies
to t}}e left. It follows that a curve 4 = constant is an are of a circle
passing through the poles, Several such cireles are drawn in Fig. 131

Frc_nm Egs. (¢} it is clear that a curve & = constant will be a cun.re fm"
which r1/r; = constant. Such a curve is also a circle
the pole Za if r1/rs exceeds unity, that is, if £ig positive.
the other pole —ia if £ is negative. :

It surrounds
It surrounds
Severu] such circles are drawn in

Fia. 131.

; ni tiljgl.poiity form a family of coaxal circles with the two poles as
Tl:le f.:o_m:dinate n changes from = to —= on crossing the segment of the
y-axis joining the poles, its range for the whole plane being —= to
Stresses and displacements will be continuous across this gegment Tf
they are rfapresented by periodic functions of % with period 2x
Separation of real and imaginary parts in Eq. (a) leads tot .

_ a sin 4 , _ a sinh £
- cosh £ — cos g y_coshé-‘coan )
Differentiation of Eq. (a) yields
, dz 1

Jei* = — = — _ {g cosech? lg'
o dt 3 2 (¢)

2 _ 92/dE _ . 1. 1
e &/dt —smhzéj'cosechzﬁg‘ (N

! Bee the derivation of Eq. (¢} in Art. 54,
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66. Solutions in Bipolar Coordinates, Wenow consider the problem
of & circular disk with an eccentric hole, subject to pressure p, round
the outside, and pressure p1 round the hole.! The stress components
obtained will also be valid for a circular thick-walled tube with eccen-
tric bore,

Let the external boundary be that eircle of the family £ = consiant
for which ¢ = &, and let the hole be the circle £ = ¢&. Two such cir-
cles are drawn in heavy lines in Fig. 131. Tt follows from the expres-
sion for ¥ in Eqs. (d) of Art. 65 that these circles have radii @ cosech £,
a cosech £, and that their centers are at the distances a coth £, a coth
£ from the origin. Thus a, &, and £ can be determined if the radii
and distance between centers are given. '

In going counterclockwise once round any circle § = constant, start-
ing just to the left of the y-axis in Fig, 131, the coordinate 5 ranges
from —= to w. Thus the funetions which are to give the stress and
displacement components must have the same values at g = = as they
haveatq = —=. ‘This is ensured if they are periodic functions of 7 of
period 2r. It s therefore appropriate to take the complex potentials
¢(z) and x(z) in the forms

cosh nt, ginh n{ (o)

with n an integer, since these are in fact periodic functions of 5 of
period 27. 8o also are their derivatives with respect to z, since d¢/dz
has the same property [Eq. {¢), Art. 65]. o
1f such functions are introduced into Egs. (103), (104), applied to
any circle £ = constant in the material, the corresponding force and
couple will be zero, in virtue of the periodicity. This must hold for
the complete solution, for equilibrium of the plate within the circle.
We shall require also the function x(2) = aDt, D being a constant.
Considering this in Eqs. (103), (104) as above, we find that the moment
of Eq. (104) will be zero only if Disreal. We therefore take it to be so.
Considering the displacement equation (99) we find that this function,
as well as the functions (a) used as either 4(z) or x(2), will give dis-
placements free from discontinuity. R
The state of uniform all-round tension or compression, which will be
part of the solution, is obtained from the complex potential Plz) = Az
with A real. The corresponding real stress function is, from Eqg. (97),

& = Re(zdz) = A%z = A(@* + )

I The original solution, in terms of the real stress function, is due to G. B. Jeffery,
Prans. Roy. Soe. (London), series A, vol. 221, p. 265, 1921, ) .
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This may be expressed in bipolar coordinates b
3 m f
Art. 65, the result being y menns of Bas. (@) of

A Lcosh £ 4 cos 4
@ Cosh £—cosq &)

(;onsidering functions of the form (a), with n = 1, we observe that
sinec thf? stress distribution in the present problem is s,ymmet-rical aboutl
t.he y-uxis, we must choose them so that the corresponding stress funec-
tions have the same symmetry. Thus we may take

¥(z) = ¢B cosh {, x(2) = B’ sinh ¢ {¢)
with B, B’ real, and

¢(z) = #C sinh ¢, x(z) = ' eosl
with €, €' real. e @

The real stress function corresponding to (¢) 1s, from Eq. (97)

B sinh £ cosh £ cos 4 — sinh £ sin? g
cosh £ — cos g

L sinh & cosh ¢ cos n — sinh £ cos? 4
cosh £ — cos g

If we ch_oose B’ = aB the terms in sin? 5, cos? g in the numerators
beconzle independent of 3, and the complete numerator depends on
on.ly in the term in cos #, just as does the funetion (b). The sam:
thing is tr}le of the complex potentials (), if we choose ¢ = !, We
thus obtain simpler, more restricted functions whieh turn out,.to be
adequate for the present problem.

Taking therefore

¥(z) = iB cosh ¢, x(2) = aB sinh [ {e)

\:ve find by‘means of Egs. (109), (110} and (a), (f) of Art. 65, that the
corresponding stress components are given by ’

aler -+ o,) = 2B(2 sinh £ cos 5 — sinh 2 £ cos 2

_ ‘ _ )

aloy, — ap + 231-&,,? = —2B[sinh 2§ — 2 sinh 2£ cosh £ cos g W
+ sinh 2§ cos 29 — (2 cosh 2§ cosh £ sin 4

Similarly the functions — cosh 2% sin 24)]  (g)

¥(z) = 1C sinh t, x{z) = aC cosh ¥ (k)
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yield
aloy + o) = —2C(1 — 2 cosh § cos ¢ + cosh 2£ cos 29) {2)
a(oq — o + 2iry,) = 2C[— cosh 2& + 2 cosh 2f cosh 5 cOos %
— cosh 2¢ cos 29 + (2 sinh 2% cosh { sin g
— ginh 2¢ sin 2q)]  (§)

The stress components arising from

x(z) = aD¢ (k)
are given by
gt + oy = 0
— a: + 2iry,) = D[sinh 2f — 2 sinh £ cos g
e 8 ) — 4(2 eosh £ sin 4 — sin 2q)] (1)

The state of uniform all-round tensicn given by

w(z) = Az (m}
yields )
o; + o, = 44, o, — ot + 2itgy = 0
or
or = oy = 24, Tg =0 {(n)

The solution of our problem ean be obtained by superposition of the
states of stress represented by the complex potentials {e), (), (%), and
(m). Collecting the terms representing t¢, In Eqs. {), (§), and (l)_we
find that the vanishing of 7¢, on the boundaries £ = &, § = £ requires

D — 2B cosh 2&, — 2C sinh 28, = 0

9
D — 2B cosh 2¢, — 2C sinh 25, = 0 )

Solving these for B and € in terms of D we have

cosh (& + &) o0 = sinh (& + &) (

2B=D (81 — &) ~ “cosh (& — &)

The normal stress o can be found by subtracting the real part of Eq. {g)
from Eq. (f) and similarly for the other pairs. On the boundary £ = &
it is to take the valuc —p,, and on the boundary £ = £ the value —p1.
Using the values of B and C given by Eqgs. (p) these conditions lead to
the two equations

24 + % ginh? £, tanh (31 — &) = — b

24 — %—:ﬁinh2 fitanh (81— &) = —;
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and therefore
4= — 1 p, sinh? £ + p, sinh? &,
2  sinh? £ 4 sinh? g,

—_ (po - pl) coth (El —_ EO)
D= —a sinh? ¢ + sinh? £,

These with Eqs. (p) complete the determination of the complex poten-
tials. When there is internal pressure ; only (p, = 0) the peripheral
stress at the hole is found to he

(o)t=t: = —pr + 2py(sinh?® & + sinh? £)~(cosh &
— co8 n)[sinh £, coth (& — £) + cos 4]

An expression for the maximum valuc® of this has already been given
on page 60.

A general series form of stress function in bipolar coordinates was
given by G. B. Jeffery.? Its equivalent complex potentials are easily
found, and involve the functions considered here together with the
bipolar analogues of the simple functions quoted in the Problems on
page 197, when dislocations and concentrated forces are included. It
has been applied to the problems of a semi-infinite plate with a con-
centrated force at any point,? a semi-infinite region with a circular hole,
under tension parallel to the straight edge or plane boundary,* and
under its own weight,® and to the infinite plate with two holes,$ or a hole
formed by two intersecting eircles.”

Selutions have been given for the cireular disk subject to concen-
trated forces at any point,?® to its own weight when suspended at a
point,? or in rotation about an eccentric axis,!® with and without!! the
use of bipolar coordinates, and for the effect of a eircular hole in a semi-
infinite plate with a concentrated force on the straight edge.!z
z ! An exhaustive discussion of the maximum value is given by Coker and Filon,
o¢, e,

2 Loe, cit,

* E. Melan, Z, angew. Math. Mech., vol. 5, p. 314, 1925,

‘ Bee p. 82,

*R. D. Mindlin, Proe. 4,5.C.E., p. 619, 1939,

¢ T. Péschl, Z. angew. Math. Mech., vol. 1, p. 174, 1921, and vol. 2, p. 187, 1922,
Also C. Weber, ibid., vol. 2, p. 267, 1922; E. Weinel, ibid., vol. 17, p. 276, 1937;
Chih Bing Ling, J. Applied Phys., vol. 19, p. 77, 1948,

# Chih Bing Ling, tid., p. 405, 1948.

*R. D. Mindlin, J. Applied Mechanics (Trans. A.8.M E)}, vol, 4, p. A-115, 1937,

*R. D. Mindlin, J. Applied Physics, vol. 9, p. 714, 1038,

" R. D. Miadlin, Phil. Mag., series 7, vol. 26, p. 713, 1938.

' B. Sen, Bull. Calcutta Math. Soc., vol. 36, pp. 58 and 83, 1944,
™ A. Barjansky, Quart. Applied M. ath., vol. 2, p. 16, 1944,
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Other Curvilinear Coordinates. The equation

2z = ef + abe ¥ -+ acte™™
yielding
x = (et + abe¥) cos n + ache=3% cos 39
y = (ef — abe™¥) sinq — acte~3 sin 3g

#here a, b, ¢ are constants, gives a { amily of curves § = constant which
cap be made to include various oval shapes, including a square with
rounded corners. The effect of a hole of such shape in a plate under
tension has been evaluated (by means of the real stress function) by
M. Greenspan.! By means of a generalization of these coordinates
A. E. Green? has obtained solutions for a triangular hole with rounded
corners, and, by means of another voordinate transformation, for an
exactly rectangular hole. In the latter case the perfectly sharp corners
introduce infinite stress concentration.

The curvilinear coordinates given by

z = ¢+ dase?d + dae® 4 - 0 A daae™

@y, @1, . . - , On being real constants, have been applied by C. Weber to
the semi-infinite plate with a serrated boundary,? as in the example of
evenly spaced semicircular notches which is worked out. When the
distance between noteh centers is twice the noteh diameter, the stress
concentration, for tension, is found to be 2.13. The value for a single

notch is 3.07 (see page 89).

A method for determining the complex potentials from the boundary
conditions, without the necessity of guessing their form in advance, has
been developed by N. Muscheligvil.

L Quart. Applied Math., vol. 2, p. 60, 1914 See also V. Morkovin, ibid., p. 350,
1945,

t Proc. Roy. Sec. (London), serics A, vol. 184, p. 231, 1945.

2 (0. Weber, Z. angew. Math. Mech., vol. 22, p- 29, 1942,

1 Math. Ann., vol. 107, pp. 282-312, 1932. Also Z. angew, Math. Mech., vol. 13,
p- 264, 1933, An account of this method is given by L. 8. Sokelnikoff, Lectures
on the Theory of Elasticity, Brown University, 1941 {mimeographed notes).

6 It is used by Morkovin (see footnote 1}. Most &f the work of N. I. Muschel-
idvili and his associates is in Russian. His book “Singular Integral Equations”
{2d ed.), which contains solutions of acveral two-dimensional problems of elasticity,
in particular mixed boundary value problems, has been translated by the Aero-
nautical Resenrch Laboratories, Dept. of Supply and Development, Common-
wealth of Australia (Translation No. 12, 1949). Another translation edited by
J. R. M. Radok was published by P. N pordhoff, N.V., Groningen, Netherlands,
1953. Muschelishvili gives his methods in “Some Basic Problems of the Mathe-
matical Theory of Flasticity,” 3d ed., Moscow, 1949, translated by J. R. M. Radok,
published by P. Noordhoff, Groningen, Netherlands, 1053. Results of the type
noted under footnotes 1 and 2 were abtained earlier by Russian authors cited in
the later book.

CHAPTER 8
ANALYSIS OF STRESS AND STRAIN IN THREE DIMENSIONS

67, 'Speciﬁcation of Stress at a Point. Cur previous discussions
were limited to two-dimensional problems. Let us consider now the
general case of stress distribution in three dimensions. It was shown
{see Art. 4) that the stresses acting on the six sides of a cubie element
can be deseribed by six components of stress, namely the three normal
stresses ., oy, o, and the three shearing stresses 7., = 7ys, 7o, = 7
Tie = Tay. If these components of stress at any point are known t;:;
stress acting on any inclined plane through this point can be calcufated
from the equations of statics. Let
O be a point of the stressed body,
and suppose the stresses are known
for the coordinate planes zy, zz, 2
(Fig. 132). To get the stress for
any inclined plane through O, we
take a plane BCD parallel to it at
a small distance from O, so that
this latter plane together with the
coordinate planes cuts out from
the hody a very small tetrahedron
BCDO. Since the stresses vary Fia. 132.
continuf)usly over the volume of the body, the stress acting on the plane
BCD will approach the stress on the parallel plane through O as the
element is made infinitesimal.

In considering the conditions of equilibrium of the elemental
tetrahedron the body forces can be neglected (see page 4). Also as
the elemel.lt is very small we can neglect the variation of the stresses
%\Eer the sides :a,nd assume that the stresses are uniformly distributed.

e 'forc?s acting on the tetrahedron can therefore be determined by
;f;;plylﬁg the stress components by the areas of the faces., If A
oy hes the area of the face BCD of the tetrahedron, then the areas of

e three other faces are obtained by projecting 4 on the three coordi-

.nate planes. If ¥ is the normal to the plane BCD, and we write

cos (Nx) =, cos (Ny) = m, cos (Nz2) = n {a)
213
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the areas of the three other faces of the tetrahedron are
Al, Am, An

If we denote by X, Y, Z the three components of stress, parallel to the
coordinate axes, acting on the inclined face BCD, then the component
of force acting on the face BCD in the direction of the z-axis is AX.
Also the components of forces in the z-direction acting on the three
other faces of the tetrahedron are —Als,, —Amry,, —Anr.. The
corresponding equation of equilibrium of the tetrahedron is

AX — Alo, — Amry — Anr,, =0

In the same manner two other equations of equilibrium are obtained
by projecting the forces on the y- and z-axes. After canceling the fac-
tor /A, these equations of equilibrium of the tetrahedron can be written

X =0l +7rqm+ e
Y =l +aym+ man (112)
Z =15l + 1ym + ot

Thus the compenents of stress on any plane, defined by the direction
cosines [, m, n, can easily be calculated from Eqs. (112), provided the
six eomponents of stress oz, oy, T2 Tay, Tyzy Tas AL the point O are known.

68. Principal Stresses. Let us consider now the normal component
of stress . acting on the plane BCD (Fig. 132). Using the notations
{a) for the direction cosines we find

o, =Xl + Ym + Zn
or, substituting the values of X, ¥, Z from Eqs. {112},
op = a5t + oym? | o.n? + 2rpmn + Orednt -+ 2rglm (113)

The variation of o, with the direction of the normal N can be repre-
sented geometrically as follows. Let us put in the direction of N a
vector whose length, r, is inversely proportional to the square root of
the absolute value of the stress o., i.e.,

, .
r=—— (b)

Vel
in which & i a constant factor. The coordinates of the end of this
vector will be

z = lr Yy = mr 2 = nr ()

¥
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Bubstituting
2
OFqp = ‘_|‘_ ’E' (d)

from (b), and the values of /, m, » from (¢} in Eq. (113), we find!
T = o2 + 0y’ + 02 + 2rpyz + 2razx - Crgay (114)

As the plane BCD rotates about the point O, the end of the vector r
alw:ays lies on the surface of the second degree given by Eq. (114).
This surface is completely defined by the stress condition at the point
0, and, if the directions of the coordinate axes x, 7, z are changed, the
surface will remain entirely unchanged and only the component:s of
stress o, oy, 0:, Tye, Toz, Tay, and hence the coefficients in Eq. (114), will
alter. ’

It is well known that in the case of a surface of the second degree
such as given by Eq. (114}, it is always possible to find for the axes = y,
zsuch directions that the terms in this equation containing the produ,ct:;
of co9rdinﬂ.tes vanish. This means that we can always find three per-
pendicular planes for which 7., 7.., 7., vanish, 4.¢., the resultant stresses
are perpendicular to the planes on which they act. We call these
stresses the principal stresses at the point, their directions the principal
axes, and the planes on which they act principal planes. It can be
seen t%mt-. the stress at a point is completely defined if the directions of
tl:ie principal axes and the magnitudes of the three principal stresses are
given.

69. Stress Ellipsoid and Stress-director Surface. If the coordinate
axes r, g, z are taken in the directions of the principal axes, calculation
of the stress on any inclined plane becomes very simple. The shearing
SLTESSeS Ty, 1.z, Toy are zero in this ease, and Eqgs. {112} become -

X =gl Y = oym, Z =gmn {115)

Putt'{ng the values of I, m, n from these equations into the well-known
relation I? + m? + n? = 1, we find

X y: z
0'32 + Uyz + ;z_é =1 (116)
1 N - - - .

sive',rgi é)l:z:;;mm;s sulgn in Eq. (d) s.pp]je% ageording as v, is tensile or compres-
the s é:luln ingly in Eq. (114).. W‘hcn a_a.Il three principal stresses have
lipacid W];:e tjhr one oii the alternative signs is needed, snd the surface is an
neeo: . s n the principal stresses are not all of the same sign, both signs are

and the surface, now represented by both Eqs. (114), consists of a hyper-

boloid of two sh \
eets, to er wi : .
asymptotic cone, gether with & hyperboloid of one sheet, with a ecommeon
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This means that, if for each inclined plane through a point O the stress
is represented by a vector from O with the components X, ¥, Z, the
ends of all such vectors lie on the surface of the ellipsoid given by Eq.
(116). This ellipsoid is called the stress ellipsoid. Tts semiaxes give the
principal stresses at the point. From this it can be coneluded that the
maximum stress at any point is the largest of the three principal
stresses at this point.

If two of the three principal stresses are numerically equal the stress
cllipsoid becomes an ellipsoid of revolution. If these numerically
equal principal stresses are of the same sign the resultant stresses on
all planes through the axis of symmetry of the ellipsoid will be equal
and perpendicular to the planes on which they act. In this case the
stresses on any two perpendicular planes through this axis can be con-
sidered as principal stresses. If all three prineipal stresses are equal
and of the same sign, the stress ellipsoid becomes 2 sphere and any
three perpendicular directions can be taken as principal axes. When
one of the principal stresses is zero, the stress ellipsoid reduces to the
area of an ellipse and the vectors representing the stresses on all the
planes through the point lie in the same plane. This condition of
stress is called plane stress and has already been discussed in previous
sections, When two principal stresses are zero we have the cases of
simple tension or compression.

Each radius vector of the stress ellipsoid represents, to a certain scale, the stress
on one of the planes through the center of the ellipsoid. To find this plane we use,
together with the stress ellipsoid (116), the siress director surface defined by the
equation -

Al L | L
0 Ty Oz
The stress represented by a radius vector of the stresa ellipsoid acts on the plane
parallel to the tangent plane to the stress-director surface at the point of its inter-
seetion with the radius vector. This can be shown as follows. The equation of
the tangent plane to the stress-director surface (117) at any point 2, Yo, 2018

- Oy LF

Denoting by A the length of the perpendieular irom the origin of coordinates to the
above tangeni plane, and by i, m, n the direction cosines of this perpendicular,
the equation of this tangent plane can be written in the form

Iz + my +nz=~h )
Comparing (a) and (b) we find
h
gy = .’E_fo’ gy = %;i"! o = i:.l_ . (b')
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Substituting these values in Eqs. (115) we find
X =zh, Y =yh, Z=zh

.., .the fomponents ot: stress on the plane with direction cosines !, m, » are pro-
portionsl to the coordinates o, yo, 2. Henee the vector representing the stress

goes through the point xq, yo, 20, 28 Was stated above.!

70. Determination of the Principal Stresses. If the stress com-
pf)nen'ts for three coordinate planes are known, we can determine the
directions and magnitudes of the principal stresses by using the prop-
erty that the principal stresses are perpendicular to the planes (?n
which they act. Let [, m, n be the direction cosines of a principal plane

and S the magnitude of the principal stress acting on this plane
Then the components of this stress are: -

X =48, Y=8m Z=28n
Substituting in Eqgs, {112) we find

(8 — o)l — Tyt — 7on =

—tal + 8 —o)m — 7m =

~ Tl — e + (S — odn =

'Ijhese are .three lhomogeneous linear equations in I, m, n, They will
give solutions different from gzero only if the determinant of these

equation§ is zero. Caleulating this determinant and putting it equal
to zero gives us the following cubic equation in S:

8 — (oz + oy + 0:)S® + (0203 + 040z + a0 — 7,2 = 17 — 1,08
— {0030 F 2ryToiTy — 0a7y? — 0472 — 0 = 0 (118)
The three roots of this equation give the values of the three principal

stresscs. By substituting each of these stresses in Egs. (¢) and using

the' relation 2 4+ m® 4+ »? = 1, we can find three sets of direction
eosines for the three principal planes.

(a)

mc{z ma}; be noted t!lat Eq. (118) for determining the principal stresses must be
pendent of the direstions of the coordinates z, y, z; hence the factors in paren-

thesis in this e i i
quation should remain constant for any chan irecti
: e
coordinates, Hence the coefficients of Eq. (118} Y g of directions of

@) oz + oy + o,
(b) Gy +°'|r0‘x + ouo: _anz — Tyt — Tzs?
¥z z¥
(C) OO yFs + 27:nTvzfza - ﬂ':‘l’yzz - O'yszE - ﬂ‘lf:yg

1

dﬁv;}:o:ge; mgthod of r??resent.l.ng the stress at a peint, by using circles, has been

N F(“)pl (3; . Nfohr,_ Technische Meschanik,” 2d ed., p, 102, 1914. See also
ppl and L. Fiéppl, “ Drang und Zwang,” vol. 1, p. 9, and H, M, Westergaard

4 Fetr Math ﬂfcc VI)] 4 820, 1924 ﬁ l
z angeu. - }l . P. i i i
A . " T r r LN - pp]lﬂﬁ.t-lollﬂ Of BIOhI',S Circled werg
n dlSC ussing tw O-dlmensiona.l problems (S(‘,(‘. Al t. g).
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do not vary with changing directions of the coordinates. This means that the
sum a; + o, + o of the three normal components of stress at a point in three
perpendicular directions remains constant and is equal to the sum of the principal
stresses ut this point.

71. Determination of the Maximum Shearing Stress. Let z, ¥, 2
be the principal axes so that o, oy, 0. are principal stresses, and let I, m,
n be the direction cosines for a given plane. Then, from Eqgs. (115),
the square of the total stress on this plane is

5t = X2 4 Y + Z° = 0,7 4 o, + 0.0

The square of the normal component of the stress on the same plane 1s,
from Eq. (113},
a.t = (g2 + aym?® + en%)? {a)

Then the square of the shearing stress on the same plane must be
1..2 - S2 — o.n'.é - 0‘;232 + o.vzmk + 0';2?12 —_ (a.xl2 + G.ym2 + Uzn2)2 (b)

We shall now eliminate one of the direction cosines, say »n, from this
equation by using the relation

Ptomd =1

and then determine I and m 50 as to make 7 a maximum. After sub-
stituting n? = 1 — I* — m® in expression (b), calculating its derivatives
with respeet to I and m, and equating these derivatives to zero, we
obtain the following equations for determining the direction cosines of
the planes for which r is a maximum or ninimum:

oz — o) + {0y — o ym? — gloz — 0)] = 0 (c)

m[(ax —- 0':)22 + (U'y - O'S)mz - %("‘u - G'z)] =0

One solution of these equations is obtained by putting? = m = 0. We
can also obtain solutions different from zero. Taking, for instance,
[ = 0, we find from the second of Eqgs. {c) thatm = & +/%; and taking
m = 0, we find from the first of Egs. (¢} that{ = & A/%. There are in
genera] no solutions of Egs. (¢) in which [ and m are both different from
zero, for in this case the expressions in brackets eannot both vanish.

Repeating the above calculations by eliminating from expression ()
m and then [, we finally arrive at the following table of direction cosines
making r & maximum or minimum:
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DirecTiON COSINES FOR PLANES OF Tmax, AND 7min
I= 0 0| =+t 0] 43 | =43
m = 0 +1 0 + 43 0 + 43
n = +1 0 0 + 4% + V3 0

The ﬁl:St .three columns give the directions of the planes of coordi-
nates, coinciding, as was assumed originally, with the principal planes
F(?r‘these planes the shearing stress is zero, i.e., expression (b) is a-.
minimum. .The three remaining columns give planes through each
o_f the principal axes bisecting the angles between the two other prin-
cipal axes. Substituting the direction cosines of these three planes into

expression {b) we find the following values of t .
these three planes: g of the shearing stresses on

1
= *i{o; - o), T = +i{o. — 0, r=+3o. —a,) (119)

‘This shows that the maximum shearing stress acts on the plane biseet-
ing the angle between. the largest and the smallest principal stresses and
is equal to half the difference between these two prineipal stresses.

, gBth_e (m)-é y_—-, ;—axes in Fig. 132 represent the directions of principal stress, and
= = (D, so that the normal & to the slant face of the tetrahcdror,l has

dUECt].On coslnes l = =n = 1/ the 1:101111&1 StIBSS on thls ia[‘.e 15 given ll}‘
3,
Eq‘ (ﬂ), or (113)1 as \/_

Ty = é’(‘"x +ey + ) (d)
This is called the ““mean stress.”” The shear stress on the face is given by Fq. (F) as

= %(o—xz — ot + a'i!.) - %(‘r: + oy -+ o2)?

This can also be written

7= %’{(“: - ‘7':.|')2 + (o:v - 6#)’ + (o'z - o'z}s]
and also, by using {d), as

T = %[(Ua - a'n), + (ﬂy - Uﬂ)z + (Ul e 6“)2]
This shear stress is called the “octahedral shear stress,

it acts is one face of a8 Ie
z gular octahedron with verti
frequently in the theory of plasticity. o

11
because the face on which
ces on the axes, It oecurs

72. .
o iﬁ:ogeneous ]')eforma' tion. We consider only small deforma-
ment:a of th a8 occur m engineering structures. The small displace-
e particles of a deformed body will usually be resolved into
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components u, v, w parallel to the coordinate axes 2, ¥, %, respectively.
It will be assumed that these components are very small guantities
varying continuously over the volume of the body.

Consider, as an example, simple tension of a prismatieal bar fixedat
the upper end (Fig. 133). Letebe the unit elongation of the bar in the
¢-direction and ve the unit lateral contraction. Then the components

of displacement of a point with coordinates z, 4, z are
z

y 49 u = ez, = —vey, W= —vez

ﬁ Denoting by «', ¥, 7 the coordinates of the point
: after deformation,
{ f=z+u=zx(1"19, ¥ =y -+ v =yl — e,
Il 7 =z4w=z20— v {a)
1 If we consider a plane in the bar before deformation
| such as that given by the equation
} ax+by+ez+d=0 ®)
x

Fre. 133 the points of this plane will still be in 2 plane after

deformation. The equation of this new plane is

obtained by substituting in Eq. (b) the values of z, ¥, z from Eq. (a).

It can easily be proved in this manner that parallel planes remain
parallel after deformation and parallel lines remain parallel.

If we consider a spherieal surface in the bar before deformation such

as given by the cquation

x2+y2+z2=1-2 (c)

this sphere becomes an ellipsoid after deformation, the equation of
which can be found by substituting in Eq. (c) the expressions for z, ¥,
z obtained from Eqs. {a). This gives
xf 2 f2 zf2
: @

(1 + €)? + (1 — ve)? + (L — ve)?

Thus a sphere of radius r deforms into an ellipsoid with semiaxes
r(l 4 &), r(1 — ve), r(1 — ve).

The simple extension, and lateral contraction, considered above,
represent only a particular case of a more general type of deformation
in which the components of displacement, u, v, w, are linear functions
of the coordinates. Proceeding as before, it can be shown that this
type of deformation has all the properties found above for the case of
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simple tension. Planes and straight lines remain plane and straight
after deformation. Parallel planes and parallel straight lines remain
pa_rallel after deformation. A sphere becomes, after deformation, an
elllpif,oid. This kind of deformation is called homogeneous defwmat,z'on
I? wﬂ! be shown later that in this case the deformation in any givel;
direction is the same at all points of the deformed body. Thus two
geometrically similar and similarly oriented elements of a body remain
geometrically similar after distortion.

In more general cases the deformation varies over the volume of a
deformed bo«s‘uy. For instance, when a beam is bent, the elongations
and contractions of longitudinal fibers depend on their distances from
the neutral surface; the shearing strain in elements of a twisted circular
shaft is proportional to their distances .
from the axis of the shaft. In such
cases of nonhomogeneous deformation
an analysis of the strain in the o
neighborhood of a point is necessary. I .

73. Strain at a Point, In discuss- o Iy
ing strain in the neighborhood of a / Mz 7
peint O of a deformed body (Fig. *

134), let us consider a small Linear Fra. 134.
eler{aent 00, of length r, with the direction cosines I, m, . The small
projections of this element, on the coordinate axes aire o

z

8 = ?"l, 6y = rm, 52 = m (a)

They represent the coordinates of the point O, with respect to the
f}-; Y-, 2-axes through O as an origin. If «, v, w are the components of
¢ displacement of the point O during deformation of the body, the

, the

corresponding displacements of the neighbori i
sented as follows: ghboring point 0, can be repre-

w = 1 du du ou
L U dxr bx 6!' Sy + EE oz
= dv ay o
h = + — _
1=v or 535"'6 By-{-EESz by

— ow ow o
w =
1=w *“—'axﬁx‘%-a—y tSy'-l-—-az 8z

Itis iti
term:ﬁsqltjiet?}l ].Jere that the quantities éz, 8y, 8z are small, and hence the
wi igher powers and products of these quantities can be

Deglected in (b) as small iti i
- quantities of higher order. The i
of the point O, become, after deformation, © coordinates



222 THEORY OF ELASTICITY

du ou %
5I+u1"u=535+;3—$527+a§y+5532

av dv dv
by o= = by gt gt b (e)

dw dw ow
bz +w —w = Bz-{—aﬁz*}-yyay*’raaz

It will be noticed that these coordinates are linear functions of the
initial coordinates &z, &y, dz; hence the deformation in a very small
element of a body at a point O can be considered as homogeneous
(Art. 72). '

Let us consider the elongation of the element r, due to this def?rmz?,—
tion. The square of the length of this element after deformatl.on is
equal to the sum of the squares of the coordinates (c). Hence, if €8
the unit elongation of the element, we find

du du du Y
(r+er)’=(ﬁx+aﬁz+—é§5‘y+géz)

& v a
+(59+a§$+5§5y+§52)
dw dw ow Y
+(6z+aax+-@6y+géz)
or, dividing by r? and using Eqs. (a),
ou du ou |?
(1L + &% = [I(l + Iz +m@+n§£]
o 14+ 9 +n .‘?ET
+ EEJ:' + m 3y 3z
120y n(l + 9”“—")]2 @
+ ‘o Iy dz
Remembering that ¢ and the derivatives du/dx . .. dw/dz are sm.all
quantities whose squares and products can be negleeted, and using
1* 4+ m? + n? = 1, Eq. {d) becomes
du | ow

ou dv d1p ou av du dw
€ =£2§:+m26—y+n25+zm a—y+'§£)+lﬂ(az+ 3.’.!7)

v | dw
&4+ ) (a2
+ mn |z + ay) (120)
Hence the elongation of an element r can be calculated provided the

du 4+ dy .. . are known. Using. the
" \dy ax)’

ions du
express o
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notations
ou _ @ _ ow _
g~ ay ™ 2 ° ©
ou o ou v o dw )
3y Iz Yeu, 3z oz Y=o 3z 3y = Tus
Eq. (120) can be presented in the form
€ = gl’ + em? + en? + yolm + vain + vamn (121}
The physical meaning of such quantities as ¢ . .., v,, . .. has

already been discussed (sce Art. 5), and 1t was shown that ¢, ¢, ¢, are
unit elongations in the z-, y-, z-directions and .y, ¥.., v, the three unit
shear strains related to the same directions. We now see that the
elongation of any lincar element through a point O can be calculated
from Eq. (121), provided we know the six strain components.

In the particular case of homogeneous deformation the components
u, v, w of displacement are linear functions of the coordinates, and from
Egs. (¢) the components of strain are constant over the volume of the

body, 7.e., in this case each element of the body undergoes the same
strain.

Ia investigating strain around a peint O it is necessary sometimes to know the
change in the angle between two linear elements through the point. Using Egs.
{r) and (a) and considering ¢ as a small quantity, the direction cosines of the ele-
ment r (Fig. 134}, after deformation, are

4w —w _ du Ay du
Il__‘—?'(l"l'f} l(l e+ax)—|—may+n-é—z

WAy e U S T
Hy = 0+ 9 —Iax—}—m(l ‘+ay)+”az G
8z +w;, — w

n: =

0w dw fi iy
A +9 —l-a—x-{—mgg—l—n(l—e+-b—z)

Taking another element » through the same point with direction cosines V', m’, n’,
the magnitudes of these cosines, after deformation, are given by equations analo-
gous to (f). The cosine of the angle between the two elements after deformation is

cog (rr') = LI + mm’ 4 nany’

Considering the clongations ¢ and ¢ in these two directions as small quantities
and using Eqs. (f), we find

€08 (rr') = (' + mm’ + nn)(l — ¢ — ) + 2 + emm’ 4 enn’)
Foveslma’ + m'n) - oyenl’ + 0l + yam +Pm)  (122)
If the directions of  and + are perpendicular to each other, then
W+ mm' +an’ =0
and Eq. (122) gives the shearing strain between these directions.

e —
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74. Principal Axes of Strain. From Eq. (121} a geometrical inter-
pretation of the variation of strain at a point can be obtained. For this
purpose let us put in the direction of each linear element such as r
(Fig. 134) a radius vector of the length

B (a)

_ k

VI
Then, proceeding as explained in Art. 68, it can be shown that the ends
of all these radii are on the surface given by the equation

+k? = ex? -+ G”yz + &2 + Yz 4 ¥tz + Yoy (123)

The shape and orientation of this surface is completely determined by
the state of strain at the point and is independent of the directions of
coordinates. It is always possible to take such directions of orthogonal
coordinates that the terms with products of coordinates in Eq. (123)
disappear, i.e., the shearing strains for such directions become zero.
These directions are called principal azes of strain, corresponding
planes the principal planes of strain, and the corresponding strains the
principal strains. From the above discussion it is evident that the
principal axes of strain remain perpendicular to each other after defor-
mation, and a rectangular parallelepiped with the sides parallel to the
principal planes remains 2 rectangular parallelepiped after deforma-
tion. In general it will have undergone a gmall rotation.

» If the z-, y-, and z-axes are principal axes of strain, then Eq. (123)

becomes
Tk = e + ey + &2

In this case the elongation of any linear element with the direction
cosines I, m, n becomes, from Eq. (121),

e = &l + e,m? + en? (124)

and the shearing strain corresponding to $wo perpendicular directions r
and v’ becomes, from Eq. 122,

pew = 2edl + emm’ + enn’) (125)

It can thus be seen that the strain st a point is completely determined
if we know the directions of the principal axes of strain and the magni-
tudes of the principal cxtensions. The determination of the principal
axes of strain and the prineipal extensions can be done in the same
manner as explained in Art. 70. It can also be shown that the sum

ANALYSIS OF STRESS AND STRAIN 225

f; }j & + ;: remains constant \fvhen the system of coordinates is rotated.
is sum has, as we-know, a simple physical meaning; it represents the
unit volume expansion due to the strain at a point.

175. thatmn. In‘ general during the deformation of a body, any
element is cha:nged in shape, translated and rotated. On accou,nt of
the shear strain t.he edges do not rotate by equal amounts, and it is
DEcessary to consider how the rotation of the whole e]eme}nt can be
1a;;pecllﬁed. Any'rfactangular element could have been brought into its

nal ff)rm, pomtmn, and orientation in the following three steps
beginning with the element in the undeformed body: ,
de;e'ﬂu? stramsf ex,tey(,l ezily,g, Yu:; Y2 ar€ applied to the element, and the
: is 80 or irecti inei i

clement ented that the directions of principal strain have not

2. The element 15 translated until i 1
- its ¢ i

setion. enter occupies its final

,32 The ele.ament is rotated into its final orientation.

'1h.e rotatlo.n in step 3 is evidently the rotation of the directions of
principal strain, and is therefore independent of our choice of -, 3-
z-axes. It mu(s)t beil possible to evaluate it when the displacements ',u v,
w are given. On the other hand it is elearly ind ain
e e ¥ independent of the strain

Sinece t}.le translation of the element is of no interest to us hefe we
may .c0n31der the displacement of a point Oy, as in Art. 73 and Fig }134
relative to .t-he.pomt 0, the center of the element. 'This relative dis:
placement is given by Eqgs. (b) of Art. 73 as o

wW— U= — 8§ — &y + —
ax +ay y az 52
v av oy
 — [=
v g T gty (@)
ow dw ow
My — - —
1 — W axsx‘l‘ayﬁy‘!'EEEZ

Introducing the notati :
: on {(¢) of . .
4156 the notation! {e) of Art. 73 for the strain components, and

1 oL o :
E(%i”_@)z% (o _owy_ = 1fe ou
¥ @z 2\8 ox) ™ 2\ax ay) ¥ (126)
1 A i =
sion fogrltncc at i ig. 6 w1ll' show that av/or and —au/ay, occurring in the expres-
«, are the clockwise rotations of the line elements 0’47, ’B’ from their

original positions OA, OB. T :
) . hus th .
ha ; . . ws 13 the average of these rotations .
Ve a similar significance in the yz- and zz-planes. ions, and w:, wy
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we can write Figs. {a} in the form

i

Uy — U = € 8 + $Vey Y + FYes 02 — . 8y + wy B2
P, — 0 = vy 3% + & 0y + Fvie 82 — ;02 1w, B2 &)
W — W = §7m 02 + 71 8y + € 02 — wy 0T + wg BY

which express the relative displacement in two parts, one depending only
on the strain components, the other depending only on the quantitites
Wy, Wy We.

We can now show that ws, @y, @ are in fact the components of the
rotation 3. Consider the surface given by Eq. (123). The square of
the radius in any direction is inversely proportional to the unit elonga-
tion of a linear element in that direction. Fquation (123) is of the

form
F(x,y,2) = constant (e)

If we consider a neighboring point = + dz, y + dy, 2 + dz on the sur-
face, we have the relation

%dx+g§dy+gdz=0 @
The shift dz, dy, dz is in a direction whose direction cosines are propor-
tional to dz, dy, dz. The three quantities 9F/dx, oF /oy, oF/9z also
apecify a direction, since we can take direction cosines proportional to
them. The left-hand side of Eq. (d) is then proportional to the cosine
of the angle between these two directions. Since it vanishes, the two
directions are at right angles, and since dz, dy, dz represent a direction
in the tangent plane to the surface at the point z, ¥, z, the direction
represented by 8F/dx, oF /8y, 8F /9z is normal to the surface given by
Eq. (c).

Now F(z,y,2) is in our case the function on the right-hand side of Eq.
(123). Thus

aF

% = 262 + Yol T Va2

Frialli + 26y + it (&)
aF . B

a7 = Y=t + vy + ez

The surface given by Eq. (123} being drawn with the point O (Fig.

134) as center, we may identify &z, 8y, 82 in Egs. (b) with z, ¢, zin Eqgs.

{g).
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. We consu%er now the special case when w,, w,, w, are zero. Then th
right-hand sides of Eqgs. {¢) are the same as the right-hand f;ides of B ;
{b) ‘but for a factor 2. Consequently the displacement given b Eq:.
(b) is 'norma,l to the surface given by Eq. (123). Considering th(;aY oiq t
04 (ng. 134} as a point on the surface, this means that the displacel;nezt
of Oy is 1101‘1"{1&1 to the surface at 0.  Hence if 00, is one of the principal
axes of strain, that is, one of the principal axes of the surface the (f
placement of Oy is in the direction of 00y, and therefore 00 ’does IS;
rotate. The displacement in question will correspond to ste1 1 "

In order' to complete the displacement we must restore topEéls ()]
the terms N ., wy, o, Buf these terms correspond to a small ri' id
b‘ody rotation having components w., w,, w, about the z- Y- z—ailes"
Consequentl){ these quantities, given by (126), express the,rot,ation 01%
step 3—that is, the rotation of the principal axes of strain at the point
0. They are called simply the components of rotation. e

Problem

1. What is the equation, of the type = i
which becomen e ot he 3:'}3 ° {z (x—,y,e) = 0, of the surface with center at 0

= r2
of Art. 727 What kind of surface is it? r# after the homogeneous deformation



CHAPTER 9
GENERAL THEOREMS

76. Differential Equations of Equilibrium. In the discussion of
Art. 67 we considered the stress at a point of an elastic body. Let us
consider now the variation of the stress as we change the position of the
point. For this purpose the conditions of equilibrium of a small
rectangular parallelepiped with the sides 8x, 8y, 52 (Fig. 135) must be
studied. The components of stresses acting on the sides of this small
element and their positive directions are indicated in the figure. Here

we take into account the small
z [k changes of the components of
} stress due to the small increases

52 3

Gl s - sz, dy, oz of the coordinates.
’} Tzl 5 (),  Thus designating the mid-points
‘f‘—;r | |! 12 1 ¥ of the sides of the element by
z| 'y | Tyl Nayds 1, 2,3, 4, 5, 6 as in Fig. 135, we
P Y distinguish between the value
3§ of ¢, at point 1, and its value ab

of - Iy
Fro. 135, point 2, writing these (o.), and

(¢.); Tespectively, The symbol
o, itself denotes, of course, the value of thisstress component at the point
z,y,2 In calculating the forces acting on the element we consider the
sides as very small, and the force is obtained by multiplying the stress
at the centroid of a side by the area of this side.

Tt should be noted that the body foree acting on the element, which
was neglected as a small quantity of higher order in discussing the
equilibrium of a tetrahedron (Fig. 132), must now be taken into
account, because it is of the same order of magnitude as the terms due
to variations of the stress components, which we are now considering.
If we let X, Y, Z denote the eomponents of this force per unit volume
of the element, then the equation of equilibrium obtained by summing
all the forces acting on the element in the z-direction is

Koo s — (o2)9] 8y 82 + [(72)3 — {7m)d] 6z 82
[(ro0)s — (ra)el 6z 8y + X bz by 3z = O
228
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The two other equations of equilibrium are obtained in the same man-

ner. After dividing by 5z 8y 8z and proceeding to the limit by shrink-
ing the element down to the point z, y, z, we find

60’: a'r;m 67:3

3z + T +X =90

@'_, drn | 971y

oy Fre -+ oz + ¥ =0 {127}
e, O7, oy,

oz T o tgy TE=0

Equations (127) must be satisfied at all points throughout the volume
of the !:»ody. The stresses vary over the volume of the body, and whenJ
we arrive at the surface they must be such as to be in equilil;rium with
the ’e:xt(?rnal forces on the surface of the body. These conditions of
equilibrium at the surface can be obtained from Egs. (112). Taking
a tetrahedron OBCD (Fig. 132), so that the side BCD coincides with
the surface of the body, and denoting by X, ¥, Z the components of the
surface forces per unit area at this point, Egs. (112) become

X =al + rom + 1n

Y =em+ rpn 4 1,0 (128)

Z=on+ rd + rm
in which [, m, n are the direction cosines of the external normal to the
surface of the body at the point under consideration. |
Ii the problem is to determine the state of stress in a body submitted
to t-hfa action of given forces it is necessary to solve Lgs. (127), and tﬁe
solution must be such as to satisfy the boundary conditior,ls (128)
These eq gations, eontaining six components of stress, o, ., T :-m;
th sufficient for the determination of these component-s., The ’ r;,)lem
15 & statically indeterminate one, and in order to obtain the sohllation w:ve
must.- proceed as in the case of two-dimensional problems, 7.e., the
elastic deformations of the body must also be considered. C
co:éog:::im?ni of Compatibi]ifcy. It should be noted that the six
e fm.-mt-i of strain at each pm{it are completely determined by the
Hemron ons u, v, w, represe_ntlng the components of displacement.
¢ the components of strain cannot be taken arbitrarily as func-

tiohs Of r . . -
(o0 page ,G:e;rj z but are subject to relations which follow from Egs. (2)

Thus, from Eqgs. (2) R

2
% Py 9%, % Avn P %

9y 9x ay? 8z dz%ay 0z 9y dx oyt | dad dy
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from which

e | O _ o @
8yt  dx? dx oy
Two more relations of the same kind can be obtained by cyclical inter-
change of the letters z, ¥, 2.
Calculating the derivatives

%, _  &u e _ W 3w
dy oz oxoyor or ‘amaz"i'aa:ay
N atw ey  Ou 2]
o " ayos Toray oz " oyos  owor
we find that
9% d 0Yy: Yz Y2y

Two more relations of the kind (b) can be obtained by interchange of
the letters z, 4, 2. We thus arrive at the following six differential rela-
tions between the components of strain, which must be satisfied by
virtue of Eas. (2):

e | ey _ O Yw % _ 0 f_ 0w + Yz + ey

Gyt ' 9z dx 9y dy dz oz oz By 9z

625” 6253 _ az'yw 6263 . 3 a'sz 673‘3 674@-

a2 T ayf ~ ay o7 e ay\or oy + 5 (129)
Fo , e _ v g P 0 (% O 91

322 | 928 0z 97 dx dy dz \ oT oy dz

These differential relations! are called the conditions of compatability.
By using Hooke’s law [Eqgs. (3)] conditions {129} can be transformed
into relations between the components of stress, Take, for instance,

the condition
%y | 0% _ Oy
azt dy? Ay oz ’ (c)

From Egs. (3) and (4), using the notation (7), we find

& = 2 [(L + oy = #0]

1
& = E[(l + »)e, — 0]

2(1 + ¥iTee
Yye = —‘T_'

1 Proofa that these six equations are sufficient to ensure the existence of a dis-
placement corresponding to a given set of functions ez . . - 5 Yay - « - , MAY bE
found in A. E. H. Love, ‘“ Mathematical Theory of Elastieity,” 4th ed., p. 49, and
I. 8. Sokolnikoff, ¢ Mathematical Theory of Elasticity,” p. 24, 1946,
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Substituting these expressions in {¢), we obtain

oy | &, 320 %0 2
1 it J gy
( +”)(az='- +ay2) ”(@?+@"{)=2(1+P) gyr;; (@)

The right, sifit? of this equation can be transformed by using the equa-~
tions of equilibrium (127). From these equations we find

aTw _ al.'f; a-ru

ay - w aw %

a.l‘ = doy Oy

F) = ———-- ==Y
2 ay oxr

Differenti'ating the first of these equations with respect to z and the
sccond with respect to y, and adding them together, we find

26”fv==_9fzz_%_hg(am a_w) 3z oy

ay az az* 6y2 dx \ dz + ay az ay

621':.': = % _ 9&; _ 620'3 aX 8}’ aZ
P T R o e w7
Substituting this i 5] : : iy
symbol g this in Eq. (d) and using, to simplify the writing, the
o° ot o2
Vi= —_ aall
dx® * dy? = dz?

we find
1+ (vze _ v - 9OY by 0%
v) Vio, 722 | Vie — s
_ aX oY 8z
{a )(ﬁ_"a?_ﬁzh) {e)

Two analogous e i .
. quations can be obtained from the two oth ;
tions of compatibility of the type (c). 0 other condi-

Adding together all three equations of the type (¢) we find

(1—v)vze=—(1+y)(g+%+g_z)
r'd

Substituting this expression for v20 in Fq. (¢),

Vi, + 1 8% - _ ¥ (BX ayYy 82) oX

T+ - " T—s\az Ty T2) 2% O
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We can obtain three equations of this kind, corresponding to the first
three of Eqgs. (129). In the same manner the remaining three condi-
tions {129) can be transformed into equations of the following kind:

1 . o7  aY
= = + )]

Vz’“‘+1+v5yaz”F ay = 9z

If there are no body forces or if the body forces are constant, Eqs. {N
and {g) become

., 0% 30
(1 + V)V‘O'x + a_'ig_ = 0,- (1 + V)ngw + m =0
RS 2%
2 = g —_— =
A+ Ve + 55 = 0, (14 Vo + 52 =0 (130)

J9%6
(1 + V)Vzo'z + 6_2':2' = 0, (1 + P‘)VETW + éx—@ = 0

We see that in addition to the equations of cquilibrium (127) and the
boundary conditions (128) the stress components in an isotropic body
must satisfy the six conditions of compatibility (f) and (g) or the six
conditions {130). This system of equations is generally sufficient for
determining the stress components without ambiguity (see Art. 82).

The conditions of compatibility contain only second derivatives of
the stress components, Ience, if the external forees are such that the
equations of equilibrium (127) together with the boundary conditions
(128) can be satisfied by taking the stress components either as con-
stants or as linear functions of the coordinates, the equations of com-
patibility are satisfied identically and this stress system is the correct
solution of the problem. Several examples of such problems will be
considered in Chap. 10.

78. Determination of Displacements. When the components of
stress are found from the previous equations, the components of strain
can be calculated by using Hooke’s law [Eqs. (3) and (6)]. Then Egs.

(2) are used for the determination of the displacements u, v, w. Differ-
entiating Eqs. {2) with respect to r, y, z we can obiain 18 equations
containing 18 second derivatives of %, v, w, from which all these deriva-
tives can be determined. For u, for instance, we obtain

'u _ e, P v, Oy u _ v 06

3zt Gz’ 9yt ay  ex’  9F 9z Oz
u e, w0, 0% 1(37,, +m_ay,ﬂ), (@)

359y 9y  @zdz 9z dyez 2\dy = & o=
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The second derivatives for the two other components of displacement »
and w can be obtained by cyclical interchange in Eqgs. (a) of the letters
z, Y 2

Now u, », w can be obtained by double integration of these second
derivatives. The introduction of arbitrary constants of integration
will result in adding o the values of «, », w linear functions in x, y, 2, as
itis evident that such functions can be added to «, v, w without a,ff(;ct;ng
such equations as (a). To have the strain components (2) unchanged
by such an addition, the additional linear functions must have the form

’

w=a+by—cz
v =d — bx + ez (b)
w =f4+cx — ey

This means that the displacements are not entirely determined by the
stresses and strains. On the displacements found from the differential
Eqgs. (127), (128}, (130) a displacement like that of a rigid body can be
superposed. The constants a, d, f in Eqgs. (b) represent a translatory
motion of the body, and the constants b, ¢, ¢ are the three rotations of
the rigid body around the coordinate axes. When there are sufficient
constraints to prevent motion as a rigid bedy, the six constants in Egs.
(b} van casily be caleulaied so as to satisfy the conditions of constraint,
Several examples of such calculations will be shown later.

79. Equations of Equilibrium in Terms of Displacements. One
method of solution of the problems of elasticity is to eliminate the stress
components from Egs. (127) and (128) by using Hooke’s law, and to
express the strain components in terms of displacements by using Egs.
(2?. In this manner we arrive at three equations of equilibrium con-
tamming only the three unknown functions u, v, w. Substituting in the
first of Eqs. (127) from (11)

o au
Tx = Ae + 267 a—x (a)
and from (6)
o v

=Gt =6 (J 4 )

®

fﬂ=GY:s=G(§E+a—u

: : . . dr = 9z

we find
de ot | A% | §%u

A — =

( +G)6x+G(ax2+@§+@)+X =0

The two other equations can be transformed in the same manner.
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Then, using the symbol v* (see page 231), the equations of equilibrium
(127) becoma
A+OL tevutrx =0
C+OL ey =0 (131)
Y
B+ DL GV Z =0

and, when there are no body forces,
de 2 =0
()\+G)-——-az+GVu
de
=0 132}
n+G) 3 + GV {

A+OE +6Vw=0

Differentiating these equations, the first with respect to z, t13e second
with respect to y, and the third with respect to z, and adding them

together, we find
(h+26) V% =0

1.¢., the volume expansion e satisfies the differential equation

3% _ 9% | d% _ 133)
32 T o +5i = 0 (

The same conclusion holds also when body forces are constant through-

out the volume of the body. .
Substituting from such equations as (a) and () into the boundary

conditions (128) we find

- a ] du, , o Ju
X=xez+G(g—gz+—“m+£n)+G(§5‘“"am+ 3z "“”) (134)

..............................

Equations (131) together with the boundary conditions (134) deﬁn?
completely the three functions «, v, w. From these the components of
strain are obtained from Egs. (2) and the componentr? of stress fro.m
Egs. (9) and (6). Applications of these equations will be shm@ in

Chap. 15,
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80. General Solution for the Displacements. It is easily verified
by substitution that the differential equations (132} of equilibrium in
terms of displacement are satisfied byt

a
% = ¢1—'a$(¢'0+$¢1+y¢2+z¢3)
v = ¢g—a%(¢u+$¢1+y¢z+2¢a)
a
w=¢3“—aa;(¢o+x¢'l+y¢2 + z¢3)

where 4a = 1/(1 — ») and the four functions ¢, ¢1, $s, ¢s are har-
monie, t.e.,

V2¢lg = 0, v2¢1 = '0', ngh = 0, v2¢3 =0

It can be shown that this solution is general, and that any one of the
four functions may be dropped without loss of generality.

This form of solution has been adapted to curvilinear coordinates by
Neuber, and applied by him in the solution of problems of solids of
revolution? gencrated by hyperbolas (the hyperbolic groove on a
cylinder) and ellipses {(cavity in the form of an ellipsoid of revolution)
transmitting tension, bending, torsion, or shear force transverse to the
#xis with accompanying bending.

81, The Principle of Superposition. The solution of a problem of 3
given elastic solid with given surface and body forces requires us to
determine stress components, or displacements, which satisfy the
differential equations and the boundary conditions. If we choose to
work with stress components we have to satisfy: (a) the equations of
equilibrium (127); (b) the compatibility conditions (129); {c¢} the
boundary conditions (128). Leto, . . . ,7p . . . , be the stress com-
ponents so determined, and due to surface forces X, 7, Z, and body
forces X, Y, Z.

Leto,” . . . ,7s ... bethe stress compoenents in the same elastic
solid due to surface forces X', ¥, Z’ and body forces X’, ¥/, Z’. Then

T This solution was given independently by P. F. Papkovitch, Compl. rend.,
vol. 195, pp. 513 and 754, 1932, and by H. Keuber, Z. angew, Matk. Mech., vol. 14,
P- 203, 1934. Other general solutions were given by B. Galerkin, Compt. rend.,
vol. 190, p. 1047, 1930, and by Boussinesq and Kelvin—see Todhkunter snd Pear-
son, ““History of Elasticity,” vol. 2, pt. 2, p. 268. Bee also R, D. Mindlin, Bull.
Am. Math. Sec., 1936, p. 373.

*H, Neuber, *‘Kerbspannungslehre.” This book also containg solutions of
two-dimensional problems, See Chap. 7 above.
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the stress components oz 4 62, . . . ; Toy + 7/, . . ., Will represent
the stress due to the surface forces X + X’, . . . , and the body forces
X + X', . ... '"Thisholds beecause all the differential equations and
boundary conditions are linear. Thus adding the first of Eqgs. (127) to
the corresponding equation

da,’ ar
ox + d

k' +‘3Ti_|_x'=0
Y oz
we find

3 N o 8 N oo 9 , ,
;3-5(crz+<r:)+@(TW+M)+5£(T,Z+T,,)+X+X =0

and similarly from the first of (128) and its counterpart we have by
addition

X- "l— X” = (0'1; + O':’)I + (T:ry + T:ﬂ’)m + (T:l:a + Tn’)n

The compatibility conditions can be combined in the same manner.
The complete set of equations shows that ¢, + g, o, Ty T

. , satisfy all the equations and conditions determining the stress
duetoforces X + X', . .., X + X', . ... Thisis the principle of
superposition,

In deriving our equations of equilibrium (127) and boundary condi-
tions (128) we made no distinction between the position and form of
the element before loading, and its position and form after loading.
As a consequence our equations, and the conclusions drawn from them,
are valid only so long as the small displacements in the deformation do
not affect substantially the action of the external forces. There are
cases, however, in which the deformation must be taken into account.
Then the justification of the principle of superposition given above
fails. The beam under simultaneous thrust and lateral load affords an
example of this kind, and many others arise in considering the elastie
stability of thin-walled structures.

82. Uniqueness of Solution. We consider now whether our equa-
tions can have more than one solution corresponding to given surface
and body forees.

Let o ..., 7o ... Tepresent a solution for loads X . . .,
X...,andleto” ..., 7/ . . .represent a second solution for
the sameloads X . . ., X . . ..
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Then for the first solution we have such equations as

30’,’ 31‘;—,” 61':3’
ax+ oy + oz +X=0

X=cl41m+1.'n

and also the conditions of compatibility.
For the second solution we have

’r L
do, I74y dr.."

et +52 X =0

dy
X =e6/T+ r/'m + 1./

and also the conditions of ecompatibility.
By subtraction we find that the stress distribution given by the

L L I i M H
differences o' — 0., . . ., 75/ — 74", satisfics the equations

%" - o) + e’ — 124/") + Are’ — 72")
dx oy dz

=0
0= (O‘x! - l:":z:’”)l + (T:r:;; - T:y”)'m + (Tz‘s’ _‘T:.;”)‘ﬂ

in which all external forces vanish. The conditions of compatibility
(1’29) will also be satisfied by the corresponding strain components
€z —'Ez”, PR ,‘}‘WI—"}’W”, PR
Thus this stress distribution is one which corresponds to zero surface
and body .forces. The work done by these forces during loading is
:ﬁl(‘)ri; anIcll. 1-(5 follc‘m_.'s that [f[V, dz dy dz vanishes, But, as Eq. (85)
J VS, ‘ cil 18 posEtwe for fil] states of strain, and therefore the integral
that jms only if VU. vanishes at all points of the body. This requires
ach of the strain components &,/ — €., .

Y — e .
should be zero. The two states of gtrain e’ . 7 v

-y Yo ..., and
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& ., vy ., and consequently the two states of stress

@ .o 7% .. .,and o’ ... ,74 ..., are thercfore identical.
That is, the equations can yield only one solution corresponding to
given loads.?

The proof of uniqueness of solution was based on the assumption
that the strain energy, and hence stresses, in a hody disappear when it
is freed of external forces. However there are cases when indtial
siresses may exist in a body while external forces are absent. An
example of this kind was encountered in studying the circular ring (see
Art. 39). If a portion of the ring between two adjacent cross sections
is cut out, and the ends of the ring are joined again by welding or other
means, a ring with initial stresses is obtained.? Several examples of
this kind were discussed in considering two-dimensional problems.

We can also have initial stresses in a simply connected body due to
some nonelastic deformations during the process of forming the body.
We may have, for instance, considerable initial stresses in large forgings
due to nonuniform cooling and also in rolled metallic bars due to the
plastic flow produced by cold work. For determming these initial
stresses the equations of elasticity are not sufficient, and additional
information regarding the process of forming the body s necessary.

Tt should be noted that in all cases in which the principle of super-
position can be used the deformations and stresses produced by external
forces are not affected by initial stresses and can be calculated in
exactly the same manner as if there were no initial stresses. Then the
total stresses are obtained by superposing the stresses produced by
oxternal forces on the initial stresses. In cases when the principle of
superposition is not applicable, the stresses produced by external loads
cannot be determined without knowing the initial stresses. We can-
not, for instance, calculate bending stresses produced by lateral loads
in a thin bar, if the bar has an initial axial tension or compression,
without knowing the magnitude of this initial stress.

1 This theorem is due to G. Kirchhoff. See his Vorlesungen iiber Math. Phys.,
Mechanik.

2 The ring represents the simplest example of multiply-connected bodies. In
the case of such bodies general equations of clasticity, expressed in terms of stress
components, are not sufficient for determining stresses, and to get a complete
solution an additional investigation of displacements is necessary, The first
investigations of this kind were made by J. H. Michell, Proc. Londen Math. Soc.,
vol. 31, p. 103, 1899. See also L. N. G. Filon, Brit. Assoc. Advancement Sei. Rept.,
1921, p. 305, and V. Volterra, Sur Péquilibre des corps élastiques multiplement
connexés, Ann. école rorm., Paris, series 3, vol. 24, pp. 401-517, 1907. Further
references on initial stresses are given in the paper by P. Neményi, Z. angew. Malth.
Mech., vol. 11, p. 59, 1931
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83. The Reciprocal Theorem. Limiting ourselves to the two-
dimensionsl case let us consider the plate under two different loading
conditions, and denote by X,, ¥, X, and ¥, the components of the
boundary and the volume forces in the first case, and by X,, ¥, X,
and Y»in the second ease. For the displacements, the strain compo-
nents, and stress components in the two cases we use the notation
Uiy U1, 53,! ey’) 711!": ‘73,! O"Hrs TW, and Uz, oy E-t”:' eﬂ”’ ‘Yﬂfﬁr O'-_.-”, 0'1,-”, sz”.
Let us consider now the work which would be produeed by the forces
of the first state of stress on the corresponding displacements of the
second state. This work will be

T = [Xuuads + [Yywads + [[Xwusdedy + [[Viedzdy  (a)

where the first two integrals are extended around the entire boundary
of the plate and the second two over the entire area of the plate. Sub-
stitutingfor X, its expression from Egs. (20), page 23, we can repre-
sent the first term on the right-hand side of Eq. (a) as follows:

X wusds = Jlolusds + [mry/us ds ®)

Proceeding now as explained on page 164 we get

do;
[Io-,’ugds= ff uga;‘x da:dy-{—[[%az’dzdy
. _ arg, dus
[mrwugds—/fuz a;” dxdy+f[ 357,, dz dy

S}lbstituting this in (b) we find that the first and the third terms of (a)
give us

_ ’ ’
fxlugder [/ X s da dy = f/ (‘%-{—a;—;” —|—X1) ua dz dy
d
—[—ff (—(,’%o'{—i—%ru’) drdy (c)
Similarly the second and the fourth tcrms give
?192d8+ff}’vdxd :f/(armf da,’
[ We Y 57 +€y—'+Y1 vgdxdy
&
+ [ [ (E,%" o + g—i’u;) dxdy (d)

Observing now t_hat the first terms on the right-hand side of equations
() and {d) vanish in virtue of equilibrium equations (18), and sub-
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stituting in Eg. (@), we obtain

T — [[ (Ez!!a,zf __i__ Eﬁ”ﬂ‘y' + 'Y;ry“sz!) d:c dy

= E}.ff [U’;”O'z, + O‘g”d'y’ — va,0. — vo'ay
+ 2{1 + )1/ 7] de dy

Exactly the same result is obtained if we calculate the work done by
the forces of the second state of stress on the displacements of the first
state. Thus we can conclude, comparing two states of stress of an
elastic body, that the work done by the forces of the first state on the
corresponding displacenents of the second is equal to the work done by
+he forces of the second state on the corresponding displacements of
the first. This represents the reciprocal theorem. It can be easily
extended also to bodies in motion or in
vibration. It is only necessary to add
fz} the inertia forces to the external loads,
The reciprocal theorem finds an important
application in the theory of structures in
@&l (8 e construction of influence lines. Italso
-_— has useful applications in the theory of
elasticity.

Take as a simple example the case of a prismatical bar compressed
by two equal and opposite forces' P, Fig. 136a. The problem of find-
ing the stresses produced by these forces is a complicated one; but
assume that we are interested not in the stresses but in the total
elongation & of the bar. This question can be answered at once by
using the theorem. For this purpose we consider in addition to the
given stress condition represented in Fig. 136a the simple central
tension of the bar shown in Fig. 136b. For this second case we find

the lateral contraction, equal to & = v%, where A is the cross-sec-

tional area of the bar. Then the reciprocal theorem gives us the
equation

8k
P PIE-—QIS .

1 We may suppose that the forces are distributed over a small area. to avoid
singularities. TIdeally concentrated forces in fwo-dimensional problems usually
result in infinite displacement, indieating that the actual displacement depends
on the distribution ) '
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and the elongation of the bar, produced by two forces P in Fig. 136a, is

= P

AE
and is independent of the shape of the cross section.

As a second example let us caleulate the reduction A in volume of an
elastic body produced by two equal and opposite forces P, Fig. 137a.
As a sccond case of stress we take
the same body submitted to the
action of uniformly distributed pres-
sure p. In this latter case we will
have at each point of the body a
uniform compression in ail directions
of the magnitude {1 — 2v)p/E [sec
Eq. (8), page 9] and the distance
I between the points of application
A and B will be diminished by the amount (1 — 2»)pl/E. The

reciprocal theorem applied to the two stress conditions! of Fig. 137
will then give

(al fh)

Fra, 137,

(1 — 2u)pl
P' ———E = AP

and the reduction in the volume of the body is therefore

_ PI(1 — 25)

84. Approximate Character of the Plane Stress Solutions. It was pointed out
on page 25 that the set of equations we found sufficient for plane stress problems
under the assumptions made (5; = 7., = 7y, = 0, g%, oy, 72, independent of 2) did
flot ensure satisfaction of all the conditions of compatibility, 'These assumptions
imply ths.}t_ €z, €y, &, ¥4y 07¢ independent of 2, and that .., y,. are zero. The first of
’;i}::le cgncht-mns‘ of ct:}mpati:()Ilit-y {129) wuas included in the plane stress theory, as
fu(;lllcgigl)’ fIl; is easily ‘fern"ied that the _other five are satisfied only if ¢, is a linear
i 1:1 o bz a,.nd % which is the exceptlor.l rather than the rule in the plane stress
s 8 obtained in Chaps. 3 to 7. FEvidently these solutions cannot be exact,

we shall now see that they are close approximations for thin plates.

Let us seek exact solutions of the three-dimensional cquations for which?

A

Op = Tgp = 74z = 0
! For other applicati is ki i
or plications of this kind see A, E. H. Love, “Mathematical Th f
Elaat.lclty,” 4th ed., pp. 174-176, 1927. e

2 i PRI
- A. Clebsch, “Flasticitat,” Art. 39. See also A. E. 11 Love, ‘“Mathematical
eory of Elasticity,” 4th ed., p. 145, 1927.
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taking body force as zero. Such solutions must satisfy the equations of equilibrium

{127) and the compatibility conditions {130}.
Sinoe ox, T=c Tys are zero, the third, fourth, and fifth of Egs. (130) {reading by

a a6 d M) ad H)
al\az) =% @(a)—& az 5)-“

which mean that 29/5z is a constant.  Writing this &, we have, by integration with

columns) give

respect to z,
0 =kz 4 9 (2)

where @, is so far an arbitrary function of z and y.
The third of Fqgs. (127) is identically satisfied, and the first two reduce to the

two-dimensional forms

do + Oy 0, doy + O7zy 0

az ay = ay dz
which are satisfied, as before, by
_ 9 o PO = _ D ®)
== VTt T T oy

but ¢ is now a funetion of x, ¥, and z.
Returning to Eqs. (130) we observe that by addition of the three equations on

the left, recalling that ® = . + oy + o2, We have

vig =0 (c)
and therefore, from {a)
Vi, =0 ) ()
where
a7 92
Vit = o -+ e

Also, since v, is zero, and « and oy arc given by the first two of Eqs. (), we can
write ¥,2¢ = 9, and therefore, using (a)

Vit = kz + 6 ()

where 6, is a function of z and y satisfying Eq. (d). Using (a) and the first of (b},

the first of Eqs. (130) becomes
3% . 90, _
(1+v}V’E+§;ﬁ—0 6)]
But
1 2 2 3 3t 92
1 2¢ '3gv2.;e,=3—x Vg + o2 -—(90'1’67?

I T a3y )] T Ay

where Eq. (¢) has been used in the last step.  Also, on account of (d), we can teplace .

2'a, /02 in {f) by —o'9y/3y%.  Then (f) becomes

B (o L ) _ 0 _
1+ (90 +28)-FR =0
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or

a* fd%e v
ay? \az* 1+ve“)='0 (9)

This equation may be used in place of the first of (130}, BSimilarly the second
and last can be replaced by

3 (3% » . 3 (9% ¥ _
aﬁ(&*+1+vm) 0, a:@(a?+1+,&)-°

These, with {g}, show that all three second derivatives with respect to z and y of
the funection {of z, y, and 2} in brackets vanish. Thus this function must be lincar

in = and %, and we can write

g »

§+1_‘_—Vﬁu~a+bz+cy (h)
where @, b, and ¢ are arbitrary functions of 2. Integrating this equation twice with
respect to z, we find

1 .
¢="'§“TBDZ'+A+Bz+Cy+¢1Z+¢n (2)
where 4, B, € arc funetions of # obtained by repcated integration of a, b, ¢, and

&1, ¢o are functions of z and y, as yet arbitrary.
If we evaluate o, oy, 72y from {£) by means of the formulas {b), the terms

A4 Bz + Cy

make no difference. We may therefore set 4, B, and € equal to zero, correspond-
ing o taking a, b, ¢, zero in (k).

If we resirict ourselves to problems in which the stress distribution is symmetrical
about the middle plane of the plate, z = 0, the term ¢yz must also be zero. So
also must k in Ig. ().

Then {7} reduces to

1
¢ = o — 2 1—_,{_ - B2t N

Howe_ver ¢ and Qg arc related by {¢) in which we can now take & = 0. Thus,
substituting (j) in (e) and using (d), we have

v12¢u = e[l {k)
and therefore, from (d),
Vl'i&f.‘n = [) (l)

The‘ remaining equations of {130) arc satisfied on account of Egq. {a) and the
vanishing of ¢., 724, Tye.

\_rVe can now obtain a stress distribution by choosing a function ¢q of x and ¥
which satisfies Eq. (1), finding ©, from Eq. (k), and ¢ from Eq. (7). The stresses
are then found by the formulas (5). Each will consist of two parts, the first derived

from ¢, in Eq. (), the second from the term — % ﬁ 0,22 In view of Eq. (1),
the first part is exactly like the plane stress components determined in Chaps. 3to
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7. The second part, being proportional to 27, may be made as small as we please
compared with the first by restricting ourselves to plates which are sufficiently
thin. Hence the conclusien that our solutions in Chaps. 3 to 7, which do not
aatisfy all the compatibility conditions, are nevertheless good approximations for
thin plates.

The “exact” solutions, represented by stress functions of the form (j), wilt
require that the stresses at the boundary, as elsewhere, have a parabelic varistion
over the thickness. However any change from this distribution, so long as it
does not alter the intensity of force per unit length of boundary curve, will only
alter the stress in the immediate neighborheod of the edge, by Saint-Venant’s
principle (page 33). 'The type of solution considered above will always represent
the actual stress, and the components g;, 1s., 7. Will in fact be zero, cxcept close
to the edges.

Problems

1. Show that

& = k(z® + 37, & = k(y! + 2%, Yey = K'Tyz
£3=1"zl=')’ys=0

where %, &’ are small constants, is nof a possible state of strain,

2. A solid is heated nonuniformly to temperature T, a function of ¢, y, and z,
If it ie supposed that each element has unrestrained thermal expansion, the strain
components will be

£ =6 =& = oal, Yoy = Yyr = Yor =0

where « is the constant coeflicient of thermal cxpansion,

Prove that this can only occur when T is a linear function of z, g, and 2. (The
stress and consequent further strain arising when 7 is not linear are discussed in
Chsp. 14.)

3. A disk or cylinder of the shape shown in Fig. 137q is compressed by forces
P at C and D, along C'D, causing extension of AB. It is then compressed by forces
P along AB (Fig. 137a) causing extension of C1). Show that these extensions are
equal.

4. In the general solution of Art. 8) what choice of the functions ¢, ¢1, ¢z, ¢z will
give the general solution for plane strain (w = 0)?

CHAPTER 10

ELEMENTARY PROBLEMS OF ELASTICITY
IN THREE DIMENSIONS

86. Uniform Stress. In discussing the equations of equilibrium
{127) and the boundary conditions (128), it was stated that the true
solution of a problem must satisfy not only Eqs. (127) and (128) but
also the compatibility conditions (see Art. 77). These latter condi-
tions contain, if no body forces are acting, or if the body forces are
eonstant, only second derivatives of the stress components. If, there-
fore, Egs. (127) and conditions (128)
can he zatisfied by taking the stress .
components either as constants or as 2] x
linear funections of the coordinates,
the compatibility conditions are sat-
isfied identically and these stresses are the correct solution of the
problem.

As a very simple example we may take tension of a prismatical bar
in the axial direetion {Fig. 138). Body forves are neglected. The
equations of equilibrium are satisfied by taking

Fra. 138,

g, = constant, Oy =0; = Ty = Ty, =7y, = 0 {a)

It is evident that boundary conditions (128) for the lateral surface
of the bar, which is free of external forces, are satisfied, because all
stress components, except o, are zero. 'The boundary conditions for
the ends reduce to

o =X ()

i.'e., we have a uniform distribution of tensile stresses over cross sec-
tions of a prismatical bar if the tensile stresses are uniformly distributed
over the ends. In this case solution (a) satisfies Fgs. (127) and (128)
and is the correct solution of the problem because the compatibility
conditions (130) are identically satisfied.

- If the tensile stresses are not uniformly distributed over the ends,
solution (a) is no longer the correet solution because it does not satisfy
the boundary conditions at the ends. The true solution beeomes more
¢omplicated because the stresses on a cross section are no longer uni-

245
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formly distributed. Examples of such nonuniform distribution
ovcurred in the discussion of two-dimensional problems (see pages 51
and 167).

As a second example consider the case of a uniform hydrostatic com-
pression with no body forces. The equations of equilibrium (127) are
satisfied by taking

6 =0y =0, = —P, Toy = Tge = Ty = 0 {e)

The ellipsoid of stress in this case is a sphere.  Any three perpendicular
directions can be considered as principal directions, and the stress on
any plane is a normal compressive stress equal to p.  The surface con-
ditions (128) will evidently be satisfied if the pressure p is uniformly
distributed over the surface of the body.

86. Streiching of a Prismatical Bar by Its Own

-4

J [ LL Weight, If pg is the weight per unit volume of the
B bar (Fig. 139}, the body forces are

: |I X=¥Y=0, Z = —pg (@)
|

The differential equations of equilibrium (127) are
satisfied by putting

y ¥ o: = pgz, e =0y =Ty =Ty, =Tz = 0 (B)

T e

i.e., by assuming that on each cross section we have a
uniform tension produced by the weight of the lower portion of the bar.

It can easily be seen that the boundary conditions (128} at the lateral
surface, which is free from forces, are satisfied. The boundary condi-
tions give zero stresses for the lower end of the bar, and, for the upper
end, the uniformly distributed tensile stress o, = pgl, in which { is the
length of the bar.

The compatibility equations (130) are also satisfied by the solution
(®), hence 1t is the correct solution of the problem for a uniform dis-
tribution of forces at the top. It coincides with the solution which is
usually given in elementary books on the strength of materials,

Let us consider now the displacements (see Art. 78). From Hooke’s
law, using Eqgs. (3) and (6), we find

“~% "B~ E ©
I Y
ez_ey‘"ax"ay_ VE (d)
du | av du  dw dv | Jw
— Z‘Z-: — — —_— e — — T _=0
(S el v i A (e)
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The displacements %, v, w can now be found by integrating Eqs. (c),
(d), and {¢). Integration of Eq. (¢) gives

2
w =S+ w 9

where w, is a function of x and y, to be determined later. Substituting
(f) in the second and third of Egs. (¢), we find

dwy | du Bwg , v _
iz taz % o TE=0
from which
1wy dw
=—zg+uo, vz—za—;+vo (¢

in which u¢ and v, are functions of £ and y only. Substituting expres-
sions (g) into Eqs. (d), we find

Pwe \ Oy _ gz 0w

s dr E ay?

oy pg

Remembering that %, and v, do not depend on ¢, Eqs. (A) can be
satisfied only if

Quy _ vy _ we _ we _ vpg

"oy " Tk (k)

Bubstituting expressions (g) for  and » into the first of Egs. (¢), we find

6”w.1_ + dug

25 ey

6!)3_
+50=0

and, since u, and v, do not depend on z, we must have

Aty dty | Gy
dxdy a_y+5a_:_0 @

From Egs. (k) and (1) general expressions can now be written for the

fun.ctions %o, ¥, wo. It is easy to show that all these equations are
satisfied by

uu=5y+51
v = —dr + 7

wo = o (= + %) + ez + By + v
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in which «, 8, 7, 8, 81, ¥1 are arbitrary constants. Now, from Eqs. (f)
and (g), the general expressions for the displacements are

u = -%;z—az+ay+al

v=—%'y—z—ﬁz—6x+n {(m)
2

w=20 @y +az+ By 4y

The six arbitrary constants must be determined from the conditions at
thesupport. The support must be such as to prevent any movement of
the bar as a rigid body. To prevent a translatory motion of the bar, let
us fix the centroid A of the upper end of the barso thatu = v = w = 0
forz =y =0and 2z = I. To eliminate rotation of the bar about axes
through the point A, parallel to the - and y-axes, let us fix an element
of the z-axis at A. Then du/9z = dv/9z = 0 at that point. The pos-
sibility of rotation about the z-axis is eliminated by fixing an ele-
mental area through A, paralle]l to the zr-plane. Then dv/dx = 0 at
the point A. Using Eqs. (m) the above six conditions at the point 4
become

2
—al+b=0, —fltvi=0, Hiy=0
«=0, $=0 5=0
Hence
12
51=09 Tl=0) 7=_%

and the final expressions for the displacements are

_ _ vpgaz
"= E
v__va%yz
B9 g e PP
u +F(:c + 3% ok

It may beseen that points on the z-axis have only vertical displacements
= _ P9 3 _
W 55 {1 2%

Other points of the bar, on account of lateral contraction, have not
only vertical but also horizontal displacements. Lines which were
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parallel to the z-axis before deformation become inclined to this axis
after deformation, and the form of the bar after deformation is as indi-
cated in Fig. 139 by dotted lines, Cross sections of the bar perpendicu-
lar to the z-axis after deformation are curved to the surface of a
paraboloid. Points on the eross section z = ¢, for instance, after
deformation will be on the surface

pget | veg pgl

z=c+w=c+2g—E+2ig(I2+y”)—ﬁ

This surface is perpendicular to all longitudinal fibers of the bar, these

being inclined to the z-axis after deformation, so that there is no shear-

ing strain ¥ OF Ve

87. Twist of Circular Shafts of Constant Cross Section. The ele-

mentary theory of twist of circular shafts states that the shearing stress
7 at any point of the cross section (Fig. 140) is

perpendicular to the radius r and proportional to the A x
length r and to the angle of twist & per unit length of T
the shaft:
T = Gor (a)
where @ is the modulus of rigidity. Resolving this
stress into two components parallel to the x and
y-axes, we find o
T A
Ty = Gfr- X = Gox
r
’ (®)
T = —Gr -2 = —Gy £ e
r 1 r
| A
The elementary theory also assumes that y
Fia., 140.

Tz =0y =0: =Ty = 0

We can show that this elementary solution is the exact solution
under certain conditions. Since the stress components are all either
linear functions of the coordinates or zero, the equations of compati-
bility (130) are satisfied, and it is only necessary to consider the equa-
tions of equilibrium (127) and the boundary conditions (128). Sub-
stituting the above expressions for stress components into Egs. (127)
we find that these equations are satisfied, provided there are no body
forces. The lateral surface of the shaft is free from forees, and the
boundary conditions (128), remembering that for the eylindrical sur-
face cos (Nz) = n = 0, reduce to

0 = 7, cos (Nx) + 7, cos (Ny) {e)
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For the ease of a circular eylinder we have also
cos (Nz) = ?, cos (Ny) = g (dy

Substituting these and expressions (b) for the stress components into
Eq. (¢) it is evident that this equation is satisfied. It is also evident
that for cross sections other than circular, for which Eqgs. (d) do not
hold, the stress components () do not satisfy the boundary condition
(), and therefore solution (@) cannot be applied. These more compli-
cated problems of twist will be considered later {see Chap. 11).
Considering now the boundary conditions for the ends of the shaft,
we see that the surface shearing forees must be distributed in exactly
the same manner as the stresses r,, and r,, over any intermediate cross
section of the shaft. Only for this case is the stress distribution given

M
M — 3 e
G4 —_—— z :"“-_ﬁ_;’zf‘
1
C——x 7N
! i
(z} 57

Fia. 141,

by Eqgs. (b) an exact solution of the problem. But the practical
application of the solution is not limited to such cases. From Saint-
Venant’s prineiple it can be concluded that in a long twisted bar, at &
sufficient distance from the ends, the stresses depend only on the magni-
tude of the torque 3/, and are practically independent of the manner in
which the forees are distributed over the ends.

The displacements for this case can be found in the same manner as
m the previous article. Assuming the same condition of constraint at
the point 4 as in the previous problem we find

u = —bOyz, v = fzz, w=10

This means that the assumption that cross sections remain plane and
radii remain straight, which is usually made in the elementary deriva-
tion of the theory of twist, is correct.

88. Pure Bending of Prismatical Bars. Consider a prismatical bar
bent in one of its principal planes by two equal and opposite couples M
(Fig. 141), Taking the origin of the coordinates at the centroid 6f the

PROBLEMS OF ELASTICITY IN THREE DIMENSIONS 251

cross section and the xz-plane in the prinecipal plane of bending, the
stress components given by the usual elementary theory of bending are

_Ex

O‘,——E': G’y“—‘d_»,=1'w=fﬂ=1'w=0 (a)

in which R is the radius of curvature of the bar after bending. Sub-
stituting expressions (a} for the stress components in the equations of
equilibrium (127), it is found that these equations are satisfied if there
are no body forces. The boundary condifions (128) for the lateral
surface of the bar, which is free from external forces, are also satisfied.
The boundary conditions (128) at the ends require that the surface
foreces must be distributed over the ends in the same manner as the
stresses ;. Only under this condition do the stresses {a) represent the
exact solution of the problem. The bending moment 3 is given by

the equation
_ _ Ez*dA _ EI,
M__[azsz_me -5

in which I, is the moment of inertia of the cross section of the beam
with respect to the neutral axis parallel to the y-axis. From this equa-
tion we find

1_ M
R~ I,

which is a well-known formula of the elementary theory of bending.
Let us consider now the displacements for the case of pure bending,
Using Hooke's law and Egs. (2) we find, from solution (a),

dw T
“=% "R ®
= _ _ = _&__ = (©
23 ar VR! Gg—ay— ﬂR c
du | & _ du | dw v |, dw
Eri ik vl Tl r (@

By using these diffcrential equations, and taking into consideration
the fastening conditions of the bar, the displacements ean be obtained
in the same manner as in Art. 86.
From Eq. (b) we find
_x2
TR

+ wo
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in which w, is a function of # and ¥ only. The second and third of
Eqgs. (d) give

du 2 _ 9w 9w
& R or @z By
from which
. 2 duy _ _ 8w
u=—355 z—ax——i—uu, ¥ = zay+vg {e)

Here 4y and »y denote unknown functions of z and ¥, which will be
determined later. Substituting expressions (e) in Egs, (¢),

Ay, ue . ¥X %y 4 oo _ _,E

a Ta T TR TPap Ty R

—Z

These equations must be satisfied for any value of z, hence

awe dhwy
w0 gy O )
and by integration

w= = A, w=— "4 ) @

Now substituting (¢) and (g) into the first of Egs. {d), we find
2.
% Pwe  ofily) _ afa(x) L%y

dx 9y Ay azx R

Noting that only the first term in this equation depends on z, we con-
clude that it is necessary to have

Puy oG | @)y _
dx Oy ! dy dz R

These equations and Egs. (f) require that
wy = Mz +ny - p
Vy2
fHly) = 0 + oy +y
folz) = —azx + 8

in which m, n, p, «, 8, ¥ are arbitrary constants. The expressions for
the displacements now become

I R N
Y=g Mgttty
v=—-nz-ﬂ%—ax+ﬁ

w=Z+me+ny+p
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The arbitrary constants are determined from the conditions of
fastening. Assuming that the point A, the centroid of the left end of
the bar, together with an element of the z-axis and an element of the
zz-plane, are fixed, we havefor x =y =2 =0

u=g=w:0, — == — =}

'These conditions are satisfied by taking all the arbitrary constants
equal to zero. Then

~opl s =) 0= = w=Z

w = RJ B

To get the deflection curve of the axis of the bar we substitute in the
above Egs, () 2 =y = 0. Then
22 Mz

U= — - =

5R = “omr; "=w=0

This is the same deflection curve as is given by the elementary theory
of bending.

Let us consider now any cross section z = ¢, a distance ¢ from the
left end of the bar. After deformation, the points of this cross seetion
will be in the plane

cx

z = = c p—

c+w + 7
t.e,, in pure bending the cross section remains plane as is assumed in
the elementary theory. To examine the deformation of the cross sec-

tion in its plane, consider the sidesy = +b (Fig. 141b). After bending
we have

y=4b+ov= ib(l—y—;)
The sides become inclined as shown in the figure by dotted lines.

The other two sides of the ecross section z = +a are represented
after bending by the equations

T=tag+u= ia~§%{c2+v(a2-—y3)]

T?ley are therefore bent to parabolic curves, which can be replaced
with sufficient accuracy by an arc of a circle of radius B/», when the
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deformation is small. In considering the upper or lower sides of the
bar it is evident that while the curvature of these sides after bending is
convex down in the lengthwise direction, the curvature in the crosswise
direction is convex upward. Contour lines for this anticlastic surface
will be as shown in Fig. 142¢. By taking z and % constant in the first
of Eqs. (R} we find that the equation for the

4 contour lines is

%% 2? — »y* = constant
They are therefore hyperbolas with the asymptotes
& z 22— pyt =
From this equation the angle « (Fig. 142a} is
/ -\ found from
1

-
Fra. 1426a. tan? a¢ = -

This equation has been used for determining Poisson’s ratio ».! If the
upper surface of the beam is polished and a glass plate put over it,
there will be, after bending, an air gap of variable thickness between
the glass plate and the curved surface of the beam. This variable
thickness can be measured optically. A heam of monochromatic

Fia. 142h.

light, say yellow sodium light, perpendicular to the glass plate, will be
reflected partially by the plate and partially by the surface of the beam.
The two reflected rays of light interfere with each other at points where
the thickness of the air gap is such that the difference between the

1A. Cornu, Compt. rend., vol. 69, p. 333, 1869, See also R. Straubel, Wied.
Ann., vol. 68, p. 369, 1899. C
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paths of the two rays is equal to an uneven number of half wave
lengths of the light. The picture shown in Fig. 142b, representing the
hyperbolic eontour lines, was obtained by this means.

89. Pure Bending of Plates. The result of the previous article
can be applied in discussing the bending of plates of uniform thickness,
If stresses . = Ez/R are distributed over the cdges of the plate parallel
to the y-axis (Fig. 143), the sur-
face of the plate will hecome! an
anticlastic surface, the curvature
of which in planes parallel to the
xz-plane is 1/R and in the per-
pendicular direction is —v/R.
If h denotes the thickness of the
plate, M, the bending moment per unit length on the edges parallel to
the y-axis and

the moment of inertia per unit length, the relation between M, and R,
from the previous article, is

1 M, 12M,

ETEI,” Ew (@)

When we have bending moments in two perpendicular directions
(Fig. 144), the curvatures of the deflection surface may be obtained by
superposition. Let 1/R, and
1/Ry be the curvatures of the
deflection surface in planes
parallel to the coordinate planes
zz and 2y, respectively; and lct
z M, and M. be the bending

Fra. 144, moments per unit length on the

edges parallel to the y- and 2-
axes, resl?e.ctively. Then, using Eq. (a) and applying the prineiple of
Buperposition, we find

1 12

E = Ehi (MI - VM?)

1 12

R;z'.E—ha(ﬂfg— VMI) (b)
plaltit is assumed that deflections are small in comparison with the thickness of the
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The moments are considered positive if they produce a deflection of the
plate which is convex down. Solving Eqgs. (b) for M, and M,, we find

Eh?
M1=12(1—v2)( )

()
Ehd
M: = 5=y (fe* R m)

For small deflections we can use the approximations

L w1 0w
R, ot R ay*
I'hen, writing
Eh®
A= D {135)
we find
2
M1 = '-'D(a!f—f" Viu;)
oz ay
\ ) (136)
My = —D(E¥ 4+,
: ay? dx?

The constant D is ealled the flezural rigidity of a plate. In the particu-
lar case when the plate is bent to a cylindrical surface with generators
parallel to the y-axis we have §%w/dy* = 0, and, from Eqgs. (136),

2
S (137)
JME = —“IJ'D '—3?

For the particular case in which M, = M, = M, we have

11 1

Bi R. R
The plate is bent to a spherical surface and the relation between the

curvature and the bending moment is, from Eg. (¢),

__Ew 1 DO+ 138
M=pa-w&"- R (138)

We shall have use for these resulis later.
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The formulas (136) are used in the theory of plates when the bending
moments are not uniform, and are accompanied by shear forces and
surface pressures. For these circumstances they can be deduced from
the general equations of Chap. 9 as approximations valid when the
plate is thin. The elementary theory of bending of bars can be related
to the general equations in a similar manner,*

1 J. N. Goodier, Trans. Roy. Soc. Can., 3d ser., sec. IT1, vol. 32, p. 65, 1938.



CHAPTER 11
TORSION

90. TForsion of Prismatical Bars. It has already been shown
(Art. 87) that the exact soluiion of the torsional problem for a circular
shaft is obtained if we assume that the cross sections of the bar remain
plane and rotate without any distortion during twist. This theory,
developed by Coulomb,? was applied later by Navier? to prismatical
bars of noneircular cross sections. Making the above assumption he
arrived at the erroneous conclusions that, for a given torque, the angle
of twist of bars is inversely proportional to the eentroidal polar moment
of inertia of the cross section, and that the maximum shearing stress
oceurs at the points most remote from the eentroid of the cross section.?
It is easy to see that the above assumption is in con-

0 tradiction with the boundary conditions, Take,
Tyz, * for instance, a bar of rectangular cross section
/ (Fig. 145). From Navier's assumption it follows
that at any point A on the boundary the shearing
me " stress should aet in the direction perpendicular to
T the radius 04. Resolving this stress into two com-
ponents 7, and 7., it is evident that there should be a complementary
shearing stress, equal to r,,, on the clement of the lateral surface of the
bar at the point A {(see page 4), which is in contradiction with the
assumption that the lateral surface of the bar is free from external
forees, the twist being produced by couples applied at the ends. A
simple experiment with a rectangular bar, represented in Fig. 146,
shows that the cross sections of the bar do not remain plane during
torsion, and that the distortions of rectangular elements on the surface
of the bar are greatest at the middles of the sides, 7.¢., at the points
which are nearest to the axis of the bar.

1 “Histoire de 'académie,” 1784, pp. 229-269, Paris, 1787.

® Navier, ‘“Résumé des legons sur 'application de Ia méeanique,” 3d ed., Paris,
1864, edited by Saint-Venant.

1 These conclusions are correct for o thin elastic layer, corresponding to a slice
of the bar between two cross sections, attached to rigid plates, See J, N, Goodier,

J. Applied Phys., vol. 13, p. 167, 1942,
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The correct solution of the problem of torsion of prismatical bars by
couples applied at the ends was given by Saint-Venant.?

He used the so-called semi<tnverse method. That is, at the start he
made eertain assumptions as to the deformation of the twisted bar and
showed that with these assumptions he ecould
satisfy the equations of equilibrium (127) and the
boundary conditions (128). Then from the unique-
ness of solutions of the elasticity equations
(Art. 82) it follows that the assumptions made at
the start are correct and the solution obtained is
the exact solution of the torsion problem.

Consider a prismatical bar of any cross section
twisted by couples applied at the ends, Fig, 147,
Guided by the solution for a circular shaft (page
249), Saint-Venant assumes that the deformation
of the twisted shaft consists (@) of rotations of eross
sections of the shaft as in the case of a eircular shaft
and (b} of warping of the cross seetions which Fre. 146.
is the same for all cross sections. Taking the origin of coordinates in
an end cross section (Fig. 147) we find that the displacements corre-

sponding to rotation of cross sections are

.
¥ u = —zy, v = fzx (a)
where 8z is the angle of rotation of the cross section
at a distance 2 from the origin.
The warping of cross sections is defined by a
. funetion
i w = ff(z,y) (&)
Fie. 147.

With the assumed displacements (a) and (5) we
caleulate the components of strain from Egs. (2), which give

€:=ey=ez='yw=0

_ow , ou_ oy
Lol _e(ax )

G o (%
Yys = + —B(By-{-x)

! Mém. savants élrangers, vol. 14, 1855. See also Saint-Venant’s note to Navier's
book, loc. cit., and 1. Todhunter and K. Pearson, *History of the Theory of
Elasticity,” vol. 2.

{¢)
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The corresponding components of stress, from Egs. (3) and (6), are

Gy = Oy =0 = Ty = O

—aqa(® —
T2z = GO (6‘:1: )

It can be seen that with the assumptions (a) and (b) regarding the
deformation, there will be no normal stresses acting between the
longitudinal fibers of the shaft or in the longitudinal direction of those
fibers. There also will be no distortion in the planes of cross sections,
since e, &, Y vanish, We have af each point pure shear, defined by
the components r,, and r,,. The function ¢ (r,y), defining warping of
cross section, must now be deter-
mined in such a way that equa~
tions of equilibrium (127) will be
satisfied. Substituting expres-
sions (d) in these equations and
neglecting body forces we find
that the function ¢ must satisfy
the equation

(d)

Y _
Fe + a_yg = (139)
Y Fio. 148, Consider now the boundary con-

ditions {128)., For the lateral sur-
face of the bar, which is free from external forces and has normals per-
pendicular to the z-axis, wehave X = ¥ = Z = Oand cos (Nz) = n = 0.
The first two of Eqgs. (128) are identically satisfied and the third gives

Ted + Tt = 0 {(e)

which means that the resultant shearing siress at the boundary is
directed along the tangent to the boundary, Fig. 148. It was shown
before (see page 258) that this condition must be satisfied if the lateral
surface of the bar is free from external forees.

Considering an infinitesimal element abe at the boundary and assum-
ing that s is increasing in the direction from ¢ to a, we have

dr

E=cos(Nx)=dE%,- m = cos {Ny) = -
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and Eq. (¢) becomes

N dy (o de
(55 y)E (a—y-i-a:)a;—o {(140)

Thus each problem of torsion is reduced to the problem of finding a
function ¢ satisfying Eq. (139) and the boundary condition (140).
An alternative procedure, which has the advantage of leading {0 a
simpler boundary condition, is as follows. In view of the vanishing
of o2, 0y, 72, Ty [Egs. (d)], the equations of equilibrium (127) reduce to

arz, Oty O7ee | OTys

3z ~ dz ’ _ég—l—ay

=0

The first two are already satisfied since 7., and ,,, as given by Eqs. (d),
arc independent of z. The third means that we can express ., and
Tyo 88

9 &
Ty = _qb} Ty: = — B_i (141)

where ¢ is a function of z and y, ealled the stress function.
From Eqgs. (141} and (d} we have

3¢ _ (3 o _ . oy
Eliminating ¢ by differentiating the first with respect to y, the second

with respect to x, and subtracting from the first, we find that the stress
funetion must satisfy the differential equation

¢ | 9%
Fye3 a_yg == (142}
where
F = —2G8 (143)

The boundary condition (e) becomes, introducing Eqs. (141),

bedy | 26dz _ do _
dyds "asds ds° (144)

This shows that the stress function ¢ must be constant along the
b‘oundary of the cross section. In the ease of singly conneeted bounda-
Tles, e.g., for solid bars, this constant ean be chosen arbitrarily, and in
th_e following discussion we shall take it equal to zero. Thus the deter-
Mmination of the stress distribution over a eross scetion of a twisted bar

"It was introduced by L. Prandtl. See Physik, Z., vol. 4, 1903,
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consists in finding the function ¢ which satisfies Eq. (142) and is zero
at the boundary. Several applications of this general theory to par-
ticular shapes of cross sections will be shown later.

Let us consider now the conditions at the ends of the twisted bar.
The normals to the end cross sections are parallel to the z-axis. Hence
l=m=0,n= %1 and Egs. (128) become

X- = isz, Y = +7y (g)

in which the 4 sign should be taken for the end of the bar for which
the external normal has the direction of the positive z-axis, as for the
lower end of the bar in Fig. 147. We see that over the ends the shear-
ing forces are distributed in the same manner as the shearing stresses
over the cross sections of the bar. It is easy to prove that these forces
give us a torque. Substituting in Eqgs. (9) from (141) and observing
that ¢ at the boundary is zero, we find

- I d¢
Xdxdy = v A2 d /——dd=/d/—d=0
// i //Txy/f’yxy )y
f/?dxdy=/[ry,dxdy —//g—gdxdy
- _ 9 . _
= /dyfaxdx—o

Thus the resultant of the forces distributed over the ends of the bar is
zero, and these forces represent a couple the magnitude of which is

M¢=// (Yz — Xy) dedy = —//%zxdxdy

—ff%—‘;ydwdy ®)

Integrating this by parts, and observing that ¢ = 0 at the boundary,

we find
M, =2[[¢dxdy (145)

each of the integrals in the last member of Egs. (k) contributing one
half of this torque. Thus we find that half the torque is due to the
stress component 7, and the other half to 7,..

We see that by assuming the displacements (a) and (b), and deter-

mining the stress components 7.., 74, from Eqs. (141), (142), and (144),
we obtain a stress distribution which satisfies the equations of equilib-
rium (127), leaves the lateral surface of the bar free from external
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forces, and sets up at the ends the torque given by Eq. (145). The
compatibility conditions (130) need not be considered since the stress
has been derived from the displacements (a) and (b). Thus all the
equations of elasticity are satisfied and the solution obtained in this
manner is the exact solution of the torsion problem.

It was pointed out that the solution requires that the forces at the
ends of the bar should be distributed in a definite manner. But the
practical application of the solution is not limited to such cases. From
Saint-Venant’s principle it follows that in a long twisted bar, at a suffi-
cient distance from the ends, the stresses depend only on the magnitude
of the torque M, and are practically
independent of the manner in which the e
tractions are distributed over the ends.

91. Bars with Elliptical Cross Section.

o

Let the boundary of the cross section *
(Fig. 149) be given by the equation i >4
z? | y? B
) + 5 1=0 (a) 1,
Then Eq. (142) and the boundary con- Fra. 149.
dition (144) are satisfied by taking the stress function in the form
_ wZ y2
¢—’m'(a—2+ﬁ——1) (b)
in which m is a constant. Substituting (b) into Eq. (142), we find
_ a®?
"= @t
Hence
_ a®mF z? |y
¢‘2(a2+b2)(a_2+?_1> ©

The magnitu(%e of the constant F will now be determined from Eq.
(145).  Substituting in this equation from (¢), we find

_ e (1 1

ince

bad
//xzdxdy=ly=’r7“, //y2dxdy=I,=1rzb3;
//dxdy:wab
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we find, from (d),

wa*b*F
M=~ 5@+
from which
__ 2M(a* + b%)
F= Ta’b? (©)
Then, from (c),
- _ M. (2
¢_;%?+21> )

Substituting in Eqgs. (141), the stress components are

_2My _ 2Me (146)

Tzz = ) T, —
xz P ab 3 yz Ta Sb

The ratio of the stress components is proportional to the ratio y/z and
hence is constant along any radius such as OA (Fig. 149). This means
that the resultant shearing stress along any radius OA has a constant
direction which evidently coincides with the direction of the tangent to
the boundary at the point A. Along the vertical axis OB the stress
component 7y, is zero, and the resultant stress is equal to 7,,. Along
the horizontal axis OD the resultant shearing stress is equal to 7. It
is evident that the maximum stress is at the boundary, and it can
easily be proved that this maximum occurs at the ends of the minor
axis of the ellipse. Substituting y = b in the first of Eqgs. (146), we
find that the absolute value of this maximum is

oM,

For a = b this formula coincides with the well-known formula for a

circular cross section.
Substituting (¢) in Eq. (143) we find the expression for the angle of

twist
2 2
0= 1M, ‘;_ﬂ (148)

The factor by which we divide torque to obtain the twist per unit
length is called the torsional rigidity. Denoting it by C, its value for
the elliptic cross section, from (148), is

3h3 4
Ta’h*G¢ _ G (A) (149)
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in which
b3 3
A = mab, I,,=’i‘;~+"bT“
are the. area and centroidal moment of inertia of the cross section.
Having the stress components (146) we can easily obtain the dis-
placements. The components « and v are given by Eqs. (a) of Art. 90.
The displacement w is found from
Eqgs. (d) and (b) of Art. 90. Sub-
stituting from Eqgs. (146) and
(148) and integrating, we find

_ L 0 — aday

w= M, (150)
This shows that the contour lines Torgue
for the warped cross section are Fre. 150.

hyperbolas having the principal axes of the ellipse as asymptotes
(Fig. 150).

92, Otl?er Elementary Solutions. In studying the torsional problem, Saint-
Venant discussed several solutions of Eq. (142) in the form of polynomials. To
solve the problem let us represent the stress function in the form

F
¢ = ¢1 +Z(x’+y2) (a)
Then, from Eq. (142),
0%¢; |, I
9z2 + ay? =0 ®

and along the boundary, from Eq. (144),
s :
¢+ i (z? + y?) = constant (c)

;I}‘lhus the torsional 'problem is reduced to obtaining solutions of Eq. (b) satisfying
e boun(‘iary condition (c). To get solutions in the form of polynomials we take
the function of the complex variable

(= + iy~ (@)

'(?;12 real alnd the 1ma'ginary Parts of this expression are each solutions of Eq. (b)
o paeg;. 82). Taking, fOI: Instance, n = 2 we obtain the solutions z? — y? and
. Y. \ ith n = 3 we. obtain solutions z3 — 3zy? and 3z% — 3. With n = 4

© arrive at solutions in the form of homogeneous functions of the fourth degree:

and C P . . . . .

80 on. Omblnlng Such Solutlons we can Obtaln various SOlublO‘nS m t:he fOInl
f .

O pOIVDOmIaIS.

Taking, for instance,

F Fl1
¢=f@ M ta=g[iE - p@ =3 +] @
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we obtain a solution of Eq. (142) in the form of a polynomial of the third degree
with constants @ and b which will be adjusted later. This polynomial is a solution
of the torsional problem if it satisfies the boundary condition (144), i.e., if the
boundary of the cross section of the bar is given by the equation

Loy — X s _ ggye -
By changing the constant b in this equation, we obtain various shapes of the cross

section.
Taking b = —z%a? we arrive at the solution for the equilateral triangle. Equa-
tion (f) in this case can be presented in the form

@ -3y —3a)@+ V3y —Fa)@@ +3a) =0
which is the product of the three equations of the sides of the triangle shown in

Fig. 151. Observing that F = —2G6 and sub-
stituting

T ¢ = —Gf [% (z? + 9% — %l (z3 — 3zy?) — %a’]

2a a x @

&

into Eqs. (141), we obtain the stress components
/ rss and 74 Along the z-axis, 7., = 0. from
a symmetry, and we find, from (g),
3
Y

3Go (2
Tyz = %‘ (—‘31:5 - xz) (h)

The largest stress is found at the middle of the sides of the triangle, where, from (h),

Fia. 151.

Tmax. = G‘_;(—l (k)

A% the corners of the triangle the shearing stress is zero (see Fig. 151).
Substituting (g) into Eq. (145), we find

_ Gba*
L= =
153

Taking a solution of Eq. (142) in the form of a polynomial of the fourth degree
containing only even powers of z and y, we obtain the stress function

3
=3 061, ®

¢ = —Go[§<x=+y2>—§<x4—6z2y2+y4>+§<a—1>]

The boundary condition (144) is satisfied if the boundary of the cross section is
given by the equation

2t 4y —a(zt — 6y +y) +a—1=0
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By changing g,_Saint-Venant obtained the family of cross sections shown in Fig.
152a. Con.nbmlng solutions in the form of polynomials of the fourth and eighth
degrees, Saint-Venant arrived at the cross section shown in Fig. 1525,

On the basis of his investigations, Saint-Venant drew certain general
conclusions of practical interest. He showed that, in the case of singly
connected boundaries and for a given cross-sectional area, the torsional
rigidity increases, if the polar moment of inertia of the cross section
decreases. Thus for a given amount of material the circular shaft
gives the largest torsional rigidity. Similar conclusions can be drawn
regarding the maximum shearing stress. For a given torque and cross-

Fic. 152.

se.ctlonal area the maximum stress is the smallest for the cross section
with the sx.nallest polar moment of inertia.
o _Comparmg various cross sections with singly connected boundaries,
; ;:i—lVe{)lant f.ound that the to‘rsional rigidity can be calculated approx-
e }; y using Eq. (149), v.e. by ‘replacing the given shaft by the
of an elliptic cross section having the same cross-sectional area
anr(} the same polar moment of inertia as the given shaft has.
Obt;iliedma};u&um stress in all cases discussed by Saint-Venant was
contens (x)a% the boundary. at the points which are the nearest to the
ot e cross section. A more detailed investigation of this
lon by Filon! showed that there are cases where the points of

M
aXimum stress, although always at the boundary, are not the nearest
bomts to the centroid of the cross section.

'L. N. G. Filon, Trans. Ro
. , . Roy. Soc. (London), series A, vol. 193, 1900. S
Paper by G. Polya, Z. angew. Math. M. ech., vol. 10, p. 353, 19’30.  Beeabothe
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Takingn = landn = —1in expression (d), and using polar coordinates r and »
we obtain the following solutions of Eq. (b):

¢y = rCcos ¢, ¢1=%cos¢
Then the stress function {(a) ean be taken in the form
Py _Fa Fbla _F e
¢-—4(ac + y?) 5 T oS Y + - cos ¢ Zb (m)

in which a and b are constants. It will satisfy the boundary condition (144) if
at the boundary of the cross section we have

(7\ ¢ =0, or, from (m),
¥
— a 12— bt —2a(r? — b)Y =0 (n)
e\ 4 d
{0 ” X
N

or
* = b) (1 - 2“‘;&) -0 (0

r
which represents the equation of the boundary
of the cross section shown in Fig. 153.! By
Y taking
Fia. 153. r2 — b2 =0

we obtain a circle of radius b with the center at the origin; and by taking

_2acos¢=

1 0

we have a circle of radius a touching the y-axis at the origin. The maximum
shearing stress is at the point A and is

Tmax. = G0(2a - b) (p)

When b is very small in comparison with a, 7.e., when we have a semicircular
longitudinal groove of very small radius, the stress at the bottom of the groove is 4
twice as great as the maximum stress in the circular shaft of radius a without the 4

groove.

93. Membrane Analogy. In the solution of torsional problems the !
membrane analogy, introduced by L. Prandtl? has proved very valua- "‘,
ble. Imagine a homogeneous membrane (Fig. 154) supported at the §
edges, with the same outline as that of the cross section of the twisted §

! This problem was discussed by C. Weber, Forschungsarbeiten, No. 249, 1921.

2 Physik. Z., vol. 4, 1903. See also Anthes, Dinglers polytech. J., p. 342, 1906.
Further development of the analogy and applications in various cases are given 3
in the papers by A. A. Griffith and G. I. Taylor, Tech. Rept. Adv. Comm. Aero- 4

nautics, vol. 3, pp. 910 and 938, 1917-1918.
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bar, subjected to a uniform tension at the edges and a uniform lateral
pressure. If ¢ is the pressure per unit area of the membrane and S is
the uniform tension per unit length of its boundary, the tensile forces
acting on the sides ad and bc of an infinitesimal element abed (Fig. 154)
give, in the case of small deflections of the membrane, a resultant in the
upward direction —S(8%/9x2) dx dy. In the same manner the tensile

L

o

Fic. 154.

forces acting on the other two sides of the element give the resultant
—8(8%/0y?) dx dy and the equation of equilibrium of the element is

0%z 9%z
gdxdy + Sa—ﬁdxdy + Sa—yzda:dy =0
from which
% | 0% q

Fy @Q =3 (151)

At the boundary the deflection of the membrane is zero. Comparing
Eq. (151) and the boundary condition for the deflections z of the mem-
brane with Eq. (142) and the boundary condition (144) (see page 261)
for the stress function ¢, we conclude that these two problems are
identical. Hence from the deflections of the membrane we can obtain
values of ¢ by replacing the quantity —(g/S) of Eq. (151) with the
quantity F = —2G6 of Eq. (142).

Having the deflection surface of the membrane represented by con-
t(?ur lines (Fig. 155), several important conclusions regarding stress
distribution in torsion can be obtained. Consider any point B on the
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membrane. The deflection of the membrane along the contour line
through this point is constant, and we have

The corresponding equation for the stress function ¢ is

96 _ (9¢dy  d¢dz) _ dy _ dv_
ds dy ds " owds) ~ ""ds  "ds

This expresses that the projection of the resultant shearing stress at a
point B on the normal N to the contour line is zero and therefore we

L, 0 |l may conclude that the shearing stress
S < * at a point B in the twisted bar is
ml { in the direction of the tangent to the

| z | contour line through this point. The

curves drawn in the cross section of
a twisted bar, in such a manner that
the resultant shearing stress at any
% point of the curve is in the direction
of the tangent to the curve, are called

T

B>

A lines of shearing stress. Thus the
N contour lines of the membrane are the
Y lines of shearing stress for the cross

Fig. 155. section of the twisted bar.

The magnitude of the resultant stress r at B (Fig. 155) is obtained
by projecting on the tangent the stress components 7, and 7,.. Then

T = 1, c08 (Nz) — 7a cos (Ny)

Substituting
3¢ __ 9 _ds Y
Tey = 3 T = = g0 cos (Nz) = an cos (Ny) an
we obtain

T

d¢ dz 6¢dy) __dé
B (a—x dn " dydn)  dn
Thus the magnitude of the shearing stress at B is given by the maxi-
mum slope of the membrane at this point. It is only necessary in the
expression for the slope to replace ¢/S by 2G6. From this it can be
concluded that the maximum shear acts at the points where the contour
lines are closest to each other.
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From Eq. (145) it can be concluded that double the volume bounded
by the deflected membrane and the xy-plane (Fig. 155) represents the
torque, provided ¢/8 is replaced by 2G4.

It may be observed that the form of the membrane, and therefore the stress
distribution, is the same no matter what point in the cross section is taken for
origin in the torsion problem. This point, of course, represents the axis of rotation
of the cross sections. It is at first sight surprising that the cross sections can
rotate about a different (parallel) axis when still subjected to the same torque.
The difference, however, is merely a matter of rigid body rotation. Consider,
for instance, a circular cylinder twisted by rotations about the central axis. A
generator on the surface becomes inclined to its original direction, but can be
brought back by a rigid body rotation of the whole cylinder about a diameter.
The final positions of the cross sections then correspond to torsional rotations
about this generator as a fixed axis. The cross sections remain plane but become
inclined to their original planes in virtue of the rigid body rotation of the cylinder.
In an arbitrary section there will be warping, and with a given choice of axis the
inclination of a given element of area in the end section is definite, dw/dz and aw/ dy
being given by Egs. (d) and (b) of Art. 90. Such an element can be brought back
to its original orientation by a rigid body rotation about an axis in the end section.
This rotation will change the axis of the torsional rotations to a parallel axis. Thus
a definite axis or center of torsional rotation, or center of torsion, can be identified
provided the final orientation of an element of area in the end section is specified—
as for instance if the element is completely fixed.

Let us consider now the equilibrium condition of the portion mn of
the membrane bounded by a contour line (Fig. 155). The slope of the
membrane along this line is proportional at each point to the shearing
stress 7 and equal to 7 - ¢/S - 1/2G9. Then denoting by 4 the horizon-
tal projection of the portion mn of the membrane, the equation of equi-
librium of this portion is

g1 )4 =
/S(TS2G0>ds—qA

frds = 2GeA (152)
From this the average value of the shearing stress along a contour line
can be obtained.

By taking g = 0, 4.e., considering a membrane without lateral load.
we arrive at the equation

or

0% %
Fre + E =0 (153)

Whic.h coincides with Eq. (b) of the previous article for the function o1
Taking the ordinates of the membrane at the boundary so that

F
2+ I (z? + %) = constant (154)
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the boundary condition (¢) of the previous article is also satisfied.
Thus we can obtain the function ¢; from the deflection surface of an
unloaded membrane, provided the ordinates of the membrane surface
have definite values at the boundary. It will be shown later that both
loaded and unloaded membranes can be used for determining stress
distributions in twisted bars by experiment.

The membrane analogy is useful, not only when the bar is twisted
within the elastic limit, but also when the material yields in certain
portions of the cross section.! Assuming that the shearing stress
remains constant during yielding, the stress distribution in the elastic
zone of the cross section is represented by the membrane as before, but
in the plastic zone the stress will be given by a surface having a constant

e

X A

& s P N
6 14 x \’*L\L BEALIY)

T o E A
_L_Lg (a) M (6}

Y
Fia. 156.

maximum slope corresponding to the yield stress. Imagine such a sur-
face constructed as a roof on the cross section of the bar and the mem-
brane stretched and loaded as explained before. On increasing the
pressure we arrive at the condition when the membrane begins to touch
the roof. This corresponds to the beginning of plastic flow in the
twisted bar. As the pressure is increased, certain portions of the mem-
brane come into contact with the roof. These portions of contact give
us the regions of plastic flow in the twisted bar. Interesting experi-
ments illustrating this theory were made by A. N4dai.2

94. Torsion of a Bar of Narrow Rectangular Cross Section. In the
case of a narrow rectangular cross section the membrane analogy gives
a very simple solution of the torsional problem. Neglecting the effect
of the short sides of the rectangle and assuming that the surface of the
slightly deflected membrane is cylindrical (Fig. 156), we obtain the

! This was indicated by L. Prandtl; see A. N4dai, Z. angew. Math. Mech., vol. 3,
p- 442, 1923. See also E. Trefftz, ibid., vol. 5, p. 64, 1925.

2 See Trans. A.S.M.E., Applied Mechanics Division, 1930. See also A. Nddai,
‘‘Theory of Flow and Fracture of Solids,” 1950, Chaps. 85 and 36.
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deflection of the membrane from the elementary formula for the
parabolic deflection curve of a uniformly loaded string? (Fig. 156b),

-
6= 33 (a)
From the known properties of parabolic curves, the maximum slope,
which occurs in the middle portions of the long sides of the rectangle, is
equal to

45 _ gqc

T 28 ®
The volume bounded by the deflected membrane and the xy-plane,

calculated as for a parabolic cylinder, is

g

2

Now using the membrane analogy and substituting 2G¢ for ¢/S in (b)
and (¢), we find

Tmaz. = €30, M, = 3bc*Go (d)
from which
_ M
0= bvwe (155)
—_ ‘Mt

From the parabolic deflection curve (Fig. 156b)

48 f¢c? 2
=ola—*

and the slope of the membrane at any point is

dz _ 8oz

e _ 22 __4
dz c? S
The corresponding stress in the twisted bar is
Tye = 2(0x

The stress distribution follows a linear law as shown in Fig. 156a.
Calculating the magnitude of the torque corresponding to this stress
distribution we find

Tmax. | 2

ve . _1 2,
4 4 3C b—"GbCTmax.

! See 8. Timoshenko and D. H. Young, ‘‘Engineering Mechanics,” p. 35.
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This is only one half of the total torque given by Eq. (156). The sec-
ond half is given by the stress components 7,,, which were entirely
neglected when we assumed that the surface of the deflected membrane
is cylindrical. Although these stresses have an appreciable magnitude
only near the short sides of the rectangle and their maximum values are
smaller than 7.... as calculated above, they
L) act at a greater distance from the axis of the
bar and their moment represents the second
half of the torque M.t

It is interesting to note that the 7.,.. given
by the first of Eqgs. (d) is twice as great as in
the case of a circular shaft with diameter equal
to ¢ and subjected to the same twist 4. This
can be explained if we consider the warping of
the cross sections. The sides of cross sections
such as nn, (Fig. 157) remain normal to the
longitudinal fibers of the bar at the corners,
as is shown at the points n and n;. The
total shear of an element such as abed con-
sists of two parts: the part +v; due to rotation
of the cross section about the axis of the bar and equal to the shear in
the circular bar of diameter ¢; and the part v; due to warping of the
cross section. In the case of a narrow rectangular cross section
v2 = 71, and the resultant shear is twice as great as in the case of a
circular cross section of the diameter c.

Equations (155) and (156), obtained above for a narrow rectangle,
can also be used in the cases of thin-
walled bars of such cross sections as
shown in Fig. 158 by setting b equal to
the developed length of the cross section.
This follows from the fact that, if the
thickness ¢ of a slotted tube (Fig. 158a)
is small in comparison with the diam-
eter, the maximum slope of the mem-
brane and the volume bounded by the
membrane will be nearly the same as for a narrow rectangular cross
section of the width ¢ and of the same length as the circumference of
the middle surface of the tube. An analogous conclusion can be made
also for a channel (Fig. 158b). It should be noted that in this latter

1 This question was cleared up by Lord Kelvin; see Kelvin and Tait, ‘“Natural
Philosophy,” vol. 2, p. 267.

(a) (6)
Fia. 157.

(a) (6)
F1c. 158.
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case a considerable stress concentration takes place at the reentrant
corners, depending on the magnitude of the radius r of the fillets, and
Eq. (156) cannot be applied at these points. A more detailed dis-
cussion of this subject will be given in Art. 98.

95. Torsion of Rectangular Bars. Using the membrane analogy,
the problem reduces to finding the deflections of a uniformly loaded
rectangular membrane as shown in Fig. 159. These deflections must
satisfy the Eq. (151)

0%

P = T8 (@

and be zero at the boundary.
The condition of symmetry with respect to the y-axis and the

boundary conditions at the sides x = +a of the b o]

rectangle are satisfied by taking z in the form of a —T—

series, T ;
: 5 _L
z= z ba cos 22y, ®) "'" 01—
i

2a
n=135,...

in which by, bs, ... are constant coefficients |
and Y, Y3 ... are functions of y only. Sub- ¥
stituting (b) in Eq. (a), and observing that the Fre. 159.
right side of this equation can be presented in the form of a series,!

©

4 n-1
%Er(_l) 2 cosﬁ%x ()

n=13,5, ...

we arrive at the following equation for determining ¥,:

,  nPr? q 4 n—1
P e = g, (D @
from which
=A smh y + B cosh —-2 mry 4+ —F— 16a? 1 _l
Snirip, (~1) 7 ©

From the condition of symmetry of the deflection surface of the
membrane with respect to the z-axis, it follows that the constant of
integration A must be zero. The constant B is determined from the

!B, O. Peirce, “A Short Table of Integrals,” p. 95, 1910,
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condition that the deflections of the membrane are zero for y = +b,
1.¢., (Ya)y—es = 0, which gives

16¢a? 1 __cosh (n1ry/2a)]
Yo = Snéréh, (=1) [1 cosh (nwb/2a) )

and the general expression for the deflection surface of the membrane,
from (b), becomes

_ 16qa? 1 (_1)"—;1 | - cosh (nwry/2a) cos L
*= B n? cosh (nwb/2a) 2a
n=1,3,5,...

Replacing q/S by 2G6, we obtain for the stress function

©

32G0a? 1 n-1 cosh (nry/2a) nrx
¢ = 3 z ;3(—1) ’ [1 "~ cosh (nwb/2a) °%% 59 @

n=1,3,5,...

The stress components are now obtained from Egs. (141) by differ-
entiation. For instance,

3¢ 16G6a 1, n-1 _cosh (nry/2a) | . nrx
A PR 1_7:2( DR cosh (nrb/2a) g (h)

n=13,5,...

Assuming that b > a, the maximum shearing stress, corresponding to
the maximum slope of the membrane, is at the middle points of the
long sides x = *a of the rectangle. Substituting x = a,y = 0in (h),
we find

Tmax.

7 n? " cosh (nxb/2a)
n= 1,3,5...

_ 16Goa 1 [1 1 ]

or, observing that

1 1 _wt
Itmtet =3

we have

16Goa 1 157
Toux. = 2600 — 72 n? cosh (nwb,/2a) (157)

n=13,5,...
The infinite series on the right side, for b > a, converges very rapidly
and there is no difficulty in calculating 7m... with sufﬁcu?nt accuracy for
any particular value of the ratio b/a. For instance, in the case of &
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very narrow rectangle, b/a becomes a large number, so that the sum of
the infinite series in (157) can be neglected, and we find

Tmax, = 2G6a

This coincides with the first of the Eqgs. (d) of the previous article.
In the case of a square cross section, @ = b; and we find, from Eq.
(157),

Tmax. = 2G0a ll — 1 1

8
w [cosh (x/2) + 9 cosh (3r/2) + o ]}

8( 1 1
= 2Gta [1 ~ (2.509 toxsser T )]
= 1.351G6a (158)

In general we obtain
Tmax, = k2G0a (159)

in which k is a numerical factor depending on the ratio b/a. Several
values of this factor are given in the table below.

TaBLE oF CONSTANTS FOR TORSION OF A RECTANGULAR BAR

b k I ks d k I ks
a a

1.0 | 0.675 | 0.1406 | 0.208 | 3 | 0.985 | 0.263 | 0.267
12 | 0759 | 0.166 | 0219 | 4 | 0.997 | 0.281 | 0.282
15 | 088 | 019 | 0230 | 5 | 0.999 | 0.201 | 0.291
2.0 | 0930 | 0.220 | 0.246 | 10 | 1.000 | 0.312 | 0.312
2.5 | 0968 | 0249 | 0258 | » | 1.000 | 0.333 | 0.333

Let us calculate now the torque M, as a function of the twist 6.
Using Eq. (145) for this purpose, we find

©

a b 2 fa b n—1
o[ [ oS0 ] 5 de
—a J-—b T —a J b n .

n=13,5,...

_cosh (nry/20)] ez _3266(20)%26) 0 1
[1 cosh (nxb/2a) | °*° 24 dvdy = wt nt
n=13,5...
4
_ 64G0(2a) z 1 op 7
w n 2a

n=13,5,...
or, observing that!

1 1 1 t
it:tmt =g

!B. O, Peirce, “A Short Table of Integrals,” p. 90, 1910,
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we have

1 S b

n=13805,...
The series on the right side converges very rapidly, and M, can easily

be evaluated for any value of the ratio a/b. In the case of a narrow
rectangle we can take

nwb
tanh—2—a- = 1
Then
M, = %G0(2a)3(2b) (1 — 0.630 %) @61)
" In the case of a square, a = b; and (160) gives
M, = 0.1406G0(2a)* (162)

In general the torque can be represented by the equation
M, = k:G6(2a)3(2b) (163)

in which %: is a numerical factor depending on the magnitude of the
ratio b/a. Several values of this factor are given in the table on
page 277.
Substituting the value of 8 from Eq. (163) into Eq. (159), we obtain
the maximum shearing stress as a function of
the torque in the form

M
a2 Tmax. = m (164)
o iy X
a/z where ks is a numerical factor the values of
which can be taken from the table on page 277.
y 96. Additional Results. By using infinite series
Fra. 160. as in the previous article, the torsional problem can be

solved for several other shapes of cross sections.
In the case of a sector of a circle! (Fig. 160) the boundaries are givenby ¢ = fa/2,
r=0,r =a. We take a stress function in the form

2
¢ = +§(x2+y2) =¢1—(—;%T—

1 This problem was discussed by Saint-Venant, Compt. rend., vol. 87, pp. 849
and 893, 1878. See also A. G. Greenhill, Messenger of Math., vol. 9, p. 35, 1879.
Another method of solution by using Bessel’s function was given by A. Dinnik,
Bull. Don Polytech. Inst., Novotcherkassk, vol. 1, p. 309. See also A. Foppl and
L. Foppl, “Drang und Zwang,” p. 96, 1928.
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The function ¢, must satisfy Laplace’s equation (see Art. 92).
of this equation in the form of the series

_GOTrcos 2y . =
¢1 —5[————00801 + a? 2 Au(g)acosn—:‘——‘/’]

n=13,5,..

Taking a solution

we arrive at the stress function

(el] cos 20\ N o

=27 2 _ Gos av T\a

¢ =3 [ 7 (1 P ) + a? E An (‘—1—) cos n:b]
n=13,5,...

This expression is zero at the boundaries:

=+ 2
v =13

To make it vanish also along the circular boundary r = a, we must put
o0

Aﬂcosw =1- cos 29
n=13,5,... « 008 @
from which we obtain, in the usual way,
n+1
162 -
An = E‘ (—1) 2 !

3
T n(n+2—m)(n—gE
w T

The stress function is therefore

Geé cos 2y 16a2%a:?
¢ =) —p2 R 4 1067
2 ’ (1 cos o + x?

©

ntl nr cos nry
2 o

2 O

fulzstit;ting into Eq. (145), we find M, = 2] [¢r d¢ dr = kGa%, in which k is a
actor depending on the angle « of the sector. Several values off k, cal
Saint-Venant, are given below. , caleulated by

« = T Ll s 27 3r 5
1 3 2 s || % | 37| =
'k]c = |0.0181| 0.0349 | 0.0825 | 0.148 | 0.296 | 0.5721| 0.672! | 0.878?
kl = | ...... 0.452 | ...... 0.622 1 0.719 | ..... | ..... | ......
2 = | ...... 0.490 | ...... 0652 10.849 | ..... | ..... | ......

! These figures have been ¢ i

I se fig > orrefcted by M. Aisseu. Sece G. P6lya and G. Szego, ‘“‘Isoperi i

nf(’glha.lltles in Mathematical Phyics,” p. 261, Princeton University Press, 1951, perimetrie
is figure has been corrected by Dinnik, loc. cst.
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The maximum shearing stresses along the circular and along the radial boundaries
are given by the formulas k.Gaé and k.Ga#d, respectively. Several values of ki
and k. are given in the table on page 279.

The solution for a curvilinear rectangle bounded by two concentric circular arcs
and two radii can be obtained in the same manner.!

In the case of an isosceles right-angled triangle? the angle of twist is given by the
equation

in which a is the length of the equal sides of the triangle. The maximum shearing
stress is at the middle of the hypotenuse and is equal to

e, = 18.02 2
a

By introducing curvilinear coordinates several other cross sections have been
investigated. Taking elliptic coordinates (see page 193) and using conjugate
functions £ and 5, determined by the equation

z 4+ 1y = ¢ cosh (£ 4 in)

we arrive at cross sections bounded by confocal ellipses and hyperbolas.? By
using the equation*

z +iy = 5 + )

we obtain cross sections bounded by orthogonal parabolas.

Solutions have been found for many other sections,’ solid and hollow, including
polygons, angles, cardioids, lemniseates,® and circles with one or several eccentric
holes.” When the section can be conformally mapped into the unit circle a solu-
tion can always be written down in terms of a complex integral.®

97. Solution of Torsional Problems by Energy Method.® We have
seen that the solution of torsional problems is reduced in each particu-

1 Saint-Venant, loc. cit. See also A. E. H. Love, ““Theory of Elasticity,” 4th ed.
p. 319, 1927.

2 B. G. Galerkin, Bull. acad. des sci. de Russ., p. 111, 1919; G. Kolosoff, Compt.
rend., vol. 178, p. 2057, 1924.

3 A. G. Greenhill, Quart. J. Math., vol. 16, 1879. See also L. N. G. Filon, Trans.
Roy. Soc. (London), series A, vol. 193, 1900.

+E. W. Anderson and D. L. Holl, Jowa State Coll. J. Sci., vol. 3, p. 231, 1929. .

5 A compilation is given by T. J. Higgins, Am. J. Phys., vol. 10, p. 248, 1942.

¢ References to papers giving exact solutions for such sections, too numerous to
include here, may be found by consulting Applied Mechanics-Reviews, Science
Abstracts A, Mathematical Reviews, and Zeniralblatt fir Mechanik. Most of the
references on p. 331 refer to or include the corresponding torsion problem.

7See C. B. Ling, Quart. Applied Math., vol. 5, p. 168, 1947.

8 Due to N. I. Muscheligvili. See I. 8. Sokolnikoff, * Mathematical Theory of
Elasticity,” Chap. 4, 1946.

* For a survey, with references, of this and other approximate methods see T. J.
Higgins, J. Applied Phys., vol. 14, p, 469, 1943, ) i
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lar case to the determination of the stress function satisfying the differ-
ential equation (142) and the boundary condition (144). In deriving
an approximate solution of the problem it is useful, instead of working
with the differential equation, to determine the stress function from the
minimum condition of a certain integral,® which can be obtained from
consideration of the strain energy of the twisted bar. The strain
energy of the twisted bar per unit length, from (88), is

—i 2 2 _ 1 ad’z 64)2
Vo] [ e tnnasar =g [ [{(52) + (5) Jasas

If we give to the stress function ¢ any small variation 84, vanishing at
the boundary,? the variation of the strain energy is

5’ / / [(%%)2 + (—Z—g)z] d dy

and the variation of the torque is, from Eq. (145),
2[[ 8¢ dz dy

Then by reasoning analogous to that used in developing equation (91)
on page 164, we conclude that

o+ o st
NERC e

Thus the true expression for the stress function ¢ is that which makes
zero the variation of the integral

o[BI + ()]s o

.We. come also to the same conclusion by using the membrane analogy and the
Prln?lple of virtual work (Art. 48). If S is the uniform tension in the membrane,
the increase in strain energy of the membrane due to deflection is obtained by
multiplying the tension S by the increase of the surface of the membrane. In this

manner we obtain
1 dz\2 0z\2
5 [J[E) +G) e

t Thls' method was proposed by W. Ritz, who used it in the solution of problems
of bending and vibration of rectangular plates. See J. reine angew. Math., vol.
135, 1908, and Ann. Physik, series 4, vol. 28, p. 737, 1909.

*If 8¢ is taken equal to zero at the boundary, no forces on the lateral surface
of the bar will be introduced by variation of ¢.

or

g e — R

[ NSTITUTUL POLITENNIG
TIMISOQARA !
o 10 poA CENTRALA |
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where z is the deflection of the membrane. If we take now a virtual displacement
of the membrane from the position of equilibrium, the change in the strain energy
of the membrane due to this displacement must be equal to the work done by the
uniform load ¢ on the virtual displacement. Thus we obtain

b 1) + ()] [ favsca

and the determination of the deflection surface of the membrane is reduced to
finding an expression for the function z which makes the integral

[ BLEY + @)oo

a minimum. If we substitute in this integral 2G9 for ¢/8S, we arrive at the integral
(165) above.

In the approximate solution of torsional problems we replace the
above problem of variational calculus by a simple problem of finding a
minimum of a function. We take the stress function in the form of a
series

¢ = Qoo + A1s + sz + - ¢ - (a)

in which ¢q, ¢1, ¢z, . . . are functions satisfying the boundary condi-
tion, ¢.e., vanishing at the boundary. In choosing these functions we
should be guided by the membrane analogy and take them in a form
suitable for representing the function ¢. The quantities ay, ai, as,

. are numerical factors to be determined from the minimum condi-
tion of the integral (165). Substituting the series (a) in this integral
we obtain, after integration, a function of the second degree in ao, a;,

@, . . ., and the minimum condition of this function is
oU U _ U
5&‘0_0} 5&:_07 (E—(), (b)

Thus we obtain a system of linear equations from which the coefficients
o, @1, @3, . . .can be determined. By increasing the number of terms
in the series (a) we increase the accuracy of our approximate solution,
and by using infinite series we may arrive at an exact solution of the
torsional problem.!

1 The condition of convergency of this method of solution was investigated by
Ritz, loc. cit. See also E. Trefftz, “ Handbuch der Physik,” vol. 6, p. 130, 1928.
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Take as an example the case of a rectangular cross section! (Fig.
159). The boundary is given by the equations z = +a,y = +b, and
the function (22 — a?)(y? — b?) is zero at the boundary. The series
(a) can be taken in the form

¢ = (2* — a®)(y® — b?) I Za,.amy" (c)

in which, from symmetry, m and n must be even.
Assuming that we have a square cross section and limiting ourselves
to the first term of the series (c) we take '

¢ = an(z® — a?)(y? — a?) (d)
Substituting this in (165) we find from the minimum condition that
L
*T 8a?

The magnitude of the torque, from Eq. (145), is then
M = 2[[¢ dzdy = %2G0a* = 0.1388(2a)*Go

Comparing this with the correct solution (1 62) we see that the error in
the torque is about 1% per cent.

To get a closer approximation we take the three first terms in the
series (¢). Then, by using the condition of symmetry, we obtain

¢ = (2 — @) (y* — a)lao + as(x? + y2)] (e)
Substituting this in (165) and using Egs. (b), we find

a0=§-?@._G_0 a __5,3_35 GB
8 277 a? Y

Substituting in expression (145) for the torque, we obtain
M =235+ 23 25)G0at = 0.1404G0(2a)*

This value is only 0.15 per cent less than the correct value.

A n}uch larger error is found in the magnitude of the maximum stress.
Substituting (e) into expressions (141) for the stress components we
find that the error in the maximum stress is about 4 per cent, and to get
a better accuracy more terms of the series (c) must be take;.

It can be seen from the membrane analogy that in proceeding as
explained above we generally get smaller values for the torque than the
correct value. A perfectly flexible membrane, uniformly stretched at

! Bee 8. Timoshenko, Bull. Inst. Wa cati
) . . ys of Communication, St. Petersburg, 191
and Proc. London Math. Soc., series 2, vol. 20, p. 389, 1921. , ® 5
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the boundary and uniformly loaded, is a system with an infinite num-
ber of degrees of freedom. Limiting ourselves to a few terms of the
series (c) is equivalent to introducing into the system certain con-
straints, which reduce it to a system with a few degrees of freedom only.
Such constraints can only reduce the flexibility of the system and
diminish the volume bounded by the deflected membrane. Hence the
torque, obtained from this volume, will generally be smaller than its
true value.

E. Trefftz suggested! another method of approximate determination
of the stress function ¢. With this method the approximate magni-
tude of the torque is larger than its true value. Hence by using the
Ritz and the Trefftz methods together the limits of error of the approxi-
mate solution can be established.

In using Ritz’s method we are not limited to polynomials (c). We
can take the functions ¢o, ¢1, ¢2, . . . of the series (a) in other forms
suitable for the representation of the stress function ¢. Taking, for
instance, trigonometric functions, and observing the conditions of
symmetry (Fig. 159), we obtain

© o0

= mrZ os 7Y
¢ = @ €08 5 = COS o (0

n=13,5,... m=13,5,.

Substituting in (165) and performing the integration, we find that

o= 33 o)

m=13,5,... n=13,5,.

m+n_
a0 2 2 ot B (_gyE

n = 1,3,5, .

Equations (b) become

2 2 2 "‘+"
"—“bamn(ﬂJr"—)—wo 16“”2( )2 =0

4 a? ' b?

and we find

mtn_
o _ 128Gepr(—1) ®
T rimn(mia® + n?)

1B, Trefftz, Proc. Second Intern. Congr. Applied Mech., Zirich, 1926, p. 131,

See also N. M. Basu, Phil. Mag., vol. 10, p. 886, 1930.
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where @ = b/a. Substituting in (f) we obtain the exact solution of the
problem in the form of an infinite trigonometric series. The torque
will then be

a b
M,=2/ /b¢dxdy

_ 2 128G 32ab
£ mmn(mia? + n?) mnr? @
m=13,... n=13,...

This expression is brought into coincidence with expression (160) given
before if we observe that

mom' mamw

L

_l_ 2 1 3 4 tanh —— ——2—
m? e n¥*(m2a® + n?) ~ 96m? —-y(mmr/2)3
n=1,0,0,...
As another example, in the case of a narrow rectangle, when b is
very large in comparison with a (Fig. 159), we may take, as a first
approximation,

¢ = Go(a® — %) ®

which coincides with the solution discussed before (Art. 94). To get
& better approximation satisfying the boundary condition at the short
sides of the rectangle, we may take

¢ = Go(a> — z%)[1 — 0] )

and choose the quantity 8 in such a manner as to make the integral
(165) a minimum. In this way we find

1 5
p=1

Due to the exponential term in the brackets of expression (k) we obtain
a stress distribution which practically coincides with that of the solu-
tion (k) at all points a considerable distance from the short sides of the
rectangle. Near these sides the stress function (k) satisfies the

boundary condition (144). Substituting (k) into equation (145) for
the torque, we find

a b
M, =2 f ~ / RLLE %G0(2a)"(2b) (1 ~ 0.632 %)
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which is in very good agreement with Eq. (161) obtained before by
using infinite series.

A polynomial expression for the stress function, analogous to expres-
sion (¢) taken above for a rectangle, can be used successfully in all
cases of cross sections bounded by a convex polygon. If

ax + by +c1 =0, ax + by +ca=0,...

are the equations of the sides of the polygon, the stress function can be
taken in the form

¢ = (@ + by + c1)(asx + bay +¢2) -+ + (@ + bayy + €1) ZZCmnz Y™

and the first few terms of the series are usually sufficient to get a satis-
factory accuracy.

The energy method is also useful when the boundary of the cross
section (Fig. 161) is given by two curves!

%x y=ay (%) and  y = —ay (%)
frr—— & where

Fra. 161. 11/(%) = () = O — O]

The boundary conditions will be satisfied if we take for the stress
function an approximate expression

¢ =Aly — o)y + awp)

Substituting into the integral (165) we find, from the equation
dI/dA = 0,
Go

4=- 1+ ala® + a® 4 aa,)/b?

where

[, ¥ @v/diy? di
a = ° 1 s
J, vt
From Eq. (145) we find the torque

1
M, = _AM/ yodi
3 0

1 Such problems were discussed by L. S. Leibenson. See his book “Variational
Methods for Solving Problems of the Theory of Elasticity,” Moscow, 1943. See

also W. J. Duncan, Phil. Mag., series 7, vol. 25, p. 634, 1938.
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In the particular case when m =4, p =¢ =1, a = a1, we have
y = tay(z/b) = + v/z/b[1 — (z/b)], and we obtain

3
A=——G oy, =o00736 907 _
l—l—Ea—2 1+E“_2
13 32 1332

An approximate solution, and a comparison with tests, for sections
bounded by a circle and a chord has been given by A. Weigand.!
Numerical methods are discussed in the Appendix.

98. Torsion of Rolled Profile Sections. In investigating the torsion
of rolled sections such as angles, channels, and I-beams, the formulas
derived for narrow rectangular bars (Art. 94) can be used. If the
cross section is of constant thickness, as in Fig. 162a, the angle of twist

-—bzﬁ 4 h——bz—-» '
~Chl Cz C2
a - < f - I !

4 b] bl

: 1 |

a——-> ] I .

(a) (6) (c)
Fia. 162.

is obtained with sufficient accuracy from Eq. (155) by putting,
instead of b, in this equation the developed length of the center line,?
namely, b = 2a — ¢. In the case of a channel section (Fig. 162b) a
rough approximation for the angle of twist is obtained by taking for the
flanges an average thickness c¢,, subdividing the cross section into the
three rectangles, and substituting in Eq. (155), bici® + 2bscs?® instead
of be?, i.e., assuming that the torsional rigidity of the channel is equal
to the sum of the torsional rigidities of the three rectangles.? Then

0= Lt (@
(bic1® 4 2bacs®)d

! Luftyahri-forsch., vol. 20, 1944, tranlated as N.A.C.A. Tech. Mem. 1182, 1948.

* A more elaborate formula, taking account of the increased stiffness resulting
fron} the junctions of the rectangles, was developed on the basis of soap film and
torsion tests by G. W. Trayer and H. W, March, Nail. Advisory Comm. Aeronaut.,
Rept. 334, 1930.

¢ Comparison of torsional rigidities obtained in this manner with those obtained
b‘y experiments is given for several types of rolled sections and for various dimen-
Slons in the paper by A. Foppl, Sitzber. Bayer. Akad. Wiss., p. 295, Miinchen, 1921.
See also Bauingenieur, series 5, vol. 3, p. 42, 1922.
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To calculate the stress at the boundary at points a considerable dis-
tance from the corners of the cross section we can use once more the
equation for a narrow rectangle and take

T = cb@
Then, from Eq. (@), we obtain for the flanges of the channel

_ 3M562
- b1613 + 2b2623 (b)

T

The same approximate equations can be used for an I-beam (Fig. 162¢).

At reentrant corners there is a considerable stress concentration, the
magnitude of which depends on the radius of the fillets. A rough
o approximation for the maximum stress at
these fillets can be obtained from the
membrane analogy. Let us consider a
cross section in the form of an angle of
constant thickness ¢ (Fig. 163) and with
radius a of the fillet of the reentrant corner.
Assuming that the surface of the membrane
at the bisecting line 00, of the fillet is
approximately a surface of revolution, with
axis perpendicular to the plane of the figure
at 0, and using polar coordinates, the Eq. (151) of the deflection surface
of the membrane becomes (see page 57)

dz  lde ¢
wtia = "8 ©

Fia. 163.

Remembering that the slope of the membrane dz/dr gives the shearing
stress 7 when ¢/S is replaced by 2G6, we find from (c) the following
equation for the shearing stress:

dr | 1

The corresponding equation in the arms of the angle at a considerable
distance from the corners, where the membrane has a nearly cylindrical
surface, is
ar _ _oge (@)
dn
in which n is the normal to the boundary. Denoting by 7, the stress
at the boundary we find from (e) the previously found solution for a
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narrow rectangle 7, = G6c. Using this, we obtain from (d)

dr , 1 2n, ’
&1t @)
from which, by integration,
A T
TS T &

where A is a constant of integration. For the determination of this
constant, let us assume that the shearing stress becomes zero at point
0; at a distance ¢/2 from the

boundary (Fig. 163). Then, 35
from (f),
3.0
A nlat @) _,
a + (¢/2) c
2.5
and Lorax \
2 Z
=1 ¢ z
A= p (a -+ 2) 2.0 \
Substituting in (f) and taking Y S ey
r = a, we find L5 \
’-( \
Tmax. = T1 (1 + 4—(; (9 1.0 4@ ]

0 05 1.0 1.5 2.0
afc

For a = }¢, as in the Fig. 163
25 18 » W Fia. 164.

have 7mx = 1.5r;.. For a very
small radius of fillet the maximum stress becomes very high. Taking,
for instance, a = 0.1¢ we find 7oy, = 3.571.

More accurate and complete results can be obtained by numerical
calculations based on the method of finite differences (see Appendix).
A curve of 7. /71 as a function of a/c obtained by this method! is
shown in Fig. 164 (curve A), together with the curve representing Eq.
(9). It will be seen that this simple formula gives good results when
a/c is less than 0.3. ,

99. The Use of Soap Films in Solving Torsion Problems. We have
Seen that the membrane analogy is very useful in enabling us to visual-
1ze the stress distribution over the cross section of a twisted bar.

!By J. H. Huth, J. Applied Mechanics (Trans. A.8.M.E.), vol. 17, p. 388, 1950.
The rise of the curve towards the right is required by the limiting case as the

et radius is increased in relation to the leg thickness. References to earlier

attempts to solve this problem including soap-film measurements are given by
L Lysg and B, G. Johnston, Proc, 4.8.C.E., 1935, p. 469, and in the above paper.
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Membranes in the form of soap films have also been used for direct
measurements of stresses.l? The films were formed on holes cut to the
required shapes in flat plates. To make possible the direct detern}ina--
tion of stresses, it was found necessary to have in the same plate a circu-
lar hole to represent a circular section for comparison. Submitting

Fia. 165.
both films to the same pressure, we have the same values of g/ §,3
which correspond to the same values of G6 for the two bars under twist.

Hence, by measuring the slopes of the two soap films we can co.mpare
the stresses in the bar of the given cross section with those in a circular 3

18ee papers by Taylor and Griffith, loc. cit.; also the paper by Traygr'anﬁ .

March, loc. cil.

2 A survey of this and other analogies for torsion, with references, is given‘ by

T. J. Higgins, Ezperimental Stress Analysis, vol. 2, no. 2, p. 17, 1945,

3Tt is assumed that the surface tension is the same in both films, ‘This was

proved with sufficient accuracy by the tests.
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shaft under the condition that they have the same angle of twist 6 per
unit length and the same G. The corresponding ratio of the torques is
determined by the ratio of the volumes between the soap films and the
plane of the plate.

For obtaining the contour lines of the films the apparatus shown in
Fig. 165 was used.! The aluminum plate with the holes is clamped
between the two halves of the cast-iron box A. The lower part of the
box, having the form of a shallow tray, is supported on leveling screws.
The mapping of contour lines is done by using the screw B passing
through a hole in a sheet of plate glass sufficiently large to cover the
box in any possible position. The lower end of the screw carries a hard
steel point whose distance from the
glass plate is adjustable by the
screw. The point is made to
approach the film by moving the
glass plate until the distortion of
the image in the film shows that
contact has occurred. The record is
made on a sheet of paper attached to
the board E, which can swing about
a horizontal axis at the same height
as the steel recording point D. To
mark any position of the screw, it is Fie. 166.
only necessary to prick a dot on the paper by swinging it down on the
recording point. After the point has been made to touch the film at a
number of places, the dots recorded on the paper are used for drawing a
contour line. By adjusting the secrew B this can be repeated for as
many contour lines as may be required. When these lines have been
mapped, the volume and the corresponding torque can be obtained by
summation. The slopes and the corresponding stresses are obtained
by measuring the distances between neighboring contour lines. The
slope can be obtained optically with much more accuracy by projecting
a beam of light on to the surface of the film and measuring the angle of
jche reflected ray. The normal to the film is then half way between the
Incident and the reflected rays. A special instrument was constructed
for this purpose by Griffith and Taylor. Figure 166 represents an
e)fample of contour lines obtained for a portion of an I-beam (wooden
Wing spar of an airplane). From the close grouping of the contour
lines at the fillets of the reentrant corners and at the middle of the

Upper face, it follows that the shearing stresses are high at these places.

The projecting parts of the flange are very lightly stressed. The
! 8ee the paper by Taylor and Griffith, loc. cit.
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masximum stress in the middle portion of the web is practically constant
along the side of the web and equal to that in a narrow rectangle for the
same angle of twist. The application of soap-film measurements to
such cross sections as ellipses and rectangles, for which exact solutions
are known, shows that the maximum stress and the torque can be
measured with an accuracy of 1 or 2 per cent. At the points of great
stress concentration, as in the case of fillets of very small radii, an
accuracy of the same order is not readily obtained.!

100. Hydrodynamical Analogies. There are several analogies
between the torsional problem and the
hydrodynamical problem of the motion of
fluid in a tube. Lord Kelvin? pointed out
that the function [¢: see Eq. (a), Art. 92]

torsional problems is identical with the stream
function of a certain irrotational motion of
«jdeal fluid” contained in a vessel of the same
cross section as the twisted bar.

Another analogy was indicated by J. Boussinesq.! He showed that
the differential equation and the boundary condition for determining
the stress function ¢ (see Eqs. 142 and 144, Art. 90) are identical with
those for determining velocities in a laminar motion of viscous fluid
along a tube of the same cross section as the twisted bar.*

Greenhill showed that the stress function ¢ is mathematically

Fia. 167.

identical with the stream function of a motion of ideal fluid circulating
with uniform wvorticity,’ in a tube of the same cross section as the §
twisted bar.! Let u and v be the components of the velocity of the 3
circulating fluid at a point 4 (Fig. 167). Then from the condition of

incompressibility of the ideal fluid we have

ou , dv
3 + 3y 0 (@) 1

18ee the paper by C. B. Biezeno and J. M. Rademaker, De Ingenieur, No. 52,
1931. See also papers by P. A. Cushman, Trans. A.S.M.E., 1932, H. Quest, §

Ingenieur-Archiv., vol. 4, p. 510, 1933, and J. H. Huth, loc. cit.
2 Kelvin and Tait, ‘Natural Philosophy,” pt. 2, p- 242.
3 J. Boussinesq, J. math. pure et appl., series 2, vol. 16, 1871,

4 This analogy was used by M. Paschoud, Compt. rend., vol. 179, p. 451, 1924.

See also Bull. tech. Suisse Rom. (Lausanne), November, 1925.

5 The analytical expression for vorticity is the same as for rotation «: discussed

on p. 225, provided » and » denote the components of the velocity of the fluid.

¢ A. G. Greenhill, Hydromechanics, an article in the Encyclopaedia Britannics, .;

11th ed., 1910.

which is sometimes used in the solution of 4
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The condition of uniform vorticity is

dv  du
Framl i constant ®
By taking
= 3¢ - 9
u ayl v = - 5 (C)
we satisfy Eq. (a), and from Eq. (b) we find
d%¢ | 9%
o Toap = constant (d)

which coincides with Eq. (142) for the stress function in torsion.

At the boundary the velocity of the cireulating fluid is in the direc-
tion of the tangent to the boundary and the boundary condition for the
hyd?odynamical problem is the same as the condition (144) for the
torsional problem. Hence the velocity distribution in the hydrody-
namical problem is mathematically identical with
the stress distribution in torsion, and some practi-
cally important conclusions can be drawn by using
the known solutions of hydrodynamics.

As a first example we take the case of a small
circular hole in a twisted circular shaft! (Iig. 168).
'lfhe effect of this hole on the stress distribution is
sun.ilar to that of introducing a stationary solid
cyl_lnder of the same diameter as the hole into the stream of circulatin
fluid f)f the hydrodynamical model. Such acylinder greatly changes thi
velocity of the fluid in its immediate neighborhood. The velocities at
the.r front and rear points are reduced to zero, while those at the side
p01nt§ m and n are doubled. A hole of this kind therefore doubles the
shearing stress in the portion of the shaft in which it is located. A
small semicircular groove on the surface parallel to the length of the
shaft (Fig. 168) has the same effect. The shearing stress at the bottom
of the groove, the point m, is about twice the shearing stress at the sur-
face of the shaft far away from the groove.
of 'fllllf j.ame hydrod.ynamical analogy explains the effect of a small hole
o Otp tz}(i cross s.ectzon or of a groove of semi-elliptic cross section. If
o e principal axes a (?f the small elliptical hole is in the radial

rection and the other principal axis is b, the stresses at the edge of the

Frc. 168.

b U
! Se‘e J. ]J&IIIIOI’ Phil. Mag., VOI. 33, P. 76, 1892'

( TlMl';lOARA

e A e ———
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The maximum stress produced in this case thus depends upon the
magnitude of the ratio a/b. The effect of the hole on the stress is
greater when the major axis of the ellipse is in the radial direction than
when it runs circumferentially. This explains why a radial crack has
such a weakening effect on the strength of a shaft. Similar effects on
the stress distribution are produced by a semi-elliptic groove on the
surface, parallel to the axis of the shaft.

From the hydrodynamical analogy it can be concluded also that at
the projecting corners of a cross section of a twisted bar the shearing
stress becomes zero, and that at reentrant corners this stress becomes
theoretically infinitely large, i.e., even the smallest torque will produce
yielding of material or a crack at such a corner. In the case of a
rectangular keyway, therefore, a high stress concentration takes place
at the reentrant corners at the bottom of the keyway. These high
stresses can be reduced by rounding the corners.!

101. Torsion of Hollow Shafts. So far the discussion has been
limited to shafts whose cross sections are bounded by single curves.
Let us consider now hollow shafts whose cross sections have two or
more boundaries. The simplest problem of this kind is a hollow shaft
with an inner boundary coinciding with one of the stress lines (see page
270) of the solid shaft, having the same boundary as the outer boundary
of the hollow shaft.

Take, for instance, an elliptic cross section (Fig. 149). The stress
function for the solid shaft is

2hH2 2 2 4
ablF x+g_2_1) @ |

? T @)\

The curve
2

x? Y
@ T R

is an ellipse which is geometrically similar to the outer boundary of the §
cross section. Along this ellipse the stress function (a) remains con- j
stant, and hence, for k less than unity, this ellipse is a stress line for the §
solid elliptic shaft. The shearing stress at any point of this line is in
the direction of the tangent to the line. Imagine now a cylindrical §
surface generated by this stress line with its axis parallel to the axis of 5

1 The stresses at the keyway were investigated by the soap-film method. See
the paper by A. A. Griffith and G. L. Taylor, Tech. Rept., N atl. Advisory Comm. 3
Aeronaut., vol. 3, p. 938, 1917-1918. The same problem was discussed by the ¥
photoelastic method. See the paper by A. G. Solakian and G. B. Karelitz, Trans. §

A.S.M_E., Applied Mechanics Division, 1931,

=1 (b) ‘
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the shaft. Then, from the above conclusion regarding the direction
of the shearing stresses, it follows that there will be no stresses acting
across this cylindrical surface. We can imagine the material bounded
by this surface removed without changing the stress distribution in the
outer portion of the shaft. Hence the stress function (a) applies to the
hollow shaft also.

For a given angle 8 of twist the stresses in the hollow shaft are the
same as in the corresponding solid shaft. But the torque will be
smaller by the amount which in the case of the solid shaft is carried by
the portion of the cross section corresponding to the hole. From Eq.
(148) we see that the latter portion is in the ratio k*:1 to the total
torque. Hence, for the hollow shaft, instead of Eq. (148), we will have

M, ao®-+b°

0 = I — i 7a0G

and the stress function (a) becomes

- _ M, 2y
¢ = T rab( — k9 (? T 1)

The formula for the maximum stress will be

2M, 1

Tmex. = Tab?t 1 — kb

In the membrane analogy the middle portion of the membrane, cor-
responding to the hole in the shaft (Fig. 169), must be replaced by the
horizontal plate CD. We note that
the uniform pressure distributed
over the portion CFD of the mem-
brane is statically equivalent to the
pressure of the same magnitude
uniformly distributed over the plate
CD and the tensile forces S in the
membrane acting along the edge of
thisplate arein equilibrium with the
}lniform load on the plate. Hence,
In the case under consideration the Y
same experimental soap-film method Frc. 169.
ZSF zei?rshza;ellfb ::legl%yed because the replacement of t.he portion
y the plate CD causes no changes in the con-

figuration and equilibrium conditions of the remaining portion of the
membrane.
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Let us consider now the more general case when the boundaries of
the holes are no longer stress lines of the solid shaft. From the general
theory of torsion we know (see Art. 90) that the stress function must be
constant along each boundary, but these constants cannot be chosen
arbitrarily. In discussing multiply-connected boundaries in two-
dimensional problems it was shown that recourse must be had to the
expressions for the displacements, and the constants of integration
should be found in such a manner as to make these expressions single-
valued. An analogous procedure is necessary in dealing with the
torsion of hollow shafts. The constant values of the stress function
along the boundaries should be determined in such a manner as to
make the displacements single-valued. A sufficient number of equa-
tions for determining these constants will then be obtained.

From Egs. (b) and (d) of Art. 90 we have

ow ow ,
Toe = @ Freii 6y>; Tys = G (gy— + Ox) (¢
Let us now calculate the integral
[rds ()

along each boundary. Using (c) and resolving the total stress into its
components we find

d ay\ . -
/TdS=/<sz—d—'a;+Tw£)d8
iy ai"dx+"—wd>—eaf(d — zdy)

The first integral must vanish, from the condition that the integration
is taken round a closed curve and that w is a single-valued function.

Hence,
frds = 6Gf(xdy — ydx)

The integral on the right side is equal to double the area of the hole.
Then

frds = 2G6A @) |

Thus we must determine the constant values of the stress function »
along the boundaries of the holes so as to satisfy Eq. (e) for each }
boundary. This equation is also valid for any closed curve drawn in

the cross section, as may be seen by reexamining the proof.
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A physical significance for Eq. (¢) was discussed before [see Eq.
(152), page 271]. It indicates that in using the membrane analogy the
level of each plate, such as the plate CD (Fig. 169), must be taken so
that the vertical load on the plate is equal and opposite to the vertical
component of the resultant of the tensile foreces on the plate produced
by the membrane. If the boundaries of the holes coincide with the
stress lines of the corresponding solid shaft, the above condition is
sufficient to ensure the equilibrium of the plates. In the general case
this condition is not sufficient, and to keep the plates in equilibrium in
a horizontal position special guiding devices become necessary. This
makes the soap-film experiments for hollow shafts more complicated.

To remove this difficulty the following procedure may be adopted.! We make a
hole in the plate (Fig. 165) corresponding to the outer boundary of the shaft.
The interior boundaries, corresponding to the holes, are mounted each on a vertical
sliding column so that their heights can be easily adjusted. Taking these heights
arbitrarily and stretching the film over the boundaries we obtain a surface which
satisfies Eq. (142) and boundary conditions (144), but the Eq. (¢) above generally
will not be satisfied and the film does not represent the stress distribution in the
hollow shaft. Repeating such an experiment as many times as the number of
boundaries, each time with another adjustment of heights of the interior boundaries
and taking measurements on the film each time, we obtain sufficient data for
determining the correct values of the heights of the interior boundaries and can
finally stretch the soap film in the required manner. This ecan be proved as
follows: If ¢ is the number of boundaries and ¢1, ¢, . « » , ¢ are the film surfaces
?btai{led with ¢ different adjustments of the heights of the boundaries, then a
unction

¢ = mipy + Mmads + * ¢+ migs )

in which mi, ma, , m; are numerical factors, is also a soluti
E s R i on of Eq. (142
provided that ’ o (142

mi+me+ 0 dme=1

Obsexzvin.g now tbat the shearing stress is equal to the slope of the membrane, and
substituting (f) into Egs. (e), we obtain ¢ equations of the form

f 3¢ 4 = 2604
an

le‘im which the s-factors mi, mg, . . ., m; can be obtained as functions of 6.
b eé .the true stress function is obtained from (f).2 This method was applied
¥ Griffith and Taylor in determining stresses in a hollow circular shaft having a

LA, A, Griffith, and G. I. Ta 2
. . I. Taylor, Tech. Rept. Natl. Advisory C .
VO}I. 3,_p. 938, 1917-1918. ’ v Comm. deronaity
o Griffith an‘d'Taylor concluded from their experiments that instead of constani-
thessure ﬁln}s 1t. is more ‘convenient to use zero-pressure films (see p. 272) in studying
ofi‘ stress distribution in hollow shafts. A detailed discussion of the calculation
actors my, ms, . , . is given in their paper.
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keyway in it. It was shown in this manner that the maximum stress can be con-
siderably reduced and the strength of the shaft increased by throwing the bore in
the shaft off center.

The torque in the shaft with one or more holes is obtained using
twice the volume under the membrane and the flat plates. To see
this we calculate the torque produced by the shearing stresses dis-
tributed over an elemental ring between two adjacent stress lines, as
in Fig. 169 (now taken to represent an arbitrary hollow section).
Denoting by & the variable width of the ring and considering an element
such as that shaded in the figure, the shearing force acting on this ele-
ment is 76 ds and its moment with respect to O is rréds. Then the
torque on the elemental ring is

dM, = [rréds (¢)
in which the integration must be extended over the length of the ring.
Denoting by A the area bounded by the ring and observing that 7 is

24 the slope, so that 78 is the difference
A l T2* inlevel k of the two adjacent con-
¥

| e }‘ Dl] tour lines, we find, from (c),
N 1 dM, = 2hA d)
l (1) -x te., the torque corresponding to the
% elemental ring is given by twice
the volume shaded in the figure.
Y The total torque is given by the

Fic. 170. . -
6. 170 sum of these volumes, i.e., twice

the volume between AB, the membrane AC and DB, and the flat plate
CD. The conclusion follows similarly for several holes.

102. Torsion of Thin Tubes. An approximate solution of the tor-
sional problem for thin tubes can easily be obtained by using the mem-
brane analogy. Let AB and CD (Fig. 170) represent the levels of the
outer and the inner boundaries, and AC and DB be the cross section of
the membrane stretched between these boundaries. In the case of a
thin wall, we can neglect the variation in the slope of the membrane
across the thickness and assume that AC and BD are straight lines.

This is equivalent to the assumption that the shearing stresses are uni- 1

formly distributed over the thickness of the wall. Then denoting by

h the difference in level of the two boundaries and by 8 the variable
thickness of the wall, the stress at any point, given by the slope of the §

membrane, is

r=t @ §
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It is inversely proportional to the thickness of the wall and thus
greatest where the thickness of the tube is least.

To establish the relation between the stress and the torque M, we

apply again the membrane analogy and calculate the torque from the
volume ACDB. Then

M, = 2Ah = 246 ®)

in which.A is the mean of the areas enclosed by the outer and the inner
b.oundarles of the cross section of the tube. From (b) we obtain a
simple formula for calculating shearing stresses,

— Mt
T =945 (166)

For determining the angle of twist 8, we apply Eq. (152). Then

M ds 4
Td8=—2—Z‘/—6—=2G0A (c) :
from which? A
be—d'
_ M, ds
b=11¢ / 5 (167) ()
c

In the case of a tube of uniform thickness,
¢ 1s constant and (167) gives

Mts

0 = 147Gs (168)

*n which s is the length of the center line
of the ring section of the tube. Fie. 171.

If the tube has reentrant corners, as in the case represented in Fig
171, a considerable stress concentration may take place at these cor;
ners. The maximum stress is larger than the stress given by Eq. (166)
and depends on the radius @ of the fillet of the reentrant corner (Fig.
171b). In calculating this maximum stress we shall use the membrane
analogy as we did for the reentrant corners of rolled sections (Art. 98).
tl‘he equation of the membrane at the reentrant corner may be taken
In the form

dz | 1dz q

arr " rdr - T8

1R . .
quations (166) and (167) for thin tubular sections w. btai
t
Y A AR AT ere obtained by R. Bredt,
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Replacing ¢/S by 2G8 and noting that = = —dz/dr (see Fig. 170), we
find

dr , 1
ar +27= 2Go (d)
Assuming that we have a tube of a constant thickness & and denoting

by 7o the stress at a considerable distance from the corner calculated
from Eq. (166), we find, from (c),

Substituting in (d),
+or =T ©

The general solution of this equation is

_C T0ST
T—7+§Z 6]

Assuming that the projecting angles of the cross section have fillets

with the radius a, as indicated in the figure, the constant of integration f

C can be determined from the equation

'/;G-H Tdr = 740 (9 .

which follows from the hydrodynamical analogy (Art. 100), viz.: if an
ideal fluid circulates in a channel having the shape of the ring cross .
section of the tubular member, the quantity of fluid passing each cross
section of the channel must remain constant. Substituting expression

(f) for 7 into Eq. (g), and integrating, we find that

1 — (s/44)(2a + 9)
Tog. (1 + 8/a)

C = 7-05
and, from Eq. (f), that

bl (s/AA)@a+ ) | muer * §

r log, (1 + 6/a) 24

For a thin-walled tube the ratios s(2a + 8)/A4, sr/A, will be small, §

T =Ty '2/10ge (1 -+ g) ('i) ,

and (h) reduces to
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Substituting » = a we obtain the stress at the reentrant corner. This
is plotted in Fig. 172. The other curve!(4 in Fig. 172) was obtained by
the method of finite differences, without the assumption that the
membrane at the corner has the form of a surface of revolution. It
confirms the accuracy of Eq. (¢) for small fillets—say up to a/5 = .
For larger fillets the values given by Eq. (¢) are too high.

3.5 Let us consider now the case
when the cross section of a tubular
member has more than two bound-

30

aries. Taking, for example, the
case shown in Fig. 173 and assum-
ing that the thickness of the wall is

A
O o5 30 [\ Vo

Fig. 172. Fig. 173.

very small, the shearing stresses in each portion of the wall, from the
membrane analogy, are

n="
1 o1
e )
8y
_hl_h2 7101 — T202
T3 = =

03 83

in which h; and h, are the levels of the inner boundaries CD and EF.2
) The magnitude of the torque, determined by the volume ACDEFB,
18

Mt = 2(A1h1 + A2h2) = 2A1517'1 + 2A252T2 (l)

where 4, and A, are areas indicated in the figure by dotted lines.
Fur.ther equations for the solution of the problem are obtained by
applying Eq. (152) to the closed curves indicated in the figure by

! Huth, loc. cit.
P
1t is assumed that the plates are guided so as to remain horizontal (see p. 297).
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dotted lines. Assuming that the thicknesses 8, i, 83 are constant
and denoting by si, sz, s; the lengths of corresponding dotted curves,
we find, from Fig. 173,

7181 + 7383 = 2GOA1

ToSa — T383 = 2G0A, (m)

By using the last of the Eqs. (k) and Eqgs. (I) and (m), we find the
stresses 71, 7o, 73 as functions of the torque:

= M [838:41 + 8283(A1 + A))]
2[5153821‘112 + 628551427 + 515283(A1 + A2)2]
Ty = Mt[5381A2 + 5183(A1 + A:e)]
26185824 1% + 898351422 + 818283(A1 + A2)?]
rs = Mt(6182A1 - 6281A2)
2[5153821412 + 525381/122 -+ 615283(1‘11 + A2)2]

(n)
(o)
(»)

In the case of a symmetrical cross section, s; = sy, 81 = 85, A1 = 4,
and 73 = 0. In this case the torque is taken by the outer wall of the
tube, and the web remains unstressed.!

To get the twist for any section like that shown in Fig. 173, one
substitutes the values of the stresses in one of the Egs. (m). Thus 6
can be obtained as a function of the torque ..

103. Torsion of a Bar in Which One Cross Section Remains Plane. In discuss-
ing torsional problems it has always been assumed that the torque is applied by
means of shearing stresses distributed over the ends of a bar in a definite manner,
obtained from the solution of Eq. (142) and satisfying the boundary condition
(144). If the distribution of stresses at the ends is different from this, a local
irregularity in stress distribution results and the solution of Egs. (142) and (144)
can be applied with satisfactory accuracy only in regions at some distance from
the ends of the bar.?

A similar irregularity occurs if a cross section of a twisted bar is prevented from
warping by some constraint. We encounter problems of this kind occasionally in
engineering.3 A simple example is shown in Fig. 174, From symmetry it can be
concluded that-the middle cross section of the bar remains plane during torsion.
Hence the stress distribution near this cross section must be different from that

1 The small stresses corresponding to the change in slope of the membrane across
the thickness of the web are neglected in this derivation.

2 The local irregularities at the ends of a circular cylinder have been discussed ‘

by F. Purser, Proc. Roy. Irish Acad., Dublin, vol. 26, series A, p. 54, 1906. See
also K. Wolf, Sitzber. Akad. Wiss., Wien, vol. 125, p. 1149, 1916, and A. Timpe,
Math. Annalen, vol. 71, p. 480, 1912.

3 Torsion of I-beams under such conditions was discussed by 8. Timoshenko,
Z. Math. Physik, vol. 58, p. 361, 1910. See also C. Weber, Z. angew. Math. Mech.,
vol. 6, p. 85, 1926.
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obtained above for rectangular bars (Art. 95). In discussing these stresses, let us
consider first the case of a very narrow rectangle! and assume that the dimension
a is large in comparison with b. If cross sections are free to warp, the stresses,
from Art. 94, are

Tee = —2G0y, 7y =0 (@)

and the corresponding displacements, from Eqgs. (a), (b), and (d) of Art. 90, are
u = —0yz, v = 6z, w = —fxy ®)

To prevent the warping of the cross sections, designated as displacement w,
pormal stresses o, must be distributed over the cross sections. We obtain an
approximate solution by assuming that

o, is proportional to w and that it ol A
diminishes with increase of distance z ]
from the middle cross section. These )
assumptions are satisfied by taking : .
o: = —mEfemzy © | Vel 2P
| I I
in which m is a factor to be determined =1 /: x
later. Due to the factor ¢ ™ the stress ?ﬁ{—/-"—i»a—n‘b 6
o; diminishes with increase of z and 2P° | ! z
becomes negligible within a certain 4 [ '
distance depending upon the magnitude J}' /‘,
f TR S
of m. ~ | J

The remaining stress components must
now be chosen in such a manner as to z
satisfy the differential equations of Fra. 174,
equilibrium (127) and the boundary
conditions. It is easy to prove that these requirements are satisfied by taking

gy =0y =0

Tay = —EEm30e ™ (a — 22) (b2 — y7) d
Tz = FEm2e (a2 — z?)y — 2G0y @
Tye = TEm20e (b2 — ytz ‘

For large values of z this stress distribution approaches the stresses (a) for simple
torsion. The stress component 7., becomes zero at the boundary z = e and
Yy = b; 7. and 7, are zero for £ = *a and y = b, respectively. Hence the
})oundary conditions are satisfied and the lateral surface of the bar is free from
orces,

For determining the factor m, we consider the strain energy of the bar and calcu-
late m to make this energy a minimum, By using Eq. (84) on page 148, we find

V—_—i]l /a /b [., 2?2 4 1 2 | dz dy dz
- B I I L R

Substituting from (d), and noting that for a long bar we can with sufficient aceuracy

put
l
f emidz = —-1-
0 m

! 8ce S. Timoshenko, Proc. London Math. Soc., series 2, vol. 20, p. 389, 1921
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we get
V = %E’«?’a“b3 { —3m+ 1+ [ azbimb + % (a? + b¥)m3 + a -ll-2v)2 a‘]} (e)

The minimum condition gives us the following equation for determining m:
(14 »)[Zamt + F(a* + b)m?] = 3
which, for a narrow rectangle, reduces approximately to

5
=0t va 0

Substituting this value of m in (c¢) and (d), we find the stress distribution for the
case when the middle cross section of the bar remains plane.
For calculating the angle of twist , we put the potential energy (¢) equal to the
work done by the torque M,
My
5 = 14
from which the angle of twist ig

3M. [l 5(1 + ») ] @

~ 16Gab?

Comparing this result with Eq. (155) on page 273, we conclude that by preventing
the middle cross section from warping we increase the rigidity of the bar with
respect to torsion. The effect of the local irregularity in stress distribution on the
value of ¥ is the same as the influence of a diminution of the length I by

a‘\/5(1 + »)
6

Taking » = 0.30, this reduction in ! becomes 0.425a. We see that the effect of
the constraint of the middle cross section on the angle of twist is small if the
dimension @ is small in comparison with .

The twist of a bar of an elliptic cross section can be discussed in an analogous
manner.! Of greater effect is the constraint of the middle cross section in the
case of torsion of a bar of I cross section. An approximate method for calculating
the angle of twist in this case is obtained by considering bending of the flanges
during torsion.?

104. Torsion of Circular Shafts of Variable Diameter. Let us
consider a shaft in the form of a body of revolution twisted by couples
applied at the ends (Fig. 175). We may take the axis of the shaft as

1A, Foppl, Sitzber. Bayer. Akad. Wiss., Math.~phys. Klasse, Minchenr, 1920,
p. 261.

1See S. Timoshenko, Z. Math. Physik., vol. 58, p. 361, 1910; or Strength of
Materials, vol. 2, p. 287, 1941,
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the z-axis and use polar coordinates r and 6 for defining the position of
an element in the plane of a cross section. The notations for stress
components in such a case are o, g4, 0., 7r., 7rs, Te,. 'The components of
displacements in the radial and tangential directions we may denote by
u and v and the component in the z-direction by w. Then, using the

Fia. 175.

formulas obtained previously for two-dimensional problems (Art. 28),
we find the following expressions for the strain components:

du ow
€ = — = — + = —
or’ € r ae “ 7 5z 169
Yoy = u v v _ E)u ow _ av ow (169)
ra "o r ™% ta Y=g T rag

Writing down the equations of equilibrium of an element (Fig. 175),
s was done before for the case of two-dimensional problems (Art. 25),
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and assuming that there are no body forces, we arrive at the following
differential equations of equilibrium:!

do, 1 97,0 0Ty, o, — Og

st T T 0
o7y, , 1079, | 80, | Tro _
37+?ao+az+7_0 (170)
Ot , 100p |, 0710, | 27r0 _
o Treet e T =0

In the application of these equations to the torsional problem we use
the semi-inverse method (see page 259) and assume that u and w are
zero, i.e., that during twist the particles move only in tangential direc-
tions. This assumption differs from that for a circular shaft of con-
stant diameter in that these tangential displacements are no longer
proportional to the distance from the axis, 7.e., the radii of a cross sec-
tion become curved during twist. In the following pages it will be
shown that the solution obtained on the basis of such an assumption
satisfies all the equations of elasticity and therefore represents the true
solution of the problem.

Substituting in (169) v = w = 0, and taking into account the fact
that from symmetry the displacement » does not depend on the angle
8, we find that

6r=€o=€z=’Yu=0, ’Yre=g—1;—%f 702'_—-% (a)
Hence, of all the stress components, only 7,6 and 4, are different from
zero. The first two of Eqgs. (170) are identically satisfied, and the
third of these equations gives

07,0 d7e; 2Tr9 .
Tt 0 ®)

This equation can be written in the form

a% (r*ry) + ;% (r*re) =0 ©

Tt is seen that this equation is satisfied by using a stress function ¢ of r
and 2z, such that

d¢ aé
2. 2, = d

e oz TTes = or @
1 These equations were obtained by Lamé and Clapeyron; see Crelle’s J., vol. 7,

1831.
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To satisfy the compatibility conditions it is necessary to consider
the fact that 7.4 and 74, are functions of the displacement ». From
Egs. (a) and (d) we find

_ v a (v 199
r = G r === G —_— — - == —_— — = e e m—
e Tro (61' r) Gr or (r) 2 0z

(e)
i/ d (v 19¢
z = G : = —_— = —_—f - = — —
e e Gaz Gr 0z (r) r® or
From these equations it follows that
8 (134 o (1a¢
m«(ﬁﬁ)"’&(ﬁ&') =0 )
or
3 396 , ¢ _
" ror a0 @)

Let us consider now the boundary conditions for the function ¢.
From the condition that the lateral surface of the shaft is free from
external forces we conclude that at any point A at the boundary of an
axial section (Fig. 175) the total shearing stress must be in the direction
of the tangent to the boundary and its projection on the normal N to
the boundary must be zero. Hence

dz __ dr _ 0
Tro ds Tﬂz’(‘i‘é =

where ds is an element of the boundary. Substituting from (d), we
find that ,
dpdz | dpdr _
dzds ' ords
from which we conclude that ¢ is constant along the boundary of the
axial section of the shaft.

Equation (g) together with the boundary condition () completely
det.ermines the stress function ¢, from which we may obtain the stresses
satisfying the equations of equilibrium, the compatibility equations
and the condition at the lateral surface of the shaft.! ’

0 (h)

Solc Thlsf,1 general solution of the problem is due to J. H. Michell, Proc. London Math.
o - vol. 31, p. 141, 1899. See also A. Foppl, Sitzber. Bayer. Akad. Wiss., Miin-
en, vol. 35, pp. 249 and 504, 1905. Also the book ‘‘Kerbspannungslehre” by
ca.vi I;Iial‘lberl,1 which gives so‘luti(.)nS for the hyperboloid of revolution, and for a
o thy In the form of an elh}fsmd of revolution, by a different method. Reviews
e literature on the subject have been given by T. Péschl, Z. angew. Math.

ech., vol. 2 igei ;
Mech., vol. 2, p. 137, 1922, and T. J. Hi 1
no.1, ,p Yo, 1,945' , y J. Higgins, Experimental Stress Analysis, vol. 3,
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The magnitude of the torque is obtained by taking a cross section
and calculating the moment given by the shearing stresses 7e.. Then

a

¢ (*)
o

M, = / 2nrire, dr = 27r/ a—¢dr = 2
0 o Or

where a is the outer radius of the cross section. The torque is thus
easily obtained if we know the difference between the values of the
stress function at the outer boundary and at the center of the cross
section.

In discussing displacements during twist of the shaft let us use the
notation ¢ = v/r for the angle of rotation of an elemental ring of radius
r in a cross section of the shaft. This ring can be considered as the
cross section of one of a number of thin elemental tubes into which
the shaft is subdivided. Then ¢ is the angle of twist of such a tube.
From the fact that the radii of the cross section become curved, it
follows that ¢ varies with r and the angles of twist of elemental tubes
are not equal for the same cross section of the shaft. Equations (e)
can now be written in the form

o 0o
3 — — X
Gr or dz
W 3P
3-—- — e——
Gr' 52 = ar
from which
O () 9 (,:%)_
ar\\ or +az(’" é)z) 0
or

% 3oy , W _ 0 0

9t " rar ' 9t
A solution of this equation gives us the angle of twist as a function of r
and z. If we put
Y = constant (m)

in this solution, we obtain a surface in which all the points have the
same angle of twist. In Fig. 175, AA, represents the intersection of
such a surface with the axial section of the shaft. From symmetry it
follows that the surfaces given by Eq. (m) are surfaces of revolution
and AA, is a meridian of the surface going through the point A. Dur-
ing twist these surfaces rotate about the z-axis without any distortion,

exactly in the same manner as the plane cross sections in the case of
circular cylindrical shafts. Hence the total strain at any point of the
meridian AA, is pure shearing strain in the plane perpendicular to the
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meridian, and the corresponding shearing stress in the axial section of
the shaft has the direction normal to the meridian. At the boundary
this stress is tangent to the boundary and the meridians are normal
to the boundary of the axial section. If we go from the surface
¥ = constant to an adjacent surface the rate of change of ¥ along the
boundary of the axial section of the shaft is dy/ds, and in the same
manner as for a cylindrical shaft of circular cross section (Art. 87) we
have

W 0
T =G EE (n) —~
where I, \\
__ ar dz
T = Tro g F T Il*a\\"
is the resultant shearing stress at the boundary. It is A
seen that the value of this shearing stress is easily
obtained if we find by experiment the values of dy/ds.!
Let us consider now a particular case of a conical shaft?
(Fig. 176). In this case the ratio
z z
(,,.2 + 22)} Fia. 176.

is constan‘.o at the boundary of the axial section and equal to cos a.
Any function of this ratio will satisfy the boundary condition (k). In
order to satisfy also Eq. (g) we take

é=c [ oz 1 z $
r+ 2% 3| (% + 22) (0)
where ¢ is a constant. Then by differentiation we find
o = _1 @ _ crz
=55, = m; (»

The constant ¢ is obtained from Eq. (k). Substituting (o) in this
equation we find
— Mt

2m(§ — cos a + 4 cos? a)

'I.‘o calculate t%le a.ngle of twist we use Eqgs. (¢), from which the expres-
sion for ¢, satisfying Eq. (I) and the boundary condition, is
¢

¥ = 3G + 291 (@

» IIS%gggexperiments were made by R. Sonntag, Z. angew. Math. Mech., vol. 9.
.1, .

2 See Foppl, loc. cit.

Cc =
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Tt will be seen that the surfaces of equal angle of twist are spherical
surfaces with their center at the origin O.

The case of a shaft in the form of an ellipsoid, hyperboloid, or parab-
oloid of revolution can be discussed in an analogous manner.!

The problems encountered in practice are of a more complicated
nature. The diameter of the shaft usually changes abruptly, as shown
in Fig. 177a. The first investigation of such problems was made by
A. Foppl. C. Runge suggested a numerical method for the approxi-
mate solution of these problems,? and it was shown that considerable

, stress concentration takes place at such

d points as m and =, and that the magni-

tude of the maximum stress for a shaft

m  n\<? Sm n %a of two different diameters d and D

(Fig. 177a) depends on the ratio of the

D radius a of the fillet to the diameter d
of the shaft and on the ratio d/D.

In the case of a semicircular groove

(a) (%) of very small radius a, the maximum

Fia. 177. stress at the bottom of the groove

(Fig. 177b) is twice as great as at the surface of the cylindrical shaft

without the groove.

In discussing stress concentration at the fillets and grooves of twisted
circular shafts, an electrical analogy has proved very useful.? The
general equation for the flow of an electric current in a thin homoge-
neous plate of variable thickness is

o (, oy o [, oy _

in which A is the variable thickness of the plate and ¢ the potential
function.

1 See papers by E. Melan, Tech. Bldtter, Prag, 1920; A. N. Dinnik, Buil. Don
Polytech. Inst., Novolcherkask, 1912; W. Arndt, Die Torsion von Wellen mit
achsensymmetrischen Bohrungen und Hohlriumen, Dissertation, Gottingen,
1916; A. Timpe, Math. Annalen, 1911, p. 480. Further references are given in a
review by Higgins, loc. cit.

2See F. A. Willers, Z. Math. Physik, vol. 55, p. 225, 1907. Another approximate
method was developed by L. Foppl, Sitzber. Bayer. Akad. Wiss., Minchen, vol. 51,
p. 61, 1921, and by R. Sonntag, Z. angew. Math. Mech., vol. 9, p. 1, 1929.

3 See paper by L. 8. Jacobsen, Trans. A.8.M.E., vol. 47, p. 619, 1925, and the
survey given by T. J. Higgins, loc. cit. Discrepancies between results obtained
from this and other methods are discussed in the latter paper. For further com-
parisons and strain-gauge measurements extending Fig. 179 to 2a/d = 0.50 see
A. Weigand, Luftfahrt-Forsch., vol. 20, p. 217, 1943, translated in N.A.C.A. Tech.
Mem. 1179, September, 1947.
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Let us assume that the plate has the same boundary as the axial sec-
tion of the shaft (Fig. 178), that the z~ and y-axes coincide with the
z- and r-axes, and that the thickness of the plate is proportional to the
cube of the radial distance r, so that » = ar3. Then Eq. (r) becomes

%y | 33y
% Trar Top =0

This coincides with equation ({), and we conclude that the equipoten-
tial lines of the plate are determined by the same equation as the lines
of equal angles of twist in the case of a shaft of variable diameter.

Assuming that the ends of the plate, corresponding to the ends of the
shaft, are maintained at a certain difference of potential so that the
current flows along the z-axis, the equipotential lines are normal to the

r a 2 q
_,al,« W T
b i |po 771
d 2 d
2 J 2 —
2 - ) 710t
[H
¢ ®) ()
Fia. 178.

lateral sides of the plate, 7.c., we have the same boundary conditions as
for lines of constant angle of twist. If the differential equations and
‘qhe boundary conditions are the same for these two kinds of lines, the
ll.nes are identical. Hence, by investigating the distribution of poten-
tial in the plate, valuable information regarding the stress distribution
in the twisted shaft can be obtained.

The maximum stress is at the surface of the shaft and we obtain this
stress by using Eq. (n). From this equation, by applying the electrical
analogy, it follows that the stress is proportional to the rate of drop of
botential along the edge of the plate.

.Actual measurements were made on a steel model 24 in. long by 6 in.
wide at the larger end and 1 in. maximum thickness (Fig. 178). The
drf)p of potential along the edge mnpq of the model was investigated by
using a sensitive galvanometer, the terminals of which were connected
to two sharp needles fastened in a block at a distance 2 mm. aparﬁ.
B.y touching the plate with the needles the drop in potential over the
dlstance' between the needle points was indicated by the galvanometer.
By moving the needles along the fillet it is possible to find the place of
and _Ieasure, the maximum voltage gradient. The ratio of thi;
maximum to the voltage gradient at a remote point m (Fig. 178a) gives
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the magnitude of the factor of stress concentration k* in the equation

16 M,

Toax, = wd?

The results of such tests in one particular case are represented in Fig.
178¢, in which the potential drop measured at each point is indicated

3.2

2.8H

I\\WZ2

:0 R é@/ 7

16 <

L8

08

04

0 004 0.08 0.12 0.6 0.20 0.24
2a
d
Fia. 179.

by the length on the normal to the edge of the plate at this point.

From this figure the factor of stress concentration is found to be 1.54. §
The magnitudes of this factor obtained with various proportions of i
shafts are given in Fig. 179, in which the abscissas represent the ratios 3
2a/d of the radius of the fillet to the radius of the smaller shaft and the i
ordinates the factor of stress concentration k for various values of the ;
ratio D/d (see Fig. 177). By interpolating from these curves the factor 3}

* Small variations in radius r [Eq. (n)] can be neglected in this case.
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of stress concentration for any particular case can be found with suffi-

cient accuracy.
Problems

1. Show by considering the equilibrium of the whole bar that when all stress
components vanish except 7., T4, the loading must consist of torsional couples
only [cf. Egs. (h), Art. 90].

2. Show that ¢ = A(r? — a?) solves the torsion problem for the solid or hollow
circular shaft. Determine A in terms of G9. Using Eqgs. (141) and (145) evaluate
the maximum shearing stress and the torsional rigidity in terms of M; for the solid
shaft, and verify that the results are in agreement with those given in any text
on strength of materials.

3. Show that for the same twist, the elliptic section has a greater shearing
stress than the inseribed circular section (radius equal to the minor axis b of the
ellipse). Which takes the greater torque for the same allowable stress?

4. Use Eq. (g) of Art. 92 and Eq. (145) to evaluate the torsional rigidity of
the equilateral triangle, and thus verify Eq. (I), Art. 92.

5. Using the stress function (m) of Art. 92 expressed in rectangular coordinates,
find an expression for r,, along the middle line Ax of Fig. 153, and verify that the
greatest value along this line is the value given by
Eq. (p).

6. Evaluate the torsional rigidity of the section
shown in Fig. 153. Is it appreciably different
from that of the complete circular section when the r
groove is small?

7. Show that the expression for the stress func- Y 26 x
tion ¢ which corresponds to the parabolic mem-
brane of Art. 94 is W
c?
= — 2
¢ Go (:c 4)

In a narrow tapered section such as the triangle +coh y
shown in Fig. 180, an approximate solution can be Tra. 180. Fra. 181

obtained by assuming that at any level y the
membrane has the parabolic form appropriate to the width at that level. Prove
that for the triangular section of height b
Mg = —1—1§Gobc,,3

approximately.

8.. Using the method indicated in Prob. 7, find an approximate expression for the
'_GOrSI.onal rigidity of the thin symmetrical section bounded by two parabolas shown
in Fig. 181, for which the width ¢ at a depth y below the center is given by

C=Ca(1—%—:)

9-. Show that the method indicated in Prob. 7 gives for a slender elliptical
section the approximate stress function

2 2
¢ = ——Gobz(ﬁ-k% - 1)
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the ellipse being that of Fig. 149 with b/a small. Show that the exact solution of
Art. 91 approaches this as b/a is made small.
Derive the approximate formulas
My = 7ab%G0, T, = 2666 = 24t
wab?
for the slender elliptical section, and compare with the corresponding formulas
for the thin rectangular section of length 2a and thickness 2b.

10. Apply the method given at the end of Art. 97 to find an approximation to
the torsional rigidity of the section described in Prob. 8.

11. A section has a single hole, and the stress function ¢ is determined so that it
vanishes on the outside boundary and has a constant value ¢x on the boundary of
the hole. By adapting the calculation indicated on page 262 for Eq. (145), prove
that the total torque is given by twice the volume under the ¢-surface plus twice
the volume under a flat roof at height ¢z covering the hole (cf. page 298).

12. A closed thin-walled tube has a perimeter [ and a uniform wall thickness §.
An open tube is made by making a fine longitudinal cut in it. Show that when the
maximum shear stress is the same in both
closed and open tubes,

Mlopen 15 oopen - 2A

a M tclosed E’Z, Belosed ﬁ-

[ and that the ratio of the torsional rigidities
is 1262/12A2, A being the area of the ‘“hole.”
Evaluate these ratios for a circular tube of

1 in. radius, % in. wall thickness.

13. A thin-walled tube has the cross section shown in Fig. 182, with uniform
wall thickness 8. Show that there will be no stress in the central web when the
tube is twisted.

Find formulas for (@) the shear stress in the walls, away from the corners, (b) the
unit twist 6, in terms of the torque.

14, Find expressions for the shear stresses in a tube of the section shown in
Fig. 183, the wall thickness 8 being uniform.

16. In discussing thin-walled closed sec-
tions, it was assumed that the shear stress
is constant across the wall thickness, corre- R 2R R
sponding to constant membrane slope across
the thickness. Show that this cannot be
strictly true for a straight part of the wall
(e.g., Fig. 171a) and that in general the correc- F

. . . 1G. 183.

tion to this shear stress consists of the shear

stress in a tube made “open” by longitudinal cuts (cf. Prob. 12).

16. The theory of Art. 104 includes the uniform circular shaft as a special case.
What are the corresponding forms for the functions ¢ and ¥? Show that these
functions give the correct relation between torque and unit twist.

17. Prove that

-2, A7 = (r? + 223
6=%+ % where R = (2 + 2%)

k a - a
Fic. 182.

satisfies Eq. (g) of Art. 104 only if the constant 4 is —% [ef. Eq. (0)].
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18. At any point of an axial section of a shaft of variable diameter, line elements
ds and dn (at right angles) in the section are chosen arbitrarily as shown in Fig. 184.
The shear stress is expressed by components r,, 7, along these. Show that
N 1V

T;=GT—C,’;, Tn=G7'5;;

Ll _ _1de
£ r2an’ T 2 gs’
and deduce the boundary condition satisfied by y. 0

Show without calculation that the function given by Eq. (¢) L
of Art. 104 satisfies this boundary condition for a conical &
boundary of any angle. ?;.<

19. Verify that Eq. (¢) of Art. 104 gives correctly the func-
tion ¢ corresponding to the function ¢ in Eq. (o). z

20. If the theory of Art. 104 is modified by discarding the Fia. 184.
boundary condition ¢ = constant the stress will be due to
certain ‘‘rings of shear” on the boundary, as well as end torques. Considering
the uniform circular shaft, describe the problem solved by ¢ = Czrt where ('is a
constant, for 0 <z <.

21. Prove that the relative rotation of the ends of the (conical) tapered shaft
shown in Fig. 185 due to torque M, is

M 1 _1_ 1
2r(3 —cosa +icos’a) 3G \a® b
If a and b are both made large, with b — ¢ =/, and « is made small, the above

result should approach the relative rotation of the ends of a uniform shaft of
length I, and radius aq, due to torque M. Show that it does so.

T

Fic. 185. Fia. 186.

22. U§e the functions given by Eqgs. (o) and (g) of Art. 104 to find, in terms of My,
the relative rotation of the ends of the hollow conical shaft shown in Fig. 186. The
ends are spherical surfaces of radii a, b, center O.



CHAPTER 12
BENDING OF PRISMATICAL BARS

105. Bending of a Cantilever. In discussing pure bending (Art. 88)
it was shown that, if a prismatical bar is bent in one of its principal
planes by two equal and opposite couples applied at the ends, the
deflection occurs in the same plane, and of the six components of stress
only the normal stress parallel to the axis of the bar is different from
zero. ‘This stress is proportional to the distance from the neutral axis.
Thus the exact solution coincides in this case with the elementary
theory of bending. In discussing bending of a cantilever of narrow
rectangular cross section by a force applied at the end (Art. 20), it was

o zy
7 M=%

(@) )
F1c. 187.

shown that in addition to normal stresses, proportional in each cross
section to the bending moment, there will act also shearing stresses
proportional to the shearing force.

Consider now a more general case of bending of a cantilever of a con-
stant cross section of any shape by a force P applied at the end and
parallel to one of the principal axes of the cross section! (Fig. 187).
Take the origin of the coordinates at the centroid of the fixed end.
The z-axis coincides with the center line of the bar, and the z- and
y-axes coincide with the principal axes of the cross section. In the
solution of the problem we apply Saint-Venant’s semi-inverse method
and at the very beginning make certain assumptions regarding stresses.
We assume that normal stresses over a cross section at a distance 2
from the fixed end are distributed in the same manner as in the case of

pure bending:
¢ = — P - 2)x (@
1This problem was solved by Saint-Venant, J. mathémat. (Liouville), series 2,
vol. 1, 1856.
316
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We assume also that there are shearing stresses, acting on the same
cross sections, which we resolve at each point into components 7., and
Ty We assume that the remaining three stress components o, oy, T2y
are zero. It will now be shown that by using these assumptions we
arrive at a solution which satisfies all of the equations of the theory of
elasticity and which is hence the exact solution of the problem.

With these assumptions, neglecting body forces, the differential
equations of equilibrium (127) become

0Tz Ory,
9z 0, 9z 0 ®)
o7, a'ryz _ Pz
I ©

From (b) we conclude that shearing stresses do not depend on 2z and are
the same in all cross sections of the bar.

Considering now the boundary conditions (128) and applying them
to the lateral surface of the bar, which is free from external forces, we
find that the first two of these equations are identically satisfied and
the third one gives

Ted + T9em = 0
From Fig. 187b we see that

dy dx
l -~ = e = e
cos (Nz) s’ m = cos (Ny) T
in which ds is an element of the bounding curve of the cross section.
Then the condition at the boundary is

dy dx
Tzz% - Tuz'dg =0 (@)

Turning to the compatibility equations (130), we see that the first
three of these equations, containing normal stress components, and the
last equation, containing 7, are identically satisfied. The system
(130) then reduces to the two equations

P

Vine =0, Ve = — 1y ©

Thus the solution of the problem of bending of a prismatical cantilever
of any cross section reduces to finding, for 7., and 7., functions of z
and y which satisfy the equation of equilibrium (¢), the boundary
condition (d), and the compatibility equations (e).

HSTITUTUL ¢OLITERNG
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106. Stress Function. In discussing the bending problems we
shall again make use of a stress function ¢(z,y). It is easy to see ’?hat
the differential equations of equilibrium (b) and (c) of the previous
article are satisfied by taking

_d¢ Pa? __0¢ a7)

Tez = s‘y“ Y + f@), Tyz = 9z

in which ¢ is the stress function of = and y, and f(y) is a func.ti.on of y
only, which will be determined later from the boundary COIIdlthIl:

Substituting (171) in the compatibility equations (e) of the previous
article, we obtain

66%9@=
az (’a? T o) =0
d (62¢ a%) y P df

ay\ast T oY) T T+l dp

From these equations we conclude that

%6 | 9% vy Py _df L. @

T T TEy 1 dy
where ¢ is a constant of integration. This constant has a very s'imple
physical meaning. Consider the rotation of an elemel.lt oi:' area in the
plane of a cross section of the cantilever. This rotation is expressed
by the equation (see page 225)
~ dv  du

2w,—%-—@

The rate of change of this rotation in the direction of the z-axis can be
written in the following manner:

d (v ou\_ o av+?_zg)_i(§y+§iv>=ayyz_%
9z\oz  dy) 9z \oz ' dy) dy\oz ' 9z or oy

and, by using Hooke’s law and expressions (171) for the stress compo-

nents, we find
D ooy o L(Fre 0=\ _ _1(%6 e
75 (ee) = 6(7»‘5 “@) =~g\=Tap Ty
Substituting in Eq. (a),

9 _ v Py
—G?')E Qu.) =

1+v» 1

+ec ®)
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If the z-axis is an axis of symmetry of the cross section, bending by a
force P in this axis will result in a symmetrical pattern of rotation w, of
elements of the cross section (corresponding to anticlastic curvature),
with a mean value of zero for the whole cross section. The mean value
of dw,/dz will then also be zero, and this requires that ¢ in Eq. (b) be
taken as zero. If the cross section is not symmetrical we can definel
bending without torsion by means of the zero mean value of dw,/ 9z,
again of course requiring the zero value for c. Then Eq. (b) shows that
dw./dz vanishes for the elements of cross sections at the centroids—that
is, these elements along the axis have zero relative rotation, and if one
is fixed the others have no rotation—about the axis. With ¢ zero Eq.
(a) becomes

% 3% v Py df '

ot Vo TTF T T a (172)

Substituting (172) in the boundary condition (d) of the previous
article we find

3¢ dy i?éﬂf=a_¢=[1’”2_ ]9’d_y (173)
s

From this equation the values of the function ¢ along the boundary of

the cross section can be calculated if the funection Sf(y) is chosen.

Equation (172), together with the boundary condition (173), deter-

mines the stress function ¢.

In the problems which will be discussed later we shall take function
J() in such a manner as to make the right side of Eq. (173) equal to
zero.> ¢ is then constant along the boundary. Taking this constant
equal to zero, we reduce the bending problem to the solution of the
differential equation (172) with the condition ¢ = 0 at the boundary.
This problem is analogous to that of the deflection of 8 membrane uni-
formly stretched, having the same boundary as the cross section of the
bent bar and loaded by a continuous load given by the right side of Eq.
(172).  Several applications of this analogy will now be shown.

107. Circular Cross Section. Let the boundary of the cross section
be given by the equation

i R (@)

'J. N. Goodier, J. Aeronaut. Sei., vol. 11, p. 273, 1944. A different definition
Was proposed by E. Treffts, Z. angew. Math. M ech., vol. 15, p. 220, 1935.

*See 8. Timoshenko, Bull. Inst. Engineers of Ways of Communications, St.
Petersburg, 1913. See also Proc London Math. Soc., series 2, vol. 20, p. 398, 1922.
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The right side of the boundary condition (173) becomes zero if we take
P
@) = 57 ¢* = 99 ®

Substituting this into Eq. (172), the stress function ¢ is then deter-
mined by the equation

3¢ , % 1+2vPy ©

w Tar 14 1
and the condition that ¢ = 0 at the boundary. Thus the stress func-
tion is given by the deflections of a membrane with circular boundary
of radius 7, uniformly stretched and loaded by a transverse load of

intensity proportional to
1+ 2vPy

T1¥yT

It is easy to see that Eq. (c) and the boundary condition are satisfied
in this case by taking

¢ =m(* +y* — )y (@
where m is a constant factor. This function is zero at the boundary
(@) and satisfies Eq. (c) if we take

o (1+29)P
81+ wI
Equation (d) then becomes
1+ 2»P
6= SER @ g = ©

The stress components are now obtained from Eqs. (171):

_ (3+2V)P(Tz_x2_1 — 2 2)

Tez = o571 1 N7 Y A

81 + i 3+ 2 ]

(1 + 2Py a74) 4
Tee = T 40 F )l

The vertical shearing-stress componen® 7., is an even function of x and
y, and the horizontal component 7, is an odd function of the same
variables. Hence the distribution of stresses (174) gives a resultant

along the vertical diameter of the circular cross section.

Along the horizontal diameter of the cross section, z = 0; and we ,

_ (3 + 2V)P <7‘2 _ 1 —2v yz), Ty = 0 (f) .

find, from (174),

T= =81 + w1 3+ 2v
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The maximum shearing stress is obtained at the center (y = 0), where

_ (8 + 2»Pr*

The shearing stress at the ends of the horizontal diameter (y = +7) is
_ (1 + 2v)Pr?

(Tzz)y=j:r - 4(1 + V)I (h)

It will be seen that the magnitude of the shearing stresses depends on
the magnitude of Poisson’s ratio. Taking » = 0.3, (¢) and (k)
become

P
(Tzz)mu, - 1.38 Z, (Tzz)y=:*:r = 1.23% (k)

where A is the cross-sectional area of the bar. The elementary beam
theory, based on the assumption that the shearing stress 7., is uni-
f(?rmly distributed along the horizontal diameter of the cross section,
gives

L _4P

34
The error of the elementary solution for the maximum stress is thus
in this case about 4 per cent.

108. Elliptic Cross Section. The method of the previous article

can also be used in the case of an elliptic cross section. Let

x2 2
SHLE-1=0 (a)

be the boundary of the cross section. The right side of Eq. (173) will
vanish if we take

P fa?
fly) = - 57(35 y: - az) (b)
Substituting into Eq. (172), we find
¢ 3¢ _Pyfa® v
ax2+a—y2‘7(1?+1+v> ©

This ec.luation together with the condition ¢ = 0 at the boundary
determines the stress function ¢. The boundary condition and Eq.
(c) are satisfied by taking

_ (A +»a2tw: P a?
¢ =31 +u)(3a2+b2)'7(x2+py’““2)y (@)

| INSTITUTUL POLITENME
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109. Rectangular Cross Section. The equation for the boundary

When a = b, this solution coincides with solution (c) of the previous s
line in the case of the rectangle shown in Fig. 188 is

article.
Substituting (b) and (d) in Egs. (171), we find the stress components
(&t = a) gt = b) = 0 @
If we §ubstitute into Eq. (173) the constant Pa?/2I for f(y), the
expression Pz?/2] — Pa?/2I becomes zero along the sides x = +a of
the rectangle. Along the vertical sidesy = b

St Pl (e ]
Taz = d+ »Ba®+0b?) 21 2 + »af + Y a75)
(1 + »)a? + »b® Pxy

Tyz = — 2 N T
@+ »@a2+0b) I the derivative dy/ds is zero. Thus the right 1
For the horizontal axis of the elliptic cross section (z = 0), we find S_lde of Eq. (173) is zero along the boundary T s b
line and we can take ¢ = 0 at the boundary. ., 1 _ -
o 21 + va? + 5 P [az (1 — 2v)a? y2] Differential equation (172) becomes v T
zz — 2 2 —2_7 - ﬂ——z_—lﬁ
—E)l+v)(3a + 97 (1 +»a® + P¢ P _ v Py T
Ty = ax? "oyt 14+v T ®)
The maximum stress is at the center (y = 0) and is given by equation This equation, together with the boundary *
condition, determines completely the st zn
. ) \ tion, y the stress
(ra) o, = %}_ {1 _a +3:;1; {}-(lb 2+ V)] function. The problem reduces to the deter- Y ?
mination of the deflections of a uniformly 2
If b is very small in comparison with @, we can neglect the terms con- stretched ~rectangular membrane ~produced e 188

taining b%/a?, in which case by a continuous load, the intensity of which is proportional to

Pa> 4P

(Ta;z)max. = "gT = —3";{ v Py

T1++T

which coincides with the solution of the elementary beam theory. If

The curve mnp in Fig. 188 represents the i i
b is very large in comparison with a, we obtain ’ emtersection of the membrane

with the yz-plane.
From Egs. (171) we see that shearing stresses can be resolved into

2 P
(7o) max. = 154 the two following systems:
The §tress at the ends of the hprizon@al diameter (y = =+ b) for this (1) o = 2_PI (a® — z7), ! =0
case 18 ' (e
4y P 2 T, = ag n_ _ 9¢ ’
Tzz = vy = 9 ’ Tos = oz
1424 Y oz

;Il‘lhe first system represents the parabolic stress distribution given by
€ usual elementary beam theory. The second system, depending
on the functi9n ¢, represents the necessary corrections to the ele-
gllentary solution. The magnitudes of these corrections are given by

e slopes of the membrane. Along the y-axis, ¢/dz = 0, from sym-
iIIl;e'ﬁry, and tl}e corrections to the elementary theory are vertical shear-
atg stress‘es given by the slope d¢/dy. From Fig. 188, r..,” is positive

the points m and p and negative at n. Thus, along the horizontal

The stress distribution along the horizontal diameter is in this case very
far from uniform and depends on the magnitude of Poisson’s ratio ».
Taking » = 0.30, we find ‘ S G
P
(Tzz)mx. = 1.54 E, (Tzz)a:=0, y=b — 092}"1'
The maximum stress is about 14 per cent larger than that given by the 1
elementary formula, '
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axis of symmetry, the stress 75 is not uniform as in the elementary
theory but has maxima at the ends, m and p, and a minimum at the
center n.

From the condition of loading of the membrane it can be seen that ¢
is an even function of = and an odd function of y. This requirement
and also the boundary condition are satisfied by taking the stress func-
tion ¢ in the form of the Fourier series,

m=® n= o

2m ;—al)wx . 'r_zz_y_ ()

¢ = Asmi1,n COS sin

m=0 n=1

Substituting this into Eq. (b) and applying the usual method of calcu-
lating the coefficients of a Tourier series, we arrive at the equations

2 2
[ (22 + )]
_ y P [* [ @m + V)rx . nry
= - 1357 f_a f_bycos-————————za sin — dx dy
A _ v P 8b(—1)m1
2m+1.n_—‘1__'*'_‘v_1'— 2m_|_1 2 n\?
riam+ on| (") + ()

Substituting in (d), we find

m=o n=o- _ 2m + Vmx . nwy
—1)ymtn—1 A b St Akl <
. P8 (-1 cos 50 sin —

b2
~( @m + Dn [(2m + 1) o+ n2]

m=0 n

Having this stress function, the components of shearing stress can be ]

found from Egs. (¢).

Let us derive the corrections to the stress given by the elementary g
theory along the y-axis. It may be seen from the deflection of the 3
membrane (Fig. 188) that along this axis the corrections have the
largest values, and therefore the maximum stress occurs at the middle 3
points of the sides y = +b. Calculating the derivative d¢/dy and }

taking ¢ = 0, we find that

m= 2 n

o o v P8®
(o )om0 = 14+vl «

3
m=0 =n

(—1)mt"1cos nry

b

 @n+ 1) [(2m 4 1)211’7:; + n2] ?
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F:rom this we find the following formulas for the center of the cross sec-
tion (y = 0) and for the middle of the vertical sides of the rectangle:

2m=°° ne= w
(Tzz,,)z==0. Y=o = = 1—_1;_1-’?%:)_32 2 (—1)m+n—-1 - _
m=0 n=1 (2m+1)[(2m+1)24—7‘12‘ +n2

(T:u”):c-o, y=b =

_ 2&2 (=1
5757 o
T 2(2m+1)[(2m+1)24b_;+nﬂ

m=0 n=1

The summation of these series is greatly simplified if we use the
known formulas

n= oo

1_=
n* 6
n=1
n= o0
nr 12
n=1] .

idnb 1 kr\*
2 (=1 1r3( - sech-z—
@m+ DI@m + 1T+ %5 32 3Gn/2)7

m=0

ser’;eT}:&s) fz)rmll;lﬁa) cfan be obtained in the following manner: Using the trigonometric
eries p. or the case of a tie rod loaded by the t
direct tensile force S, we find that Y ransverse forco P and the

n= ©

= NwWC . NTT
2PIs z Sin = s ==

V= Ze I'n’(n’——i—k’)_
ne
in which
Sz
2 =
k Elx?

and c is the distance of the load P from the left support (Fig. 112). Substituting

now ¢ = 0 and Pc = M, we arrive at the followi i
A owing deflect
the couple M applied at the left end ¢ ton eurve, produced by

n= «

sin 2%
_2Mp 2 )
V= Eoe Ly n(n® + 5

n=1
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(r2'") __» 3 2_4 N S
= b T T4+ v240% 8 o n? coshn—zq

in which A = 4ab is the cross-sectional area. These series converge
rapidly and it is not difficult to calculate corrections 7,,”’ for any value
of the ratio a/b. These corrections must be added to the value

. a 1 1
Point 3= 2 1 5 i
z=0,y=0 Exact 0.983 0.940 0.856 0.805
Approximate 0.981 0.936 0.856 0.826
z=0,y=0 Exact 1.033 1.126 1.396 1.988
Approximate 1.040 1.143 1.426 1.934

3P/2A given by the elementary formula. In the first lines of the table
above, numerical factors are given by which the approximate value of
the shearing stress 3P/2A must be multiplied in order to obtain the
exact values of the stress.! The Poisson’s ratio »is taken equal to one-
fourth in this calculation. It is seen that the elementary formula gives
very accurate values for these stresses when a/b = 2. For a square
cross section the error in the maximum stress obtained by the ele-
mentary formula is about 10 per cent.

and the deflection at the middle is

oMo 1
5 = 2ME (-1 @

Elx3 o @m + DIE2m + 1)? + ¥

m=

The same deflection obtained by integration of the differential equation of the

deflection curve is
Miz kar
b =SB (1 — sech 7) ®

The above formula follows from comparison of (a) and (b).

1 The figures of this table are somewhat different from those given by Saint-

Venant. Checking of Saint-Venant’s results showed that there is a numerical
error in his calculations,
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By using the membrane analogy useful approximate formulas for
calc'ulating these shearing stresses can be derived. If a is large in com-
parison with b (Fig. 188) we can assume that, at points sufficiently
distant from the short sides of the rectangle, the surface of the mem-
brane is practically cylindrical. Then Eq. (b) becomes

d¢ _ v Py
dy 1+» 1
and we find
v P
¢=7158 W~ (e)

Substituting in Eqs. (¢), the stresses along the y-axis are

_P P v 2 b?
T:z—ﬂ[a-}-l“l‘v(y ——3—)] (N

Tt will be seen that for a narrow rectangle the correction to the ele-
mentary formula, given by the second term in the brackets, is always
small.

If b is large in comparison with @, the deflections of the membrane
at points distant from the short sides of the rectangle can be taken as a
linear function of y, and from Eq. (b) we find

% _ _» Py
0z 14+» 1
_ v Py
¢_1+V21(x2—a2) (g)
Substituting in Eqgs. {(¢), the shearing stress components are
1 P, v P
==y e @ T e T T
At the centroid of the cross section (x =y = 0),
L P
==11y20 =0

In.cor.nparison with the usual elementary solution the stress at this
point is reduced in the ratio 1/(1 + »).

To sat%sfy the boundary condition at the short sides of the rectangle
we tal.&e, instead of expression (g), the following expression for the stress
function:

» Py

® =111

(z2 — a?)[1 — e~®wm] (k)
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in which m must be determined from the condition of minimum energy
(see Art. 97). In this manner we find
1
m = 2—\/ 10

a

With this value for m, and by using Eq. (h), we can calculate with
sufficient accuracy the maximum shearing stress which ocecurs at the

middle of the short sides of the rectangle.

If both sides of the rectangle are of the same order of magnitude we
can obtain an approximate solution for the stress distribution in a
polynomial form by taking the stress function in the form

¢ = (@ — a)(y? — b*)(my + ny?) (k)

Calculating the coefficients m and n from the condition of minimum
energy we find*

1 8q?
o _._» P ot
T T T+ v8I0*f1  3af\[1 , 8a® 1 . 9a?
(7+5F 7)) Tt e
"= — y _P_ 1
T T 14+ e8It f1 |, 3a7\f1 , 8a 1 . 9a?
(7+a;2 Tt ) Ta T e

The shearing stresses, ealculated from (k), are

2
(Tzz)zsuo, y=0 = I;“%‘ + ma?b?
Pa?

(Tes)emo,u=s = 5T — 2a2b%(m + nb?)

The approximate values of the shearing stresses given on the second
lines of the table (see page 326) were calculated by using these formulas.
It will be seen that the approximate formulas (f) give satisfactory
accuracy in this range of values of a/b.

If the width of the rectangle is large in comparison with the depth
maximum stresses much larger than the value 3P/24 of the elementary
theory are found. Moreover if b/a exceeds 15 the maximum stress is
no longer the component 7., at z = 0, y = +b, the mid-points of the
vertical sides. It is the horizontal component 7, at points z = @,

0

y = 47 on the top and bottom edges near the corners. Values of _‘

these stresses are given in the table? on page 329. The values of n are

1 See Timoshenko, loc. cit.
1 E. Reissner and G. B. Thomas, J. Math. Phys., vol. 25, p. 241, 1946.

R
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given in the form (b — 5)/2a in the last column, b — 5 being the dis-
tance of the maximum point from the corner.

b ezt yb | (Tus)omos yon b—1q
a 3P/24 T3P/24 2a
0 1.000 0.000 0.000
2 1.39(4) 0.31(6) 0.31(4)
4 1.988 0.968 0.522
6 2.582 1.695 0.649
8 3.176 2.452 0.739
10 3.770 3.226 0.810
15 5.255 5.202 0.939
20 6.740 7.209 1.030
25 8.225 9.233 1.102
50 15.650 19.466 1.322

11.0. Additional l?esul’.ts. Let us consider a cross section the boundary of which
consists of two vertical sides y = +qa (Fig. 189) and two hyperbolas!

(I + v)a? — w2 = a? (@)
It is easy to show that this makes the right side of Eq.
(173) on page 319 zero at the boundary if we take A T

P v a?
=-—{-—1y2 —
O 21(1+Py +1+v)
Substituting into Eq. (172), we find

T

¢ X
5 T35 =0 Fia. 189.

k—a—

This equation ?,nd the boundary condition (173) are satisfied by taking ¢ = 0.
Then the shearing-stress components, from Eq. (171), are

=£ — v a2
=g (-2 v )
Tﬂt=0

Aft ﬁ{mh poin.t of the cross section the shearing stress is vertical. The maximum
of this stress is at the middle of the vertical sides of the cross section and is equal to

o, = L0
max. 2I
The problem can also be easily solved if
th . e .
by the y solve e boundary of the cross section is given
1
Y\r 2
(ig) =(1—-(7), a>z> —a (d)

1 Thi . -
1878, is problem was discussed by F. Grashof, “ Elastizitst und Festigkeit,” p. 246,

WSTITUTUL POLITERD.
e TIMISOARA
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For v = 4, this cross-section curve has the shape shown in Fig. 190.

By taking .
s =521 - (£3)]

iti ishes, i.e., ¢ must be constant
ide of the boundary condition (173) vanishes, Z.e.,
the left side o along the boundary. Equation (172) becomes

T Rl Rl a3

This equation and the boundary condition are satisfied by

Pa?y @ +b(ig)%:+1]
o =5t v G 1)z o}

Substituting in Egs. (171) we find

1
g |
¢ , 0% v Py Pa? (‘ 15/);;

taking

Py

X (a? — 2%), Tyz = = mxy (c)

P
Fia. 190. Tzz = m

. . . . ina
We can arrive at the same result in a different way. In discussing stresses

rectangular beam the width of which is large in comparison with the depth, we

used as an approximate solution for the stress function [Eq. (g), Art. 109] the

expression
y Py

— 2
o=@

i ts may be derived. The equa-
ich the expressions (c) for stress components ma;
i;'g:l ;fv 1::11::1 bound:ry can now be found from the condition that at the boundary

the direction of shearing stress coincides with the tangent
to the boundary. Hence
dz _ dy

Tzz Tyz

Substituting from (c) and integrating, we arrive at the
equation of the boundary,

— 2 . p2}¥ m
- ve ) Fia. 191,

ive

ing the energy method (Art. 109) we may arrl ] _

b usu:';g)ximate soglztion in many other cases. Letus consider, for msta{xce, ttl:e
atoaé: ::cgcion shown in Fig. 191. The vertical sides of the boundary are given by
cr

the equation y = *b, and the other two sides are arcs of the cirqlg
gty —-rt=0 @
The right side of Eq. (173) vanishes if we take
P
f@) = 57 — ¥
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Then an approximate expression for the stress function is
¢ = W — 9@ + 4t~ )(dy + By + - - )

in which the coefficients A, B, . . . are to be calculated from the condition of
minimum energy.

Solutions for many shapes of cross section have been obtained by using polar
and other curvilinear coordinates, and functions of the complex variable. These
include sections bounded by two circles, concentric! or nonconcentric,? a circle
with radial slits,? a cardioid,* a limagon,5 an elliptic limagon,® two confocal ellipses,”
an ellipse and confocal hyperbolas,? triangles and polygons? including a rectangle
with slits,'® and a sector of a circular ring.!! :

111. Nonsymmetrical Cross Sections. As a first example let us consider the

case of an isosceles triangle (Fig. 192). The boundary of the cross section is given
by the equation

(y — a)lz + (2a + y) tan ollz ~ (2a + y) tan o] = 0
The right side of Eq. (173) is zero if we take

¥ c 2
P
f@) = 57 (2a + y)? tan? « @
Equation (172) for determining the stress function ¢ then
becomes I—-a——-— 2
# , 0% _ v Py P , x
o T T igx,T @ tvtanta  (a) Fie. 192.

An approximate solution may be obtained by using the energy method. In the
particular case when
1
2y =V 2
tan? a iF,~3 )
! A solution is given in A. E. H. Love’s “Mathematical Theory of Elasticity,”
4th ed. p. 335, and in I. S. Sokolnikoff’s *Mathematical Theory of Elasticity,”
p. 253.

*B. R. Seth, Proc. Indian Acad. Sci., vol. 4, sec. A, p. 531, 1936, and vol. 5,
p. 23, 1937.

¢ W. M. Shepherd, Proc. Roy. Soc. (London), series A, vol. 138, p. 607, 1932;
L. A. Wigglesworth, Proc. London Maih. Soc., series 2, vol. 47, p. 20, 1940, and
Proc. Roy. Soc. (London), series A, vol. 170, p. 365, 1939.

* W. M. Shepherd, Proc. Roy. Soc. (London), series A, vol. 154, p. 500, 1936.

> D. L. Holl and D. H. Rock, Z. angew. Math. Mech., vol. 19, p. 141, 1939.

% A. C. Stevenson, Proc. London Math. Soc., series 2, vol. 45, p. 126, 1939.

" A.E. H. Love, “Mathematical Theory of Elasticity,” 4th ed., p. 336.

® B. G. Galerkin, Bull. Inst. Engineers of Ways of Communication, St. Petersburg,
vol. 96, 1927. See also 8. Ghosh, Bull. Calcutta Math. Soc., vol. 27, p. 7, 1935.

* B. R. Seth, Phil. Mag., vol. 22, p. 582, 1936, and vol. 23, p. 745, 1937.

1 D. F. Gunder, Physics, vol. 6, p. 38, 1935.

. "' M. Seegar and K. Pearson, Proc. Roy. Soc. (London), series A, vol. 96, p. 211,
920.
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an exact solution of Eq. (a) is obtained by taking for the stress function the
expression

¢—£[zz—é(2a+y)2](y—a)

The stress components are then obtained from Egs. (171):

L Px (2a + y)? -2 ‘ff’ —~x2 + a(2a + )]
3y T 67 27a ©
— _ .a__¢ = 2 \/3P z(a — )
T = T 9z T T 27at y

Along the y-axis, z = 0, and the resultant shearing stress is vertical and is repre-
sented by the linear function

(fzz)z-o = 2;7{13;‘P (2 + )

The maximum value of this stress, at the middle of the vertical side of the cross

section, is
s, = 2V @
a

By calculating the moment with respect to the z-axis of the shearing forces given

by the stresses (c), it can be shown that in this case the resultant shearing force
passes through the centroid C of the cross section.

Let us consider next the more general case of a cross section with a horizontal

axis of symmetry (Fig. 193), the lower and upper portions of the boundary being
given by the equations

e ¥(y) for z>0
Y \ﬂ —(y) for z <0
w4

x Then the function
Fia. 193. [z + vz — @] = 22 — [P

vanishes along the boundary and in our expressions for stress components (171)
we can take

_P 2
@) = 57 W)
With this assumption the stress function has to satisfy the differential equation

9 8% _ v Py P
6x2+6y’_1+v1 I‘p()dy

and be constant at the boundary. The problem is reduced to that of finding the

deflections of a uniformly stretched membrane when the intensity of the load is
given by the right-hand side of the above equation. This latter problem can §
usually be solved with sufficient accuracy by using the energy method as was showa &

in the case of the rectangular cross section ( page 328).

BENDING OF PRISMATICAL BARS 333

The case shown in Fig. 194 can be treated in a similar manner. Assume, for
example, that the cross section is a parabolic segment and that the equation of
the parabola is

= Ay +a)
Then we take

¥ J@) =53 Aly +a)

With this expression for f(y) the first factor on the right-
hand side of Eq. (173) vanishes along the parabolic portion of
x the boundary. The factor dy/ds vanishes along the straight-
Fra. 194, line portion of the boundary. Thus we find again that the
stress function is constant along the boundary and the problem
can be treated by using the energy method.

112. Shear Center. In discussing the cantilever problem we chose
for z-axis the centroidal axis of the bar and for z- and y-axes the princi-
pal centroidal axes of the cross section. We assumed that the force P
is parallel to the z-axis and at such a distance from the centroid that
twisting of the bar does not occur. This distance, which is of impor-
tance in practical calculations, can readily be found once the stresses
represented by Egs. (171) are known. For this purpose we evaluate
the moment about the centroid produced by the shear stresses 7., and
7y.. 'This moment evidently is

M, = [[ (royy — 1yx) dz dy (a)

Observing that the stresses distributed over the end cross section of the
beam are statically equivalent to the acting force P we conclude that
the distance d of the force P from the centroid of the cross section is

1= ®

For positive M, the distance d must be taken in the direction of positive
y. In the preceding discussion the assumption was made that the
force is acting parallel to the z-axis.

When the force P is parallel to the y-axis instead of the x-axis we can,
by a similar calculation, establish the position of the line of action of P
for which no rotation of centroidal elements of cross sections occurs.
The intersection point of the two lines of action of the bending forces
has an important significance. If a force, perpendicular to the axis of
the beam, is applied at that point we can resolve it into two components
parallel to the z- and y-axes and on the basis of the above discussion we
conclude that it does not produce rotation of centroidal elements of
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cross sections of the beam. This point is called the shear center—
sometimes also the center of flexure, or flexural center.

If the cross section of the beam has two axes of symmetry we can
conclude at once that the shear center coincides with the centroid of
the cross section. When there is only one axis of symmetry we con-
clude, from symmetry, that the shear center will be on that axis.
Taking the symmetry axis for y-axis, we calculate the position of the
shear center from Eq. (b).

Let us consider, as an example, a semicircular cross section® as shown
in Fig. 195. To find the shearing stresses we can utilize the solution

developed for circular beams (see
Z page 319). In that case there are
no stresses acting on the vertical

diametral section 'zz. We can

0 imagine the beam divided by the
zz-plane into two halves each of

y which represents a semicircular
beam bent by the force P/2. The

x stresses are given by Eq. (174).
F1a. 195. Substituting into Eq. (a), integrat-

ing, and dividing M. by P/2, we find for the distance of the bending
force from the origin O the value

g

e=F I ity
This defines the position of the force for which the cross-sectional ele-
ment at point O, the center of the circle, does not rotate. At the same
time an element at the centroid of the semicircular cross section will
rotate by the amount [see Eq. (b) page 318]

_vwP(l—2)
w = W 0.424r

where 0.424r is the distance from the origin O to the centroid of the
semicircle. To eliminate this rotation a torque as shown in Fig. 195
must be applied. The magnitude of this torque is found by using the
table on page 279, which gives for a semicircular cross section the angle
of twist per unit length
—_ Mt
~0.296Gr*

18ce S. Timoshenko, Bull. Inst. Engineers of Ways of Communications, St.

8

Petersburg, 1913. It seems that the displacement of the bending force from the :

centroid of the cross section was investigated in this paper for the first time.
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Then the condition that centroidal elements of cross sections do not
rotate gives

Ml —2) vP(l—2)

02066 — —EI 042

and

M, = vP - 0.296r4 - 0.424r
. =
2(1 + »I
This tor.que will be produced by shifting the bending force P/2 toward
the z-axis by the amount

5 = 2M: _ 8 -0.206 - 0.424r

P 21 + v)w

This quantity must be subtracted from the previously calculated dis-

tance. e to obtain the distance of the shear center from the center O of
the circle. Assuming » = 0.3, we obtain

e — & = 0.548r — 0.037r = 0.511r

In sections as in Fig. 193 the shearing-stress components are

éo¢ P
=T -gw vl =32

Tz

Hence

= ¢ d¢ P
Mz_f/(a_z/y+55x>dxdy_§j//[xz—wz(y)]ydxdy ()

Integrating by parts and observing that ¢ vanishes at the boundary

z = +¢(y), we obtain
s .
// (5;—Sy+g§x>dxdy -2 f/d:da:dy
[t = (W] de = 33(y) — 2%(y) = —#A(y)
[z? = v @)ly dr dy = —4[yy?(y) dy o
I = [[z*dzdy = $[y*(y) dy

Substituting in (¢) and dividing by P we find

M. _ _2_// Jypi(y) dy
P P *®Wt Ty dy’

Knowing ¢ (y) and using the membrane analogy for finding ¢ we can

always calculate! with sufficient accuracy the position of the shear cen-
ter for these cross sections. -

d =

! Examples of such ealculations can be found in the book by L. 8. Leibens;)n,

“Variati .
0 48-31:1&th]18.1 Methods for Solving Problems of the Theory of Elasticity,” Moscow,
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The question of the shear center is especially important in the case
of thin-walled open sections. Its position can be easily determined for
such sections with sufficient accuracy by assuming that the shearing
stresses are uniformly distributed over the thickness of the wall and are
parallel to the middle surface of the wall.!

The location of the shear center in the cross section is determined by the shape
of the section only. On the other hand the location of the center of twist (see
page 271) is dependent on the manner in which the bar is supported. By choosing
this manner of support suitably the axis of twist can be made to coincide with the
axis of shear centers. It can be shown that this occurs when the bar is so sup-
ported that the integral f Jw? dx dy over the cross section is a minimum,? w being
the warping displacement of torsion (indeterminate by a linear function of z and y
before this condition is applied). In practice the fixing will usually disturb the
stress distribution near the fixed end—as for instance when it prevents displace-
ments in the end section completely. In that case, if we regard the bending force
as a concentrated load at the shear center, producing zero rotation, the reciprocal
theorem (page 239) shows that a torque will produce zero deflection of the shear
center. This indicates that the center of twist will coincide with the shear center.?
The argument is of an approximate character since the existence of a center of
twist depends on absence of deformation of cross sections in their planes, and this
will not hold in the disturbed zone near the fixed end.

113. The Solution of Bending Problems by the Soap-film Method.
The exact solutions of bending problems are known for only a few
special cases in which the cross sections have certain simple forms.
For practical purposes it is important to have means of solving the
problem for any assigned shape of the cross section. This can be
accomplished by numerical calculations based on equations of finite
differences as explained in the Appendix, or experimentally by the soap-
film method,* analogous to that used in solving torsional problems (see
page 289). For deriving the theory of the soap-film method we use
Eqgs. (171), (172), and (173) (see Art. 106). Taking

_ v  Py?
fly) = ’2-(‘1—_T_—V) T

1 References may be found in 8. Timoshenko, “Strength of Materials,” 2d ed.,
vol. 2, p. 55. .

2 R. Kappus, Z. angew. Math. Mech., vol. 19, p. 347, 1939; A. Weinstein, Quart.
Applied Math., vol. 5, p. 79, 1947. '

3 See R. V. Southwell, ‘“Introduction to the Theory of Elasticity,” p. 29; W. J.
Duncan, D. L. Ellis, and C. Scruton, Phil. Mag., vol. 16, p. 201, 1933.

4 This method was indicated first by Vening Meinesz, De Ingenieur, p. 108,
Holland, 1911. It was developed independently by A. A. Griffith and G. L
Taylor, Tech. Rept. Natl. Advisory Comm. Aeronaut., vol. 3, p.950,1917-1918. The
results given here are taken from this paper.
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Eq. (172) for the stress function is

¢ , 9%
This is the same equation as for an unloaded and uniformly stretched
membrane (see page 271). The boundary condition (173) becomes

6_45:[123_ v Pyrldy
o ~|or "0 ¥ n T las )

Integrating along the boundary s we find the expression

P [ z2d v Pys
¢ =T/Ty—m—%+constant (c)
from which the value of ¢ for every point of the boundary can be calcu-
lated. [(2?/2) dy vanishes when taken around the boundary, since it
represents the moment of the cross section with respect to the y-axis,
which passes through the centroid of the cross section. Hence ]
calculated from (c), is represented along the boundary by a close(i
curve.

Imagine now that the soap film is stretched over this curve. Then
the surface of the film satisfies Eq. (a) and boundary condition (c).
Hence the ordinates of the film represent the stress function ¢ at all
points of the cross section to the scale used for representation of the
function ¢ along the boundary [Eq. ©].

The photograph 196a illustrates one of the methods used for con-
struction of the boundary of the soap film. A hole is cut in a plate of
celluloid, of such a shape that after the plate is bent the projection of
the edge of the hole on the horizontal plane has the same shape as the
boundary of the cross section of the beam. The plate is fixed on
ver‘.oical studs and adjusted by means of nuts and washers until the
ordinates along the edge of the hole represent to a certain scale the
values of ¢ given by expression (c). The photograph 196b illustrates
another method for construction of the boundary by using thin sheets
of annealed brass.! The small corrections of ordinates along the edge
of the hole can be secured by slight bending of the boundary.

' The analogy between the soap-film and the bending-problem equa-
tlons holds rigorously only in the case of infinitely small deflections of
the membrane. In experimenting it is desirable to have the total range
of the ordinates of the film not more than one-tenth of the maximum

! See the paper by P. A. Cushman, Trans. 4.8.M.E., 1932.
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horizontal dimension. If necessary the range of the function'along the
boundary can be reduced by introducing a new function ¢, instead of

¢, by the substitution
’ ¢ = ¢1+ax + by (d)

F1a. 196a.

Fic. 196b.

where a and b are arbitrary constants. It may be seen that the func-
tion ¢; also satisfies the membrane equation (a). The Vah.les of the
function ¢, along the boundary, from Egs. (¢) and (d), are given by

p[a __r IE - — b constant
"’1=7/§dy_2(1+v) 3f ~w Wt
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The reduction of the range of the function ¢; at the boundary can
usually be effected by a proper adjustment of the constants a and b.

When the function ¢, is obtained from the soap film, the function ¢
is calculated from Eq. (d). Having the stress function ¢, the shearing-
stress components are obtained from Eqs. (171), which have now the
form

_9¢ Pg? v Py
=y T TITF T
L) (e)
Tyz = —'%

The stress components can now be easily calculated for every point of
the cross section provided we know the values of the derivatives
d¢/dy and d¢/dz at this point. These derivatives are given by the
slopes of the soap film in the y- and z-directions. For determining
slopes we proceed as in the case of torsional problems and first map
contour lines of the film surface. From the contour map the slopes
may be found by drawing straight lines parallel to the coordinate axes
and constructing curves representing the corresponding sections of the
soap film. The slopes found in this way must now be inserted in
expressions (e) for shear-stress components. The accuracy of this pro-
cedure can be checked by calculating the resultant of all the shear
stresses distributed over the cross section. This resultant should be
equal to the bending force P applied at the end of the eantilever.,

Experiments show that a satisfactory accuracy in determining
stresses can be attained by using the soap-film method. The results
obtained for an I-section! are shown in Figs. 197. From these figures
it may be seen that the usual assumptions of the elementary theory,
that the web of an I-beam takes most of the shearing force and that the
shearing stresses are constant across the thickness of the web, are fully
confirmed. The maximum shearing stress at the neutral plane is in
very good agreement with that calculated from the elementary theory.
The component ,, is practically zero in the web and reaches a maxi-
mum at the reentrant corner. This maximum should depend on the
radius of the fillet rounding the reentrant corner. For the proportions
taken, it is only about one-half of the maximum stress 7,, at the neutral
plane. The lines of equal shearing-stress components, giving the ratio
of these components to the average shearing stress P/A, are shown in
the figures.

The stress concentration at the reentrant corner has been studied for

* In this case of symmetry only one-quarter of the cross section need be investi-
gated, :
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the case of a T-beam. 'The radius of the reentrant corner was increased
in a series of steps, and contour lines were mapped for each case. It
was shown in this manner that the maximum stress at the corner equals
the maximum stress in the web when the radius of the fillet is about one-
sixteenth of the thickness of the web.

x X

=/,
i B
=
m=l5
=/6 =9
m et
m=/8 r._=2g
i o Li ines of equal
i Contour lines «227] Lines of equal ‘ Lines 0
D of soap-film 2 shear stress shear stress
=, —P— T =n£
i ‘ Ty g ! |
N 0 vl I it
Fra. 197.

114. Displacements. When the stress components are founfl, tlﬁe
displacements u, v, w can be calculated in the same manner as in ; e
case of pure bending (see page 250). Let us con5{de_r he.re the deflec-
tion curve of the cantilever. The curvatures of this line in the zz- .:a,nd
yz-planes are given with sufficient accuracy by the values o'f fzhe derlvta),—
tives 98%u/02? and 8%/92% for z = y = 0. These quantities can be
calculated from the equations

2" 9z 9z Goz Eox  EI @

M _ O 9 _

az? 0z oy
We see that the center line of the cantilever is bent .in ’?he xz—plape in
which the load is acting, and the curvature at any point 18 pr9port10nal
to the bending moment at this point, as is usually assumed in the ele-
mentary theory of bending. By integration of the first of Egs. (a), we
find

Plz2 Pz d ®)
u=ggr e =T

where ¢ and d are constants of integration wh.ich must be determined
from the conditions at the fixed end of the cantilever. If the end of the
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center line is built in,  and du/dz are zero when z = 0, and hence con-
stants ¢ and d in Eq. (b) are zero.

The cross sections of the beam do not remain plane. They become
warped, owing to the action of shearing stresses. The angle of inclina-
tion of an element of the surface of the warped cross section at the
centroid to the deflected center line is

T — (Tzz)zso, y=0

2 [

and can be calculated if the shearing stresses at the centroid are known_

115. Further Investigations of Bending. In the foregoing articles
we discussed the problem of bending of a cantilever fixed at one end
and loaded by a transverse force on the other. 'The solutions obtained
are the exact solutions of the bending problem, provided the external
forces are distributed over the terminal cross sections in the same man-
ner as the stresses o, 7.,, 74, found in the solutions. If this condition is
not fulfilled there will be local irregularities in the stress distribution
near the ends of the beam, but on the basis of Saint-Venant’s principle
we can assume that at a sufficient distance from the ends, say at a dis-
tance larger than cross-sectional dimensions of the beam, our solutions
are sufficiently accurate. By using the same principle we may extend
the application of the above solutions to other cases of loading and
supporting of beams. We may assume with sufficient accuracy that
the stresses at any cross section of a beam, at sufficient distance from
the loads, depend only on the magnitude of the bending moment and
the shearing force at this cross section and can be calculated by super-
position of the solutions obtained before for the cantilever.

If the bending forces are inclined to the principal axes of the cross
section of the beam, they can always be resolved into two components
acting in the direction of the principal axes and bending in each of the
two principal planes can be discussed separately. The total stresses
and displacements will then be obtained by using the principle of
Superposition.

Near the points of application of external forces there are irregulari-
ties in stress distribution which we discussed before for the particular
case of a narrow rectangular cross section (see Art. 36). Analogous
discussion for other shapes of cross section shows that these irregulari-
ties are of a local character.!

!8ee L. Pochhammer’s, “‘Untersuchungen itber das Gleichgewicht des elas-
tischen Stabes,” Kiel, 1879. See also a paper by J. Dougall, Trans. Roy. Soc.
(Edinburgh), vol. 49, p. 895, 1914,
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The problem of bending is solved also for certain cases of distributed
load.! It is shown that in such cases the central line of the beam
usually extends or contracts as in the case of the narrow rectangular
cross section (see Art. 21) already discussed. The curvature of the
center line in these cases is no longer proportional to the bending
moment, but the necessary corrections are small and can be neglected
in practical problems. For instance, in the case of a circular beam
bent by its own weight,? the curvature at the fixed end is given by the

equation
£[1 T +12v+4v’g":]
EI 6(L +») I

in which a is the radius of the cross section, and I the length of the
cantilever. The second term in the brackets represents the correction
to the curvature arising from the distribution of the load. It is small,
of the order of a?/I2. This conclusion holds also for beams of other
shapes of cross section bent by their own weight.?

1_
1=

1J. H. Michell, Quart. J. Math., vol. 32, 1901; also K. Pearson, ibid., vol. 24,
1889, and K. Pearson and L. N. G. Filon, 1bid., vol. 31, 1900.
2 This problem is discussed by A. E. H. Love, “Mathematical Theory of Elas-

ticity,” 4th ed., p. 362, 1927.
s The case of a cantilever of an elliptical cross section has been discussed by

J. M. Klitchieff, Bull. Polytech. Inst., St. Petersburg, p. 441, 1915.

CHAPTER 13

AXTALLY SYMMETRICAL STRESS DISTRIBUTION
IN A SOLID OF REVOLUTION

116. Gen(?ral Equations. Many problems in stress analysis which
are of practical importance are concerned with a solid of revolution
d-eformed symmetrically with respect to the axis of revolution. The
simplest examples are the circular cylinder strained by uniform il'lternal
or external pressure, and the rotating circular disk (see Arts. 26 and 30)
F.or problems of this kind it is often convenient to use cylindrical coor;
dl.nates [see Eqgs. (170), page 306]. The deformation being symmetrical
fmth respect to the z-axis, it follows that the stress components are
independent of the angle 4, and all derivatives with respect to 8 vanish
The components of shearing stress 7o and 7, also vanish on account of.
the symmetry. Thus Egs. (170) reduce to

do, 01y, Or — O

o T T — =0
aTrz 60', Trz (177)

The strain components, for axially s; o .
ymmetrical deformat
Eqs. (169), ’ mation, are, from

= _ou , dw
’ €; 8z’ Yrz = ?z + E“ (178)

N
e
sl

€ = € =

E,;

It i:% again of adYantage to introduce a stress function ¢. It may be
verified by substitution that Eqs. (177) are satisfied if we take

o =a%(vv2¢ —3%")

._._;1( ve-1%)

o = 5";[(2 — )V — g:g] 4
f,,=83r[(1—v)v2¢-\-g-_:‘f]

343
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provided that the stress function ¢ satisfies the equation

92 10 92\f(3% |, 1d¢ 2 veg —
(gﬁ+;5+5§>(6r2+r or 622) viVvie =0 (180)

The symbol y? denotes the opératlon

19 . o
ar2 2y r ar Trse T o (@)

which corresponds to Laplace’s operator

42 02 02
wTaptas

in rectangular coordinates [see Eq. (d), page 57]. It should be noted
that the stress function ¢ does not depend on 8, so that the third term
in (a) gives zero when applied to ¢.

We now transform the compatibility equations (130) (see page 232)
to cylindrical coordinates. Denoting by 6 the angle between r and the
z-axis we have [see Eq. (13)]

oz = o, c0s? 0 + o4 sin? @
oy = o, sin? 8 -+ op cos? 0

®)

unaffected by the presence of o, 7r..
Then

(ar2 r ar r2 602 + (9r cos® 6 + o4 sin® 0)

(61‘2 - ar -+ ) (or cos? 8 + a4 sin? §)
~ 2 cos 200, — 00) ()
Using the symbol © for the sum of the three normal components of
stress and applying Eq. (b) on page 57, we obtain for a symmetrical

stress distribution

020 ae 2‘9_I_ie_s1n"'6

o 61'2 r

Substituting (c) and (d) in the first of Egs. (130), we obtain

8 19 , 9 2 9% .
[(5-2+;a—r+5-z—)w——(ar rra)+1+ ar2]°°S 0

3 1907 . 4, _
"'[(arz r6r+62 ””+r2(”’_”’)+1+v’r‘ar]smo 0

(@)
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This equation holds for any value of 6, hence

a2 19 92 2 %0
(’a—ﬁ-i‘;a—r‘l'a——zz)o'r*—;(ar W)+1+V¢9r"'_

] 106

6r2+r8r+az)”+ 7o - W)+1—I—vr or

()

The same result is obtained by considering the second of Egs. (130), so
that Eqgs. (¢) take the place of the first two equations of the system
(130) for the case of a symmetrical deformation. The third equation
of (130) retains the same form in cylindrical coordinates.

Consider now the remaining three equations of the system (130),
containing shearing-stress components. In the case of symmetrical
deformation only the shearing stress 7,, is different, from zero, and the
stress components 7., and 7,., acting on a plane perpendicular to the
z-axis, are obtained by resolving r,, into two components parallel to the
z- and y-axes,

Tzz = Tr COS 0, Tys = Ty, SIN @
We have also
9%0 020
5oz araz°®?

Virz = V¥(r,, cos 0) = (Vzm - T—';) cos 6
r
Substituting in the fifth of Eqgs. (130), we obtain

1 1 %0
2 — —————— e X
Vi = Bt T 5970, 0 )
The same result is obtained by considering the fourth of Eqs. (130).
The last equation of the system (130) can also be transformed to
cylindrical coordinates by substituting

Ty = ¥(or — o) 5in 20
In this way we find

(1+V)V2|:%(0'r—0'a) sin2o]+s_in_2”.<i’i_li)e=o

This equation follows at once from Egs. (¢) on subtracting one from
the other. Hence the compatibility equations (130), in the case of a

deformation symmetrical with respect to an axis, are, in cylindrical
coordinates,
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2 1 9%
V’o’,-—r—2(a',.—-o'o) +1—+yw =

V2v0+7722(ar—ao)+—1-—_1’_-;,%,%?,=
1 _

14 v 922

1 9%

1
2, —_ —_— e ==
Vi = Gt T T 5576 = ©

0

()
Vi, +

It can be shown that all these equations are satisfied by the expressions
for the stresses given in Eqs. (179) when the stress function satisfies
Eq. (180). We see that the discussion of problems
involving stress distributions symmetrical about
an axis reduces to finding in each particular case
the solution of Eq. (180), satisfying the boundary
A conditions of the problem.!

In some cases it is useful to have Eq. (180) in
polar coordinates R and ¢ (Fig. 198) instead of
cylindrical coordinates r and 2z This trans-
formation can easily be accomplished by using the formulas of Art. 25.
We find

o r

Fia. 198.

¥ 9 18 .1 8

mt @~ TRE TR
1o 1 a . cosy Y 148  ctny §
75“Rsin¢(5ﬁsm"’+ R a‘p)_RaRJr R ay

Substituting in Eq. (180),

9?2 2 9 1 a 1 9% 92¢ 2 d¢
(m+ﬁm+mctn¢w+ﬁﬁﬁ)(m+ﬁm
1 3%

1 3¢ _
+1—e§ctnlpw+ﬁw) = 0 (181)

We shall apply several solutions of this equation in succeeding articles
to the investigation of particular problems involving axial symmetry.

1 This method of expressing all the stress components in terms of a single stress
function, which satisfies Eq. (180), is given in detail by A. E. H.Love, * Mathemati-
cal Theory of Elasticity,” 4th ed., p. 274, 1927, Another method of expressing
the problem in terms of a stress function has been given by J. H. Michell, Proc.
London Math. Soc., vol. 31, p. 144, 1900. The relation between the stress function
of two-dimensional problems and the stress function discussed in this chapter has
been considered by C. Weber, Z. angew. Math. Mech., vol. 5, 1925,
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Another way of solving these problems is to consider explicitly the
displacements. By using Egs. (178) the stress components can be
represented as functions of the displacements % and w. Substituting
these functions in Eqs. (177) we arrive at two partial differential
equations of the second order containing the two functions % and w.
The problem is then reduced to the solution of these two equations.

117. Solution by Polynomials. Let us consider solutions of the
Eq. (181), which are at the same time solutions of the equation

¢ | 293¢ 1

3¢ 1 9%
wTRE TR

tnyd® 4 ~0 (182)

oy ' R oy’
A particular solution of this latter equation can be taken in the form

¢n = Rn\I’n (a)

in which ¥, is a function of the angle y only. Substituting (a) into
Eq. (182) we find for ¥, the following ordinary differential equation:

1 o f. av,

This equation can be simplified by introducing a new variable, x = cosy.
Then

v, v, . N, _ PV, . oV,
oy oz MY o = g sy — 2
Substituting in Eq. (b), we obtain
o ov,
— 2 n_ o, 0¥ -
(=% 52 =2 2 4 + ¥, = 0 (183)

We shall solve this equation by series.? Assuming that
Y, = a1 2™ + gx™ + ax™ + - - - )
and substituting in Eq. (183), we find
n(n + 1)(az™ + az™ + azz™ + - - ) = mi(my + Dagm
=my(my — 1)ax™2 4+ my(ms + 1)az™ — ma(my — 1)aszm—?
+ @

In order that this equation may be satisfied for any value of z, there
must be the following relations between the exponents my, ma, msy, . . . .

mg=m1—-2, m3=m2-—2,

! This is known as Legendre’s equation. A complete discussion can be found in
A. R. Forsyth, “A Treatise on Differential Equations,” p. 155, 1903.
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It follows that the series (¢) is arranged in descending powers 9f x.
The magnitude of m; will now be determined by equating coefficients

of zm in (d). Then
nn+1) —mm +1) =0 —m)mi+n+1) =0
This gives for m, the two solutions
my = n, my = —(n+1) (e)
For the first of these solutions,
my = n, me =n — 2, ms; = n — 4,

The coefficients as, as, . . . in Eq. (d) are found by equating to zero
the coefficients of each power of z. Taking, for instance, .the terms
containing z™~2r*2, we find for the calculation of the coefficient a, the

equation

n(n + a, = (my — 2r + 2)(my — 2r + 3)a,
— (my — 2r + 4)(my — 2r + 3)a.1

from which, by substituting m. = n,

n—2r +4)(n — 2r + 3)
@ = T 50 = 1)(2n — 2r + 3)

The series (¢) can now be put in the form

Ar—1

. nn=1
W”=“[x'§@F?ﬁ )
n(n — 1)(n — 2(n — 3 H_.”]
TSI —Den =3) * )
which represents a solution of Eq. (183). Substituting this solution
in (a) and remembering that

T = cos ¥, Rx = 2, R =+ +2

we find, for n equal t0 0, 1, 2, 3, . . ., the following particular solu-
tions of Eq. (182) in the form of polynomials:

o = Ao

¢1 = A1Z ]

4 = A2 = }(° + )

b3 = Aqlzd — $2(r? + 22)] (184)

6s = Adet — 3220* + 2) + F(* + 2]

b5 = Aslz® — 3220 + 2% + r2(r + 21)’]

AXTALLY SYMMETRICAL STRESS DISTRIBUTION 349

Ao, Ay, . . . are arbitrary constants. These polynomials are also
solutions of the Eq. (181). From these solutions we can get new solu-
tions of Eq. (181) which will no longer be solutions of Eq. (182). If
R™¥,is a solution of Eq. (182), it can be shown that R***¥, is a solution
of Eq. (181). Performing the operation indicated in the parentheses
of Eq. (181),

? 20 1 3 .1 &
(ﬁ2+l_ﬂﬁ+7€30tn¢ﬁ+§iwz)fe+z‘l’n
= 2(2n + 3)R"¥. (g)

Repeating the same operation again, as indicated in Eq. (181), we
obtain zero, since (g) is a solution of Eq. (182). Hence R*?¥, is a
solution of Eq. (181). It is seen that multiplying solutions (184) by
R? = r? + 2%, we can obtain the following new solutions:

¢2 = By(r? + 2%

¢3 = Bgz(r? + 27)

¢s = By(22% — r)(r* +27) (185)
&5 = Bg(228 — 3r%)(r* + 22)

.................

118. Bending of a Circular Plate. Several problems of practical
interest can be solved with the help of the foregoing solutions. Among
these are various cases of the bending of

symmetrically loaded -ecircular plates by 10l bid 4 -
(Fig. 199). Taking, for instance, the !
polynomials of the third degree from o
(184) and (185), we obtain the stress z
function Fia. 199.
¢ = as(22® — 3r%) + bsy(r%z + 2°) (@)

Substituting in Eqgs. (179), we find

Oy = 6(13 + (10V - 2)b3, gg = 60,3 + (101/ bt 2)b3 (186)

g, = —12a; + (14 - 10V)b3, T =0

The stress components are thus constant throughout the plate. By a
suitable adjustment of constants a; and b; we can get the stresses in a
plate when any constant values of o, and o, at the surface of the plate
are given. '

Let us take now the polynomials of the fourth degree from (184) and
(185), which gives us

¢ = as(82* — 24r%2% 4 3r4) + bu(22% + %2 — 1Y) ®
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Substituting in Eqs. (179), we find

o, = 96asz + 4b,(14v — 1)z
o, = —192a;z + 4bs(16 — 14v)z (187)
96(147' —_ 2b4(16 - 1411)1’

Tre
Taking
96as — 2b4(16 — 14») = 0
we have
6, =T, = 0, o = 28(1 + v)bsz ()

If z is the distance from the middle plane of the plate, the solution (c)
represents pure bending of the plate by moments uniformly distributed
along the boundary.

To get the solution for a circular plate uniformly loaded, we take the
stress function in the form of a polynomial of the sixth power. Pro-
ceeding as explained in the previous article, we find

¢ = $as(162% — 120z%? 4 90z%* — 5r%)
+ be(828 — 16242 — 212%r¢ - 3r%)
Substituting in (179),

06(3202% — 720r%) + bel64(2 + 11»)2% + (504 — 48 - 225)r%]
as(—6402% + 960r%) + be{[—960 + 32 - 22(2 — V)]
+ [384 — 48 - 22(2 — »)]rz}

Or

o

as(960rz% — 2407%)
+ be[(—672 + 48 - 22v)2%r - (432 — 12 - 22v)r¥]

I

Trz

To these stresses we add the stresses
o = 96a4z, o, = —192a4, Ty = 96a4r

obtained from (187) by taking bs = 0, and a uniform tension in 1§he
z-direction ¢, = b, which can be obtained from (186). Thus we arrive
at expressions for the stress components containing four cqnstants
as, b, a1, b. These constants can be adjusted so as to satisfy t.he
boundary conditions on the upper and lower surfaces of the plate (Fig.
199). The conditions are

o, =0 for z2=c

o, = —q for 2= —c @
T =0 for z=c

e =0 for z= —c
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Here g denotes the intensity of the uniform load and 2¢ is the thickness
of the plate. Substituting the expressions for the stress components
in these equations, we determine the four constants as, be, as, b. Using
these values, the expressions for the stress components satisfying condi-
tions (d) are

arzq[2+vz_3_3(3+v)7f_z:_gg]

8 ¢ 32 ct
28 3z 1
"Z*q(‘rcﬁzz‘é) @
3qr
Tre = 8_6‘3 (02 d 22)

It will be seen that the stresses o, and 7,, are distributed in exactly the
same manner as in the case of a uniformly loaded beam of narrow rectan-
gular cross section (Art. 21). The radial stresses ¢, are represented by
an odd function of z, and at the boundary of the plate they give bending
moments uniformly distributed along the boundary. To get the solu-
tion for a simply supported plate (Fig. 199), we superpose a pure bend-
ing stress (c) and adjust the constant b, so as to obtain for the boundary
(r = a),

[_cca,zdz =0

Then the final expression for ¢, becomes

_ [24ve* _38+nr 324wz, 33 +)a%
""q[ 8 & 32 & 8 5 of 3 | (8

and at the center of the plate we have

(a',),=,0=q[2+v§i_§2+vg+3(3+v)a_2§]

8 ¢ 8 5 ¢ 39 o o)

The elementary theory of bending of plates, based on the assumptions
that linear elements of the plate perpendicular to the middle plane
(2 = 0) remain straight and normal to the deflection surface of the
plate! during bending, gives for the radial stresses at the center

38 + ») a%
O R @)
! This assumption is analogous to the plane cross sections hypothesis in the
theory of bending of beams. The exact theory of bending of plates was developed
by J. H. Michell, Proc. London Math. Soc., vol. 81, 1900, and A. E. H. Love,
‘“Mathematical Theory of Elasticity,” 4th ed., p. 465, 1927.
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Comparing this with (f), we see that the additional terms of the exact
solution are small if the thickness of the plate, 2¢, is small in comparison
with the radius a.

It should be noted that by superposing pure bending we eliminated
bending moments along the boundary of the plate, but the radial
stresses are not zero at the boundary but are

_ 2—|—vz3_§2+vg
(0-7)7=a - q< 8 3 ) 5 C) (h)

The resultant of these stresses per unit length of the boundary line and
their moment, however, are zero. Hence, on the basis of Saint-
Venant’s principle, we can say that the removal of these stresses does
not affect the stress distribution in the plate at some distance from the
edge.

By taking polynomials of higher order than the sixth for the stress
function, we can investigate cases of bending of a circular plate by
nonuniformly distributed loads. By taking, instead of solution (f)
on page 348, the other solution of Eq. (182), we can also obtain solu-
tions for a circular plate with a hole at the center.! All these solutions
are satisfactory only if the deflection of the plate remains small in com-
parison with the thickness. For larger deflections the stretching of
the middle plane of the plate must be considered.?

119. The Rotating Disk as a Three-dimensional Problem. In our previous
discussion (Art. 30) it was assumed the stresses do not vary through the thickness
of the disk. Let us now consider the same problem assuming only that the stress
distribution is symmetrical with respect to the axis of rotation. The differential
equations of equilibrium are obtained by including in Eqgs. (177) the centrifugal
force. Then

dor OTes | Or — 00
or + 9z + r

OTre do, Trz

o T Ty =0

+ po?r =0
(189)

where p is the mass per unit volume, and » the angular velocity of the disk.

The compatibility equations also must be changed. Instead of the system
(130) we shall have three equations of the type (f) (see page 231) and three equa-
tions of the type (g). Substituting in these equations the components of body
force,

X = pulz, Y = pu?, Z=0 (a)

1 A number of solutions for a circular plate symmetrically loaded have been
discussed by A. Korobov, Bull. Polytech. Inst., Kiew, 1913. Similar solutions were
obtained independently by A. Timpe, Z. angew. Math. Mech., vol. 4, 1924,

% See Kelvin and Tait, ‘“Natural Philosophy,” vol. 2, p. 171, 1903.
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we find that the last three equations, containing shearing-stress components,
remain the same as in the system (130), and the first three equations become
[see Egs. (¢), Art. 116]

2 1 9% 2pw?
Vo —p e b e -
2 1 2
V2¢0+T_2(0'—69)+1+v;1‘-%7'6—= —12,:“1' ®
1 9% 2vpw?
) - gY _ _ Lvewr
Va"-‘_1+v62:2 1 —v

We bfagin with a particular solution of Eqs. (189), satisfying the compatibility
equations. On this solution we superpose solutions in the form of polynomials
(184) and (185) and adjust the constants of these polynomials so as to satisfy

the boundary conditions of the problem. For the particular solution we take the
expressions

oy = Br? + D22, o = Ar? o = Cr? + Dz?, Tre =0 ()

It can be seen that these expressions satisfy the second of the equations of equilib-
rium. They also satisfy the compatibility equations which contain shearing-
stress components [see Eqs. (f) and (g), Art. 116]. It remains to determine the
constants 4, B, C, D, so as to satisfy the remaining four equations, namely the
first of Eqs. (189) and Eqs. (b). Substituting (c) in these equations, we find

A = po?(1 + _3v), B = — pwt C=o, Do pw?(l + 2p)(1 + »)

6» 3 6v(1 — »)
The particular solution is then
o _pet o pw?(1 4+ 20)(1 + 5)
or 37 S~  °
_ pw?(1 4 3v)
e (190)
op = — LA+ 291 +5) ,
6v(1 — ») ®
T = 0

This solution can be used in discussing the stresses in any body rotating about an
axis of generation.

In the case of a circular disk of constant thickness we superpose on the solution
(190) the stress distribution derived from a stress function having the form of a
polynomial of the fifth degree [see Eqgs. (184), (185)],

¢ = as(82° — 40r%23 + 15r2) + bs(22° — 728 — 3rtz) @)
Then, from Egs. (179), we find | »

or = —a5(180r2 — 2402%) + bs5[(36 — 5dw)r2 + (1 + 187)62?]

—as(—240r2 + 4802?) + be[(96 — 108»)2? + (—102 + 54v)r?]
as(—60r2 + 24022) + b;[(6 + 108»)2? + (12 — 54v)r?] ©
480asrz — b5(96 — 108»)rz

Gz

%9

LI |

Tra

i e A

MSTITUTUL piLITERN:
T1t4iSOARA
BIBLIOTECA CENTRALA
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Adding this to the stresses (190) and determining the constants as and bs so as to
make the resultant stresses r,; and o; vanish, we find

or = —puw? ;((llt:))z’+3;-”r’]

62
_ 1+ 3») v(1 4+ ») ]
w0 = —pot [P 4 ST
To eliminate the resultant radial compression along the boundary, Z.e., to make
[
( f ordz =0
—c r=a
we superpose on (f) a uniform radial tension of magnitude
put Y
g B+ v)a +pw22(1 — )3
Then the final stresses are
o = put [3 +» @ — ) + 7 1+ (& _322)]
8 6(1 — ») (191)
3+ 14+ 3» v(1 4+ ») ]
= pw? 2 2 2 _ Q2
) pw[ g ¢ ) r+6(1_y)(c 32?%)
g, =0, T = 0

Comparing this with the previous solution (55), we have here additional terms
with the factor! (c2 — 322). The corresponding stresses are small in the case of a
thin disk and their resultant over the thickness of the disk is zero. If the rim of
the disk is free from external forces, solution (191) represents the state of stress

in parts of the disk some distance from the edge.
The stress distribution in a rotating disk having the shape of a flat ellipsoid of

revolution has been discussed by C. Chree.?

120. Force at a Point of an Indefinitely Extended Solid. In.dis-
cussing this problem we use again Eq. (182) on page 347. By taking
my = —(n + 1) [see Eq. (¢), page 348], we obtain the second integral
of Eq. (183) in the form of the following series:

¥, =a [x—("+1) + %—%_2_) R
n+ DO +2D0+3)n+4D n g .. ]
2-4-@2n +3)2n +5)

Taking n equal to —1, —2, —3, . . . , we obtain from this the follow-
ing particular solutions of Eq. (182):

1 These terms are of the same nature as the terms in 2? found in Art. 84, Equa-
tions (191) represent a state of plane stress since o, and 7. vanish. . Body force
(here centrifugal force), not included in Art. 84, does not alter the general conclu-
sions so long as it is independent of 2.

2 . Chree, Proc. Roy. Soc. (London), vol. 58, p. 89, 1895.
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o1 = A.(r? + 22~
$2 = Azz(r? + 22) (192)
¢ = AdfPG7 + 27 — 302 + 2]

......................

which are also solutions of Eq. (181). By multiplying expressions
(192) by r% + 22 (see page 349), we obtain another series of solutions of
Eq. (181), namely,

$1 = Bu(r? + 2%}

¢2 = BzZ(T2 + 22)—% (193)

Each of the solutions (192) and (193), and any linear combination of
them, can be taken as a stress function, and, by a suitable adjustment
of the constants Ay, 4, ..., By, By, ..., solutions of various
problems may be found.

For the case of a concentrated force we take the first of the solutions
(193) and assume that the stress function is

$ = B(r* + 221

where B is a constant to be adjusted later. Substituting in Egs. (179),
we find the corresponding stress components

or = B[(1 — 2v)2(r? 4 22~ — 3r2(r? + 2%)~1]

g9 = B(1 — 2»)z(r? + 223 (194)

o: = —B[(1 — 2v)2(r? + 2871 + 323(r2 - 22)1]

e = —B[(1 — 2v)r(r? + 22~ + 3rz2(r? 4 2274
All these stresses approach infinity when we approach the origin of
coordinates, where the concentrated force
is applied. To avoid the necessity of
considering infinite stresses we suppose
the origin to be the center of a small
spherical cavity (Fig. 200), and consider
forces over the surface of the cavity as
calculated from Egs. (194). It can be
shown that the resultant of these forces
represents a force applied at the origin in
the direction of the z-axis. From the
condition of equilibrium of a ring-shaped

elemen.t, adjacent to the cavity (Fig. 200), the component of surface
forces in the z-direction is

Z = —(rn.sin ¢ + 0, cos )
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Using Egs. (194) and the formulas

sin ¢ = r(r? + 2273, cos ¢ = z2(r2 4 22)~}
we find that

Z = B[(1 — 2»)(r2 4 2%~ + 322(r? 4 257

The resultant of these forces over the surface of the cavity is
2 [ZV7FF2dp-2nr = 8Br(l — v)

The resultant of the surface forces in a radial direction is zero, from
symmetry. If P is the magnitude of the applied force, we have

P = 8Bx(1 — »)
Substituting
P

into Egs. (194), we obtain the stresses produced by a force P applied at
the origin in the z-direction.! This solution is the three-dimensional
analogue of the solution of the two-dimensional problem discussed in
Art. 38.

Substituting z = 0 in Egs. (194), we find that there are no normal
stresses acting on the coordinate plane z = 0. The shearing stresses
over the same plane are '

_ _B(l-2»__ P1—2
T T T T T gl —

(a)

r*  These stresses are inversely propor-
tional to the square of the distance r
from the point of application of
the load.

121. Spherical Container under
Internal or External Uniform Pres-

z sure. By superposition we can get

F1a. 201. from the solution of the previous

article some new solutions of practical interest. We begin with the
case of two equal and opposite forces, a small distance d apart, applied
to an indefinitely extended elastic body (Fig. 201). The stresses pro-
1 The solution of this problem was given by Lord Kelvin, Cambridge and Dublin

Math. J., 1848. See also his “ Mathematical and Physical Papers,” vol. 1, p. 37.

From his solution it follows that the displacements corresponding to the stresses

(194) are single-valued, which proves that (194) is the correct solution of the

problem (see Art. 82).
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duced at any point by the force P applied at the origin O are determined
by Eqs. (194) and (195) of the previous article. By using the same
equations, the stresses produced by the force P at O, can also be
calculated. Remembering that the second force is acting in the oppo-
site direction and considering the distance d as an infinitely small
quantity, any term f(r,z) in expressions (194) should be replaced by
—[f 4 (8f/82)d]. Superposing the stresses produced by the two forces
and using the symbol A for the product Bd, we find

o= —A % [(1 = 20)2(r + 22)~1 — Br22(r® + 22)]

il

co= —A % [(1 — 20)2(r* + 29)1]
(196)

o= A aiz [(1 — 20)2(r® + 221 + 3230 + 22)4]
T = A 8% [A = 20)r(r? + 22)~% 4 3rz2(r? + 22)~4]

Let us consider (Fig. 201) the stress components oz and 7z acting at a
point M on an elemental area perpendicular to the radius OM, the
length of which is denoted by R. From the condition of equilibrium
of a small triangular element such as indicated in the figure we find!

or = o, sin® ¢ 4 o, cos? ¢ + 2r,, sin ¢ cos ¢
Try = (0r — ;) sin ¢ cos ¢ — 7..(sin? ¢ — cos? ¢) (a)

Using (196), and taking

siny =Gttt =g cosy =z )d = 2
we obtain
2(1 —_
op = — —(%II)—A [— sin?y + 2——(12+ :) cos? \/z]
®
Try = —m—;_?filisinx/zcosw

The distribution of these stresses is symmetrical with respect to the
z-axis and with respect to the coordinate plane perpendicular to z.
Imagine now that we have at the origin, in addition to the system of
two'forces P acting along the z-axis, an identical system along the
r-axis and another one along the axis perpendicular to the rz-plane.
! The stress components oy, acting on the sides of the element in the meridional

seci.:io'ns of the bedy, give a small resultant of higher order and can be neglected in
deriving the equations of equilibrium,
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By virtue of the symmetry stated above, we obtain in this way a stress
distribution symmetrical with respect to the origin. If we consider a
sphere with center at the origin, there will be only a normal uniformly
distributed stress acting on the surface of this sphere. The magnitude
of this stress can be calculated by using the first of Egs. (b). Con-
sidering the stress at points on the circle in the rz-plane, the first of
Egs. (b) gives the part of this stress due to the double force along the
z-axis. By interchanging sin ¢ and cos ¢, we obtain the normal stress
round the same circle produced by the double force along the r-axis.
The normal stress due to the double force perpendicular to the rz-plane
is obtained by substituting ¢ = w/2 in the same equation. Com-
bining the actions of the three perpendicular double forces we find the
following normal stress acting on the surface of the sphere:

m = — 4(1 _1;332V)A ()

The combination of the three perpendicular double forces is called a
center of compression. We see from (c¢) that the corresponding com-
pression stress in the radial direction
depends only on the distance from the
center of compression and is inversely
proportional to the cube of this distance.

This solution can be used for calculat-
ing stresses in a spherical container sub-
mitted to the action of internal or external
uniform pressure. Let a and b denote
the inner and outer radii of the sphere
(Fig. 202), and p; and p, the internal and
the external uniform pressures. Super-
posing on (c) a uniform tension or com-
pression in all directions, we can take a
general expression for the radial normal stress in the form

Fic. 202.

0'R='1g3+D (d)

C and D are constants, the magnitudes of which are determined from
the conditions on the inner and outer surfaces of the container, which

are

C
%"*‘D:"pu B§+D=—p"
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Then
_ (pi — po)a®h?
C=
_ Dob® — pa?
_ pDR — ), pia(® — RY)
Or R*(a% — b9 + R*(a® = b%)

The pressures p, and p; also produce in the sphere normal stresses ¢; in
a tangential direction, the magnitude of which we find from the condi-
tion of equilibrium of an element cut out from the sphere by thetwo
concentric spherical surfaces of radii R and R + dR and by a circular
cone with a small angle dy (Fig. 202). The equation of equilibrium is

TR dor TR?
01 5 dR(dY)* = 3% WT dR(dY)? + ox "'2—R AR(dy)?

from which
dO’R

R
0 = ’dﬁ 9 + oz (e)
Using expression (197) for ¢z this becomes

_ pbRRY + ) pad@RS 4 bY)
TR BY T 2R@ = B9 (198)

Ptttttths

If p, = 0, then

_ pa® (2R® + b?)
TR B —~a?

It will be seen that the greatest tangen-

tial tension in this case is at the inner a2 r
surface, at which g
~ 0%
_ Pi2d® +b® LY
(Ut)max. 2 b3 _ (13
All these results are due to Lamé.! l l l 1 1 l
122. Local Stresses around a Spherical z
Fia. 203.

Cavity. As a second example consider
the stress. distribution around a small spherical eavity in a bar submitted to uni-
form tension of magnitude § (Fig. 203).2 In the case of a solid bar in tension, the
normal and shearing components of stress acting on a spherical surface are '

1Lam§, “Legons sur la théorie . . . de I'élasticité,” Paris, 1852.
; 2 Solutlon'of this problem is due to R. V. Southwell, Phil. Mag., 1926; see also
. N. Goodier, Trans. A.S.M.E., vol. 55, p. 39, 1933. The triaxial ellipsoidal

cavity is considered by E. Sternberg and M. Sadowsk; ) X
. y, J. Applied M.
(Trans. A.8.M.B.), vol. 16, p. 149, 1949, o - Applied Mechanics
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or = S cos? ¢, TRy = ~—8 sin ¢ cos ¢ (a)

To get the solution for the case of a small spherical cavity of radius a, we must
superpose on the simple tension a stress system which has stress components on
the spherical surface equal and opposite to those given by the Eqs. (a), and which
vanishes at infinity.

Taking from the previous article the stresses (b), due to a double force in the
z-direction, and the stresses (c), due to a center of compression, the corresponding
stresses acting on the spherical surface of radius @ can be presented in the following
form:

or = — —q——:—aﬂ(—l +? _T_ ::cosz n//): try = — 2(1—::3”Msin\bcosn,(x ®)
o'’ = Py ey’ =0 (c)

where 4 and B are constants to be adjusted later. It is seen that, combining
stresses (b) and (c), the stresses (a¢) produced by tension cannot be made to vanish
and that an additional stress system is necessary.

Taking, from solutions (192), a stress function

¢ = Ca(r? + 22)}

the corresponding stress components, from Eqs. (179), are
o = i—(z(l — 5 cos?y — 5sin? ¢ + 35 sin? ¢ cos? ¢)

T = %Cg’ (3 — 30 cos? ¢ + 85 cost y)

d)
a0 =%€(1 — 5 cos? ¢)

Tee = I—Ig—g(—3sin¢cos\lx + 7 sin ¢ cos? ¢)

Using now Egs. (a) of the previous article, the stress components acting on a
spherical surface of radius g are
12¢ re

og'!! = = (=1 + 3 cos? y), TRy = 2:—50 sin ¢ cos ¢ (e)

Combining stress systems (b), (c), (¢) we find

0'1;='2£'—:-3—VM—-2(5—11)5A§0082¢ +%—15—5("+?%;—5gc032¢
21 + )4 ¥
-

TRy = sin¢cos¢+23f‘osin¢cos¢

Superposing these stresses on the stresses (a), the spherical surface of the cavity
becomes free from forces if we satisfy the conditions

204+ »4A , B 12C

T =0

~26 -5 +%C = s )
2(1 + A |, 24C

Tt =8
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from which
A_ 58 B _ 801 -5y c___ 8 *)
@ 27=5) & T=58r & 37 -5

The complete stress at any point is now obtained by superposing on the simple
tension S the stresses given by Egs. (d), the stresses (196) due to the double
force, and the stresses due to the center of pressure given by Eqgs. (c) and (e) of the
previous article.

Consider, for instance, the stresses acting on the plane z = 0. From the condi-
tion of symmetry there are no shearing stresses on this plane. From Egs. (d),
substitutingy = x/2 and B = r,

, _9C _ 98a’®
¢ (k)
From Egs. (196), for z = 0,
w A —2v) 51 — 2»)Sad
e (S @
From Eq. (e) of the previous article,

"o =B _ _80-5ya
e = A T (m)
The total stress on the plane z = 0is
= ./ ’” rr — 4 — 5» (1_3 9 ab
=l tol to +S“S[1+2(7—5v)r3+2(7—5y)ﬁ] ()

At r = g, we find
_ 27 — 15v
(G'J)mnx. = m S (0)
Taking » = 0.3,
(U's)max. = é—%S

The maximum stress is thus about twice as great as the uniform tension 8 applied
to the bar. This increase in stress is of a highly localized character. With
increase of r, the stress (n) rapidly approaches the value S. Taking, for instance,
r = 2a, v = 0.3, we find o, = 1.0548.

In the same manner we find, for points in the plane z = 0,

3¢ A -2») B

P =T T 3

Substituting from Eqs. (k) and taking r = a, we find that the tensile stress along
the equator (¢ = x/2) of the cavity is

@)t rma = 22 =3
2(7 — 5»)

At the pole of the cavity (¢ = O or ¢ = 7) we have

o=, = 2 =204 12¢_ B _ _ 3+15r o

S

Thus the longitudinal tension S produces compression at this point.
. Combining a tension S in one direction with compression S in the perpendicular
irection we can obtain the solution for the stress distribution around a spherical
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cavity in the case of pure shear.! It can be shown in this way that the maximum

shearing stress is

15(1 — »)
Tmax., = m‘—s (»)

The results of this article may be of some practical interest in discussing the
effect of small cavities? on the endurance limit of specimens submitted to the
action of eyclical stresses.

123. Force on Boundary of a Semi-infinite Body. Imagine that
the plane z = 0 is the boundary of a semi-infinite solid and that a force
P is acting on this plane along the z-axis (Fig. 204).2 It was shown in
‘ D Art. 120 that the stress distribu-

tion given by FEgs. (194) and
" (195) can be produced in a semi-
infinite body by a concentrated
force at the origin and by shear-
¥ /\% ing forces on the boundary plane
z = 0, given by the equation

ey _ _ B =2y

Trz
r 2

R ——

(a)

To eliminate these forces and
arrive at the solution of the
problem shown in Fig. 204, we
use the stress distribution corresponding to the center of compression
(see page 358). In polar coordinates this stress distribution is

_4 —d_”.§1_€_|_ __14
TR “TER2ZTPT T 2R

Q
y

z
Fic. 204.

in which A is a constant. In cylindrical coordinates (Fig. 204) we
have the following expressions for the stress components:

or = o sin? ¢ + o, cos? ¢ = A@? — $2%)(r2 4 232
6, = og cos? Y 4o, sin? ¢ = A(2? — ) (r? + 2)F (199)
Tr: = 2(or — o) sin 2¢ = §Arz(r? + 237}
14 1

— i A L L AGr 4 )

b R

1 This problem was discussed by J. Larmor, Phil. Mag., series 5, vol. 33, 1892.
See also A. E. H. Love, * Mathematical Theory of Elasticity,” 4th ed., p. 252, 1927.

2 Such cavities are, for instance, present in a weld, and fatigue experiments
show that cracks usually begin at these cavities.

3 The solution of this problem was given by J. Boussinesq, see ‘ Application des

potentiels . . . ,” Paris, 1885. The solution for a force at an internal point of the
semi-infinite body was found by R. D. Mindlin, Physics, vol. 7, p. 195, 1936.

gy = 0 =
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Assume now that centers of pressure are uniformly distributed along
the z-axis fromz = 0toz = — . Then, using the principle of super-
‘position, the stress components produced in an indefinitely extended
solid are, from Egs. (199),

o = A / (r* = 35" + 292 dz

= % [1 _ ;zé (r? + 29~ — 2(r* + zz)—g]

P
® 1 _ A '
o, = A f (z2 -3 r2) (r*+2%)tde = 3 z2(r? + 22)~# (200)
Tre = gA f rz(r? + 29"t dz = ‘%r(ﬂ 4 2%~
1 0
ao=—-§A/z (r2+z2)—3dz=—%[%—%(N—i—ﬁ)‘l]

Considering the plane z = 0 we find that the normal stress on this
plane is zero, and the shearing stress is

(Trz)z=0 = '];é (b)

27t
It appears now that by combining solutions (194) and (200), we can,
by a suitable adjustment of the constants A and B, obtain such a stress
distribution that the plane z = 0 will be free from stresses and a con-
centrated force P will act at the origin. From (a) and (b) we see that
the shearing forces on the boundary plane are eliminated if

—B(1 — 2v) +% =0
from which

A =2B(1 — 2v)

Substituting in expressions (200) and adding together the stresses (194)
and (200), we find

6r = B {(1 — 29) [;15 — ;25 (r* + 22)—3] — 3r(r® 4+ z2)—9}
o, = —3Bz3(r? + 22)%

1 2 ) ©
oo = B(1 — 2v) [“ = + e (r® + 257 4 2(r® + 22)_§J

Tre = —3Brz2(r? -+ 22)—%
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This stress distribution satisfies the boundary conditions, since
o, = 7, = 0 for z = 0. It remains now to determine the constant B
so that the forces distributed over a hemispherical surface with center
at the origin are statically equivalent to the force P acting along the
z-axis. Considering the equilibrium of an element such as shown in
Fig. 200, the component in the z-direction of forces on the hemispherical
surface is
= —(1,. sin ¢ + o, cos ) = 3Bz%(r? 4 z2)~2

For determining B we obtain the equation

P=2r ﬁf Zr(r* + 22t dy = 6xB ﬁf cos? ¢ sin ¢ dy = 2xB
from which
B =

Pl

Finally, substituting in (¢) we obtain the following expressions for
the stress components due to a normal force P acting on the plane
boundary of a semi-infinite solid:

oy = 2% {(1 — 2y) [;1—2 — 7% (r 4+ zz)—;] — 3r2%(r2 + z2)—i}
7 = = %13 28(r? + 2774

1 (201)

weBam (]

__§1_) 2(2 2\—§
Tre = 27rrz(r + 2%)

L0+ 20t + zz)—s}

This solution is the three-dimensional analogue of the solution for the
semi-infinite plate (see Art. 33).

If we take an elemental area mn perpendicular to z-axis (Fig. 204),
the ratio of the normal and shearing components of the stress on this
element, from Eqgs. (201), is

[

e B

()

<

rz

Hence the direction of the resultant stress passes through the origin O.
The magnitude of this resultant stress is

2r P F 20 2x (P + 20 + 2%)

2 2
S=veifri= 2 3P oV (o9 |
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The stress is thus inversely proportional to the square of the distance
from the point of application of the load P. Imagine a spherical sur-
face of diameter d, tangent to the plane z = 0 at the origin 0. For
each point of this surface,

r? 4+ 22 = d? cos? ¢ (e)

Substituting in (202) we conclude that for points of the sphere the
total stress on horizontal planes is constant and equal to 3P/2xd2

Consider now the displacements produced in the semi-infinite solid
by the load P. From Eqs. (178) for strain components,

U = e = %[aa — v(oy + 0.)]

Substituting the values for the stress components from Egs. (201),

_ A -=2»)1 4+ »P
2xEr

[z(r2 42t -1+ — r2z(r? 4+ 22)"3] (203)

For determining vertical displacements w, we have, from Eqgs. (178),

ow 1

& = € =E‘[z V(Ur+0'o)]
w _ o _du_ ?_(1__+V>:z_5?1‘
or T e T oz

Substituting for the stress components, and for the displacement « the
values found above, we obtain

0 LB e 2 — 13 4 51— 2R + 27

dw _ P+
or 2=E

[2(1 — »)r(r? 4+ 22)=F + 3r22(r2 + 22)1]
from which, by integration,
w = S [+ 92 + 2+ 20— 90+ (200

For the boundary plane (z = 0) the displacements are

(Wems = — 05 22”,1%,+ LA P(_lr%

(205)

TI?"‘C ARA

f W3 wL PGL!TEHWQ\
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showing that the product wr is constant at the boundary. Hence the
radii drawn from the origin on the boundary surface, after deformation,
are hyperbolas with the asymptotes Or and Oz. At the origin the dis-
placements and stresses become infinite. To eliminate the difficulties
in applying our equations we can imagine the material near the origin
cut out by a hemispherical surface of small radius and the concentrated
force P replaced by the statically equivalent forces distributed over this
surface.

124. Load Distributed over a Part of the Boundary of a Semi-
infinite Solid. Having the solution for a concentrated force acting on
the boundary of a semi-infinite solid we can find the displacements and
the stresses produced by a distributed load by superposition. Take, as
a simple example, the case of a uniform load distributed over the area
of a circle of radius a (Fig. 205), and consider the deflection, in the

on the surface of the body at a dis-
tancerfrom the center of the circle.
Taking a small element of the
loaded area shown shaded in the
figure, bounded by two radii
including the angle d¢ and two
ares of circle with the radii s and
s + ds, all drawn from M, the load on this element is gs dy ds and the
corresponding deflection at M, from Eq. (205), is

(1 — g sdyds _ (1 — )
=E s Tk

dy ds

The total deflection is now obtained by double integration,

w=(1_;‘-E-”m/de¢ds

Integrating with respect to s and taking into account the fact that the
length of the chord mn is equal to 2 v/a* — r?sin? ¢ we find

1
w_—_M 'P\/az—rzsinz\bd;ﬁ (a@)

=l 0 \
in which ¥, is the maximum value of ¢, 7.e., the angle between r and
the tangent to the circle. The calculation of the integral (a) is simpli-
fied by introducing, instead of the variable y, the variable angle 6.
From the figure we have

asin § = rsiny

direction of the load, of a point M
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from which
_acosfdd _ acosfdb

dy = = —
7 COS ¥ 2
. r\/l —j—zsinza

Substituting in Eq. (a) and remembering that 6 varies from 0 to =/2,
when ¢ changes from 0 to ¢, we find

= 4(1 — »)gr
o V1 — (a?/r?) sin® 9 B

: _a ., _ a’ : de
[./0 '\/1 o 6.df (1 B 7’—2) j; V1 — (a?/r?) sin? 0] (206)

The integrals in this equation are known as elliptic integrals, and their
values for any value of a/r can be taken from tables.!

‘ 41 — »¥)q fg a® cos? 0 df
w ==
- ok

o . r
TT77777777. 77
0z
o r
() (6)
z

Fia. 206.
To get the deflection at the boundary of the loaded circle, we take
r = g in Eq. (206) and find
_ 41 — »Hqo
(W) yma = - _ (207)

) If the point M is within the loaded area (Fig. 206a), we again con-
SIdgr_ the deflection produced by a shaded element on which the load
gs ds dy acts. Then the total deflection is '

w == ;EV2)Q// ds dy

! Se?e for instance, E. Jahnke and F. Emde, “Funktionentafeln,” Berlin, 1909;
or Peirce, ‘Short Table of Integrals,” 1910.
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The length of the chord mn is 2a cos 6, and  varies from zero to
/2, s0

g [3
'w=4—————————(1 v)qf a cos 6 dy
=E 0

or, since a sin = r sin ¢, we have

_41=a (2 [, ,
w = T_/;) 1 P sm. \P dll/ (208)

Thus the deflection can easily be calculated for any value of the ratio
r/a by using tables of elliptic integrals. The maximum deflection
occurs, of course, at the center of the circle. Substituting r =0 in

Eqg. (208), we find
— 2
(W)ome, = 2L 7000 (200)

Comparing this with the deflection at the boundary of the circle we
find that the latter is 2/x times the maximum deflection.! It is
interesting to note that for a given intensity of the load ¢ the maximum
deflection is not constant but increases in the same ratio as the radius
of the loaded circle.

By using superposition the stresses can also be calculated. Con-
sider, for example, the stresses at a point on the z-axis (Fig. 206b).
The stress o, produced at such a point by a load distributed over a ring
area of radius r and width dr is obtained by substituting in the second
of Egs. (201) 2xr drq instead of P. Then the stress ¢, produced by the
uniform load distributed over the entire circular area of radius a is

a

o, = — / 3gr drz3(r? + 2% = ¢z |(r? + 2%)F
0

0

“o| -1+ ] ©

This stress is equal to —g at the surface of the body and gradually
decreases with increase of distance z. In calculating the stresses o, and

1The solution of this problem was given by Boussinesq, loc. cif. See also
H. Lamb, Proc. London Math. Soc., vol. 34, p. 276, 1902; K. Terazawa, J. Coll.
Sci., Univ. Tokyo, vol. 37, 1916; F. Schleicher, Bauingenieur, vol. 7, 1926, and
Bauingenieur, vol. 14, p. 242, 1933. A complete investigation of this problem, also
of the case in which the load is distributed over a rectangle, is given in the paper by
A. E. H. Love, Trans. Roy. Soc. (London), series A, vol. 228, 1929. Special
properties of the deformation and stress in the general case are pointed out by
S. Way, J. Applied Mechanics (Trans. A.S.M.E.), vol. 7, p. A-147, 1940.
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oo at the same point, consider the two elements 1 and 2 of the loaded
area (Fig. 206b) with the loads gr d¢ dr. The stresses produced by
these two elemental loads at a point on the z-axis, from the first and
third of Egs. (201), are

do = grdedr
’ g

l(l — 2») [713 - % (r + zz)‘*] — 3r%(r? 4 22)‘5}

1

(0
dof = TI2I (1 3y [— S50 ) 20t + z2)-i]

The normal stresses produced on the same planes by the elemental
loads at points 3 and 4 are

L qrdéd
do,/" = QL#‘ (1 —2») [— % + % (r* + 27 + 2(r® + zz)"{l
dogf’ = T de¢ dr

T

{(1 - [:_ i z2)_*] — 3r%2(r" + 22)—9} ’

By summation of (¢) and (d) we find that the four elemental loads,
indicated in the figure, produce the stresses

da,. = do’o =

[(1 = 20)2(r? + 22 — 3r2z(r2 + 22)]

(e)
— rdedr [—2(1 + »)z(r? + 22—t 4 323(r? 4 22)] ’

qrde dr
T

K

To get the stresses produced by the entire load uniformly distributed
over the area of a circle of radius ¢ we must integrate expression (e)
with respect to ¢ between the limits 0 and =/2, and with respect to T,
from 0 to @. Then

=0 =1 [) [—2(1 + 92(r? + 2271 + 3252 + 22)~¥r dr

=§[—(1 +2y)+i(/1(12+_+”1§_<\/a_zzw>3] Y

Fo; f&he point O, the center of the loaded circle, we find, from Egs. ®)
and (f),

6. = —q, op=ap = — 1L T2)

2
Taking » = 0.3., we have ¢, = 0y = —0.89. The maximum shearing
stress gt the pomt. O, on planes at 45 deg. to the z-axis, is equal to 0.1¢.
Assuming that yielding of the material depends on the maximum
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shearing stress, it can be shown that the point O, considered above, is
not the most unfavorable point on the z-axis. The maximum shearing
stress at any point on the z-axis (Fig. 206b), from Egs. (b) and (), is

1 _ _q 1 —2» ’ z _§ 2 \?
5 (@0 “9—2[ z O g 2(m)] v

This expression becomes a maximum when

2 1
Vaia 8

s = a 01D ®

Substituting in expression (g),

from which

Tm=g[1—22”+§(1+u) \/2-(1-1—11)] (k)

Assuming » = 0.3, we find, from Egs. (h) and (k),
z = 0.638a, Tmax. = 0.33¢

This shows that the maximum shearing stress for points on the z-axis
is at a certain depth, approximately equal to two-thirds of the radius
of the loaded circle, and the magnitude of this maximum is about one-
third of the applied uniform pressure q.
For the case of a uniform pressure distributed over the surface of a
square with sides 2a, the maximum deflection at the center is
_ 8 ga(l — v%) ga(l — »?)
Woax. = —10gn V2 +1) = =224 (210)
The deflection at the corners of the square is only half the deflection at
the center, and the average deflection is

Do, = 1,90 L2 (@11)

Analogous calculations have also been made for uniform pressure dis-
tribution over rectangles with various ratios, a = a/b, of the sides.
All the results can be put in the form!

P — »?)

Waver. =

1 See Schleicher, loc. cit.
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in which m is a numerical factor depending on «, A is the magnitude of
this area, and P is the total load.

TasLE or Facrors m iNn Eq. (212)

Rectangles with various o = %
Circle | Square
1.5 2 3 5 10 100
m = 0.96 0.95 0.94 | 0.92 | 0.88 | 0.82 | 0.71 | 0.37

Several values of the factor m are given in the table. It will be seen
that for a given load P and area A deflections increase when the ratio
of the perimeter of the loaded area to the area decreases. Equation
(212) is sometimes used in discussing deflections of foundations! of
engineering structures. In order to have equal deflections of various
portions of the structure the average pressure on the foundation must
be in a certain relation to the shape and the magnitude of the loaded
area.

It was assumed in the previous discussion that the load was given,
and we found the displacements produced. Consider now the case
when the displacements are given and it is necessary to find the corre-
sponding distribution of pressures on the boundary plane. Take, as
an example, the case of an absolutely rigid die in the form of a circular
cylinder pressed against the plane boundary of a semi-infinite elastic
solid. In such a case the displacement w is constant over the circular
base of the die. The distribution of pressures is not constant and its
intensity is given by the equation?

P
7= 2ra \/a* — r?

in which P is the total load on the die, a the radius of the die, and r the
distance from the center of the circle on which the pressure acts. This
distribution of pressures is obviously not uniform and its smallest value
is at the center (r = 0), where '

(213)

p

qmin. = m
t.e., it is equal to half the average pressure on the circular area of con-
tact. At the boundary of the same area (r = a) the pressure becomes

! See Schleicher, loc. cit. -
* This solution was given by Boussinesq, loc. cit,
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infinite. In actual cases we shall have yielding of material along the
boundary. This yielding however is of local character and does not
substantially affect the distribution of pressures (213) at points some
distance from the boundary of the circle.

The displacement of the die is given by the equation

_ P =9
T 2aE
We see that, for a given value of the average unit pressure on the
boundary plane, the deflection is not constant but increases in the same
ratio as the radius of the die.

For comparison we give also the average deflection for the case of a
uniform distribution of pressures [Eq. (208)}:

w (214)

P(1 — »%)
w =40 00 P Tl 05—t (2
aver akl 5 alf (215)

This average deflection is not very much different from the displace-
ment (214) for an absolutely rigid die.

125. Pressure between Two Spherical
Bodies in Contact. The results of the
previous article can be used in discussing
the pressure distribution between two
bodies in contact.! We assume that at
the point of contact these bodies have
spherical surfaces with the radii B; and
R, (Fig. 207). If there is no pressure
between the bodies we have contact at
one point 0. The distances from the

Fra. 207. plane tangent at O of points such as M

and N, on a meridian section of the

spheres at a very small distance? r from the axes z; and z,, can be
represented with sufficient accuracy by the formulas

r2 2
21 = m) 2y = m (@)

and the mutual distance between these points is

1 1 7‘2(R1 + Rz)
——4 2 Pt — = —
ata=rigy T 232) SRR, ®

1 This problem was solved by H. Hertz, J. Math. (Crelle’s J.), vol. 92, 1881.
See also H. Hertz, “Gesammelte Werke,” vol. 1, p. 155, Leipzig, 1895,
2 r is small in comparison with R; and R,
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In the particular case of contact between a sphere and a plane (Fig.
208a), B1 = «;and Eq. (b) for the distance M N gives

r2

R, . (c)

In the case of contact between a ball and a spherical seat (Fig. 208b),
R, is negative in Eq. (b), and
r*(B, — R,) ’
2R.R, o ©

If the bodies are pressed together along the normal at O by a force P,
there will be a local deformation near the point of contact producing
contact over a small surface with a circular boundary, called the surface
of contact. Assuming that the radii of curvature Ry and R, are very
large in comparison with the radius of the boundary of the surface of

29 — 21 =

(a) %) 12
Fia. 208.

contact, we can apply, in discussing local deformation, the results
obtained before for semi-infinite bodies. Let w; denote the displace-
ment due to the local deformation in the direction z; of a point such as
M on the surface of the lower ball (Fig. 207), and w, denote the same
displacement in the direction z; for a point such as N of the upper ball.
Assuming that the tangent plane at O remains immovable during local
compression, then, due to this compression, any two points of the
bodies on the axes z; and z, at large distances! from O will approach
each other by a certain amount o, and the distance between two points
such as M and N (Fig. 207) will diminish by a — (w, + w,). If
finally, due to local compression, the points M and N come ipside the
surface of contact, we have

a— (w4 wy) = 2z, + 25 = Br? (d)

in which 8 is a constant depending on the radii R, and R, and given by
Eq. (), (¢), or (¢/). Thus from geometrical considerations we find for

! Such distances that deformations due to the compression at these points can
be neglected.
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any point of the surface of contact,
w + we = a — pr? (e)

Let us now consider local deformations. From the condition of
symmetry it can be concluded that the intensity ¢ of pressure between
the bodies in contact and the corresponding deformation are symmetri-
cal with respect to the center O of the surface of contact. Taking Fig.
206a to represent the surface of contact, and M as a point on the sur-
face of contact of the lower ball, the displacement w; of this point, from
the previous article, is

=2 [ [ qasay )

in which »; and E; are the elastic constants for the lower ball, and the
integration is extended over the entire area of contact. An analogous
formula is obtained also for the upper ball. Then

wi + we = (k1 + ko) [[gdsdy (9
in which
- _ 1 - 1112 _ 1 —_ 1122
=g k= (216)

From Egs. (e) and (g),

(ks + ko) [fq ds dp = o — pr* (h)
Thus we must find an expression for ¢ to satisfy Eq. (). It will now
be shown that this requirement is satisfied by assuming that the dis-
tribution of pressures g over the contact surface is represented by the
ordinates of a hemisphere of radius a constructed on the surface of con-
tact. If gois the pressure at the center O of the surface of contact, then

go = ka

in which k = go/a is a constant factor representing the scale of our
representation of the pressure distribution. Along a chord mn the
pressure ¢ varies, as indicated in Fig. 206 by the dotted semicircle.
Performing the integration along this chord we find

=2
/qu—aA

in which A is the area of the semicircle indicated by the dotted line
and is equal to"—zr (a® — r?sin?y). Substituting in Eq. (k), we find that

w(ky ‘Z k2)qo /2 (@2 — r2sin? ¢) dy = a — Br?
0
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or

2
(ks + k) LT (2a* — %) = & — Pr?
4a o
This equation will be fulfilled for any value of r, and hence the assumed
pressure distribution is the correct one if the following relations exist

for the displacement « and the radius @ of the surface of contact:

2
a = (ks + ka)go 5
(217)
1 2 4 B
The value of the maximum pressure g, is obtained by equating the sum
of the pressures over the contact area to the compressive force P.
Then, for the hemispherical pressure distribution this gives

% . gmf =P
from which
3P
% =754 (218)

i.e., the maximum pressure is 13 times the average pressure on the sur-
face of contact. Substituting in Eqgs. (217) and taking, from Eq. (b),

g = By + R,
2R,R,

we find for two balls in contact (Fig. 207)
.= \731 P(ky + k2)RiR,

I~ Rtk
21
- \3/91 P*(ky + k2)*(R: + o) (219)
16 R\R,

Assuming that both balls have the same elastic properties and taking

v .= 0.3, this becomes
_ 3
1109 [P Bt
a =1.109 FR, T E,
3
_19s JP*Ri+ R,
= 1B \FE"RER,

The corresponding maximum pressure is

3P 8 R, + R,)?
Qo =5 = 0388, /PE2 -——W } (221)

(220)
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In the case of a ball pressed into a plane surface, and assuming the same
elastic properties of material for both bodies, we find, by substituting
R, = » in Egs. (220) and (221),

8[PR 8 p2 3[PE?
a = 1.109 1/ E% a =123, /ETIE’ go = 0.388 o (222)

By taking R, negative we can write down also equations for a ball in a
spherical seat (Fig. 208b).

Having the magnitude of the surface of contact and the pressures
acting on it, the stresses can be calculated by using the method devel-
oped in the previous article.! The results of these calculations for
points along the axes Oz, and Oz, are shown in Fig. 209. The maxi-

‘ ' mum pressure ¢, at the center of the
0 0540 % _, surface of contact is taken as a unit
/’/’/_’ of stress. In measuring the dis-
L o=as T2 tances along the z-axis, the radius

| I a of the surface of contact is taken
@ as the unit. The greatest stress is

{ the compressive stress o, at the

center of the surface of contact, but

2a the two other principal stresses o,

and g4, at the same point, are equal to

! -; Zy o.. Hence the maximum

Sa shearing stress, on which the yielding
z

of such material as steel depends, is
comparatively small at this point.
The point with maximum shearing stress is on the z-axis at a depth
equal to about a half of the radius of the surface of contact. This
point must be considered as the weakest point in such material as steel.
The maximum shearing stress at this point (for » = 0.3) is about 0.31¢o.

In the case of brittle materials, such as glass, failure is produced by
maximum tensile stress. This stress occurs at the circular boundary

Fia. 209.

of the surface of contact. It acts in a radial direction and has the

magnitude .
a (1 =2y
Op = .- _3 — Qo

I Such calculations were made by A. N. Dinnik, Bull. Polytech. Inst., - Kiew,

1909. See also M. T. Huber, Ann. Physik, vol. 14, 1904, p. 153; S. Fuchs, Physik.

- Z., vol. 14, p. 1282, 1913; M. C. Huber and 8. Fuchs, Physik. Z., vol. 15, p. 298,

1914; W. B. Morton and L. J. Close, Phil. Mag., vol. 43, p. 320, 1922.
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The other principal stress, acting in the circumferential direction, is
numerically equal to the above radial stress but of opposite sign.
Hence along the boundary of the surface of contact, where normal
pressure on the surface becomes equal to zero, we have pure shear of
the amount qo(1 — 2»)/3. Taking » = 0.3, this shear becomes equal
to 0.133go. This stress is much smaller than the maximum shearing
stress calculated above, but it is larger than the shearing stress at the
center of the surface of contact, where the normal pressure is the
largest.

Many experiments have been made which verify the theoretical
results of Hertz for materials which follow Hooke’s law and stress
within the elastic limit.!

126. Pressure between Two Bodies in Contact. More General
Case.? The general case of compression of elastic bodies in contact
may be treated in the same manner as the case of spherical bodies dis-
cussed in the previous article. Consider the tangent plane at the
point of contact O as the xy-plane (Fig. 207). The surfaces of the
bodies near the point of contact, by neglecting small quantities of
higher order, can be represented by the equations?

2y = Awx? 4+ Ay + Agy? (@)
22 = Biz? + Baxy + Bay? a

The distance between two points such as M and N is then

21+ 2 = (Al + 31)332 + (Az + Bz)l‘y + (As + Ba)y2 (b)

"We can always take for 2 and y such directions as to make the term

containing the product zy disappear. Then
21+ 22 = Az? + By? (c)

in which 4 and B are constants depending on the magnitudes of the
principal curvatures of the surfaces in contact and on the angle
between the planes of principal curvatures of the two surfaces. If
R, and Ry’ denote the principal radii of curvature at the point of con-

! References to the corresponding literature can be found in the paper by
G. Berndt, Z. tech. Physik, vol. 3, p. 14, 1922. See also “Handbuch der physika-
lischen und technischen Mechanik,” vol. 3, p. 120.

?This theory is due to Hertz, loc. cif. Tangential force and twisting couple at
the contact are considered by R. D. Mindlin, J. Applied Mechanics (Trans.
A.8.M.E.), vol. 16, p. 259, 1949,

#It is assumed that point O is not a point of singularity on the surfaces of the
bodies, but the surface adjacent to the point of contact is rounded and may be
considered as a surface of the second degree.
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tact of one of the bodies, and B; and R.’ those of the other,! and y the
angle between the normal planes containing the curvatures 1/R; and
1/R,, then the constants A and B are determined from the equations

11 1 1 1
A+B=§(——1+—R—1'+R—2+R—g')

1ff1 1y (1 _ 1Y
B““:i[(E"zeT' + 7“1??) @

1 1\/1 1 d
It can be shown that A and B in Eq. (¢) both have the same sign, and
it can therefore be concluded that all points with the same mutual dis-
tance 2; -+ 2; lie on one ellipse. Hence, if we press the bodies together
in the direction of the normal to the tangent plane at O, the surface of
contact will have an elliptical boundary.
Let «, wi, we have the same meaning as in the previous article.
Then, for points on the surface of contact, we have

witwet+z+2=a
or (e)
w4+ we = a — Az? — By?

This is obtained from geometrical considerations. Consider now the
local deformation at the surface of contact. Assuming that this sur-
face is very small and applying Eq. (205), obtained for semi-infinite
bodies, the sum of the displacements w; and w, for points of the surface
of contact is

—_ .2 — .2
'M)1+’w2=<11rE:1 +IWE:2)//q%A (f)

where ¢ dA is the pressure acting on an infinitely small element of the
surface of contact, and r is the distance of this element from the point
under consideration. The integration must be extended over the
entire surface of contact. Using notations (216), we obtain, from (e)

and (f),

(k1+k2)//—r—=a—Ax2—By2 (@)

1 The curvature of a body is considered as positive if the corresponding center
of curvature is within the body. In Fig. 207 the curvatures of the bodies are
positive. In Fig. 208b the spherical seat has a negative curvature.
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The problem now is to find a distribution of pressures ¢ to satisfy Eq.
(¢). H. Hertz showed that this requirement is satisfied by assuming
that the intensity of pressures g over the surface of contact is repre-
sented by the ordinates of a semi-ellipsoid constructed on the surface of
contact. The maximum pressure is then clearly at the center of the
surface of contact. Denoting it by ¢o and denoting by a and b the
semiaxes of the elliptic boundary of the surface of contact the magni-
tude of the maximum pressure is obtained from the equation

P = [[qgdA = 3mabqo
from which
_ 3P

% =35—F (223)

We see that the maximum pressure is 1§ times the average pressure on
the surface of contact. To calculate this pressure we must know the
magnitudes of the semiaxes ¢ and b. From an analysis analogous to
that used for spherical bodies we find that

_  Bx Pk F ko)
¢=MNZ 4dTB)
__ 33‘"‘P(k1+k2)'
”‘"\/74‘ )

in which A 4 B is determined from Egs. (d) and the coefficients m and
n are numbers depending on the ratio (B — A):(A + B). Using the
notation

(224)

B—- A

ATB *)
the values of m and n for various values of 6 are given in the table
below.!

cos § =

6 = | 30° | 35° | 40° | 45° | 50° | 55° | 60° | 65° | 70° | 75° | 80° | 85° | 90°
m = |2.7312.397|2.136{1.926|1.754(1.611|1.486/1.378)1.284{1.202|1.128/1.061/1.000
n = 10.493|0.530/0.5670.604(0.641/0.6780.717|0.759/0.802/0.846|0.893/0.944,1.000

Considering, for instance, the contact of a wheel with a cylindrical rim
of radius B; = 15.8 in. and of a rail with the radius of the head R, = 12
in., we find, by substituting R’ = Ry’ = « and ¢ = #/2 into Egs. (d),
A+ B=00733, B-—A=00099, cosf=0.135 0 = 82°15

! The table is taken from the paper by H. L. Whittemore and S. N. Petrenko,
U. 8. Bur, Standards, Tech. Paper 201, 1921,
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Then, by interpolation, we find from the above table that

m = 1.098, n = 0.918

Substituting in Eqs. (224) and taking E = 30.10° p.s.i. and » = 0.25,1
we find
a = 0.00946 /P, b = 0.00792 \/P

For a load P = 1,000 lb.,
a = 0.0946in., b =0.0792in., area of contact mab = 0.0236 sq. in.
and the maximum pressure at the center is

Qo = g% = 63,600 p.s.i.

Knowing the distribution of pressure, the stresses at any point can
be calculated.? It was shown in this manner that the point of maxi-
mum shearing stress is on the z-axis at a certain small depth z,, depend-
ing on the magnitude of the semiaxesaand b. Forinstance:z, = 0.47q,
when b/a = 1; and z; = 0.24a, when b/a = 0.34. The corresponding
values of maximum shearing stress (for v = 0.3) are 7mx. = 0.31¢o and
Tmax. = 0.32¢o respectively.

Considering points on the elliptical surface of contact and taking the
z- and y-axes in the direction of the semiaxes a and b respectively, the
principal stresses at the center of the surface of contact are

' b
Gy = —2qu - (1 - 2V)Qom

oy = =290 — (1 = 200 5 ()
g, = —qo .
Tor the ends of the axes of the ellipse we find ¢, = —oy and 7, = 0.

The tensile stress in the radial direction is equal to the compressive
stress in the circumferential direction. Thus at these points there

L If » is increased from 0.25 to 0.30 the semiaxes (224) decrease about 1 per cent
and the maximum pressure go increases about 2 per cent..

2 Such investigations have been made by Prof. N. M. Belajef, see Bull. Inst.

Engineers of Ways of Communication, St. Petersburg, 1917, and “Memoirs on
Theory of Structures,” St. Petersburg, 1924; see also H. R. Thomas and V. A.
Hoersch, Univ. Illinois Eng. Expt. Sta., Bull. 212, 1930, and G. Lundberg and
F. K. G. Odqvist, Proc. Ingeniors Vetenskaps Akad., No. 116, Stockholm, 1932.
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exists pure shear. The magnitude of this shear for the ends of the
major axis (x = ta,y = 0) is

r = {1 — 2v)qo % (% arctanh ¢ — 1) O
and for the ends of minor axis (z =0,y = +b) is
B e

=1 — 2v)q o (1 - garctan B) (m)

where 8 = b/a, ¢ = (1/a) \/a? — b>. When b approaches ¢ and the
boundary of the surface of contact approaches a circular shape, the
stresses given by (k), (I), and (m) approach the stresses given in the
previous article for the case of compression of balls.

A more detailed investigation of stresses for all points in the surface
of contact shows! that for ¢ < 0.89 the maximum shearing stress is
given by Eq. (I). For e > 0.89 the }, b
maximum shearing stress is at the center y o gjﬂ’ ?
of the ellipse and can be calculated from EiS " SN f;b
Eqgs. (_k) above. . . 'o; e 611‘ 7

By increasing the ratio a/b we obtain N
narrower and narrower ellipses of \}-bs
contact, and at the limit a/b = » we ) \ \\
arrive at the case of contact of two
cylinders with parallel axes.? The sur-
face of contact is now a narrow rectangle. %

The distribution of pressure ¢ along the
width of the surface of contact (Fig. 210)
is represented by a semi-ellipse. If the
z-axis is perpendicular to the plane of
the figure, b is half the width of the
surface of contact, and P’ the load per
unit length of the surface of contact, we obtain, from the semi-elliptic
pressure distribution,

Fia. 210.

P ! = %’ﬂ'bqO
from which
2P’
= (225)

! See Belajef, loc. cit.

A dir‘ect derivation of this case, with consideration of tangential force at the
contact, is given by H. Poritsky, J. Applied Mechanics (Trans. A.S.M.E.), vol.17,
p. 191, 1950,
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The investigation of local deformation gives for the quantity b the

expression
b = G (226)
R, + R,

in which R, and R, are the radii of the cylinders and %, and k, are con-
stants defined by Eqs. (216). If both cylinders are of the same mate-
rial and » = 0.3, then

_isp [ PRE 007
b =152 \|5@ + By - (227)

In the case of two equal radii, Ry = R: = R,

b= 1.08 [T (228)
Tor the case of contact of a cylinder with a plane surface,

P'R
= — 229

b =152 % (229)

Substituting b from Eq. (226) into Eq. (225), we find - -

90 = w2(ki + ko) RiRe

If the materials of both cylinders are the same and » = 0.3,

P'E(R, + R,) 231
go = 0.418 \/—-——;-—Rb;—— (231)

In the case of contact of a cylinder with a plane surface,

go = 0.418 }% (232)

Knowing go and b, the stress at any point can be calcglated. ’Ijhese
caleulations show! that the point with maximum shearing stress 15 on
the z-axis at a certain depth. The variation of stress coppc’ments W.lth
the depth, for » = 0.3, is shown in Fig. 210. The maximum shearing
stress is at the depth 2z, = 0.78b and its magnitude is 0.304qo.

1 See Belajef, loc. cit.
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127. Impact of -Spheres. The results of the last two articles can be used in
investigating impact of elastic bodies. Consider, as an example, the impact of
two spheres (Fig. 211). As soon as the spheres, in their motion toward one
another, come in contact at a point 0,1 the com-
pressive forces P begin to act and to change the
velocities of the spheres. If v, and v; are the
values of these velocities, their rates of change
during impact are given by the equations

d d
ml'dltl-_—‘—P, m2%=—P (a)

in which m; and m: denote the masses of
the spheres. Let « be the distance the two

spheres approach one another due to local compression at 0. Then the veloc-
ity of this approach is

Fie. 211.

. a = U1 + V2
and we find, from Egs. (a), that
.. m1 + me
d= P — )
mimse

Investigations show that the duration of impact, i.e., the time during which the
spheres remain in contact, is very long in comparison with the period of lowest
mode of vibration of the spheres.? Vibrations can therefore be neglected, and it
can be assumed that Eq. (219), which was established for statical conditions,
holds during impact. Using the notations

n = lﬁ R\R, , ny = m1 + me (c)
92 (ky 4 k2)*(Ry + R») i mimg
we find, from (219),
P = nat (d)
and Eq. (b) becomes .
d@ = —nnat (e)

" Multiplying both sides of this equation by d,

$d(@)? = —nma? da
from which, by integration, :

F(a? — o) = —Fnniat )

where ¢ is the velocity of approach of the two spheres at the beginning of impact.

_If we substitute ¢ = 0 in this equation, we find the value of the approach at the
Instant of maximum compression, a;, as

5 2\ ‘ '
ay = (‘I;I;; )]
With this value we can calculate, from Eqs. (219), the value of the maximum

compressive force P acting between the spheres during impact, and the correspond-
Ing radius @ of the surface of contact.

! We assume motions along the line joining the centers of the spheres.
*Lord Rayleigh, Phil. Mag., series 6, vol. 11, p. 283, 1906.
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For calculating the duration of impact we write Eq. (f) in the following form:

da

dt = ——————
V¥ — fnniat

or writing a/e; = z and using Eq. (g), we find that

dt =& _ dw
t /1 — (z)t
from which the duration of impact is
1
=2 f o™ (233)
v Jo 1 — (@)t v

In the particular case of two equal spheres of the same material and radius R, we
have, from (g),
52rp1 — »2 \#
a = ( \i_wp__Ey v*) R

5 V2%l — »? i_R_
4 E (v)?

(234)

i = 2.94(

where p denotes the mass per unit volume of the spheres.

We see that the duration of impact is proportional to the radius of the spheres
and inversely proportional to (v)%. This result was verified by several experi-
menters.! In the case of long bars with spherical ends, the period of the funda-
mental mode of vibration may be of the same order as the duration of impact, and
in investigating local compression at the point of econtact these vibrations should be
considered.?

128. Symmetrical Deformation of a Circular Cylinder. Fora circular cylinder
submitted to the action of forces applied to the lateral surface and distributed
symmetrically with respect to the axis of the cylinder, we introduce a stress func-
tion ¢ in cylindrical coordinates and apply Eq. (180).2 This equation is satisfied
if we take for the stress function ¢ a solution of the equation

1 M. Hamburger, Wied. Ann., vol. 28, p. 653, 1886; A. Dinnik, J. Russ. Phys.-
Chem. Soc., vol. 38, p. 242, 1906, and vol. 41, p. 57, 1909. Further references to
the literature of the subject are given in “Handbuch der physikalischen und
technischen Mechanik,” vol. 3, p. 448, 1927.

2 See p. 452. Longitudinal impact of rods with spherical surfaces at the ends
has been discussed by J. E. Sears, Proc. Cambridge Phil. Soc., vol. 14, p. 257, 1908,
and Trans. Cambridge Phil. Soc., vol. 21, p. 49, 1912, Lateral impact of rods with
consideration of local compression was discussed by 8. Timoshenko, Z. Math.
Physik, vol. 62, p. 198, 1914.

3 The problem of the deformation of a circular cylinder under the action of forces
applied to the surface was discussed first by L. Pochhammer, Crelle’s J., vol. 81,
1876. Several problems of symmetrical deformation of cylinders were discussed by
C. Chree, Trans. Cambridge Phil. Soc., vol. 14, p. 250, 1889. See also the paper
by L. N. G Filon, Trans. Roy. Soc. (London), series A, vol. 198, 1902, which
contains solutions of several problems of practical interest relating to symmetrical
deformation in a cylinder.
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3¢ , 199 , 3%

@ Trar To 0 (a)
This solution can be taken in the form
¢ = f(r) sin kz - (b)

in whi.ch f is a function of r only. Substituting (b) into Eq. (a), we arrive at the
following ordinary differential equation for determining f(r):

d.if l‘ﬂ'_sz=0

arr T rdr (©)
We take an integral of this equation in the form of a series,
Jr) = a0 + ar? + aut + a4 - - - (d)

Substituting this series in Eq. (¢) we find the following relation between the consec-
utive coefficients:

2n)2a, — k*an_y =0
from which

k2 k? k*
G = g0y 0= G grde

Substituting these in the series (d), we have

k2r® kArt kbre
) @

1) =a°(1+7+22-42+22-42-6=+ o

The second integral of Eq. (c) can also be obtained in the form of a series, and it
can be shown that this second integral becomes infinite when r = 0, and hence
should not be considered when we are discussing deformation of a solid cylinder.
The series in the parentheses of Eq. (¢) is the Bessel function of zero order and of
the imaginary argument ¢kr.! In the following we shall use for this function the
notation Jo(¢kr) and write the stress function (b) in the form

¢1 = aoJo(ikr) sin kz '(f)

Equation (180) also has solutions different from solutions of Eq. (a). One of
these solutions can-be derived from the above function Jo(ikr). By differentiation,

d‘Io(ikr) _ _,ik_r kzrz k47~4 kﬂrﬁ
aGkny 2(1+ﬂ+2-42-6+2.4=.6,_8+...) @

This derivative with negative sign is called Bessel’s function of the first order and is
denoted by Ji(skr). Consider now the function

_od . . k2 k2 L
f‘(’)-fa-’°("°’)=-’Wl(”")=7r(1_+2—.z+;r’%fé+7"',)' )

1 Dis.cussionf of the differential equation (¢) and of Bessel’s funct,iohé .can be
f?und in‘the following books: A. R. Forsyth, “A Treatise on. Differential Equa-~
tlons,”.a.nd A. Gray and G. B. Mathews, “A Treatise on Bessel Functions.”
}:Iumen?a.l tables for Bessel’s functions can be found in E. Jahnke and ¥. Emde

Funktionentafeln mit Formeln und Kurven,” Berlin, 1909, ‘
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By differentiation it can be shown that. .

a2  1d

15— ) A0 = 2

Then, remembering that Jo(ikr) is a solution of Eq. (c), it follows that fi(r) is a
solution of the equation

@ 1d _ 4 l‘ﬁ_z)_
(—17’_'+rdr kz) dr? r dr ki) =0

Hence a solution of Eq. (180) can be taken in the form
2 = ay sin kz(ikr)J 1(ikr) (@)
Combining solutions (f) and (¢), we can take the stress function in the form
¢ = sin kzlaot o(kr) + ai(Gkr)J 1(tkr)] )

Substituting this stress function in Eqs. (179) we find the following expressions for
the stress components:
ar = co8 kzlaoF1(r) + aiF(r)]

res = sin kelaoFa(r) + a1F4(r)] ()
in which F1(r), . . . , Fu(r) are certain functions of r containing Jo(ikr) and J1(ikr).
By using tables of Bessel functions, the values of Fi(r), . . . , Fu(r) can easily be

calculated for any value of 7.

Denoting by a the external radius of the cylinder, the forces applied to the

surface of the cylinder, from Eqs. (k), are given by the following values of the stress
components:

oy = cos kzlacF1(a) + a:F:(a)]

7r: = sin kelaoFs(a) + aiFi(a)]

By a suitable adjustment of the constants k, ao, a1, various cases of symmetrical
loading of a cylinder can be discussed. Denoting
l the length of the cylinder by I and taking

®

k="

{

a1 (a) + aFsa) = —4,
aoF:(a) + aiFs(a) =0

o

(ITT1Ty

AR

we obtain the values of the constants ao and a; for

[ the case when normal pressures A, cos (nrz/l) act

le . 912 on the lateral surface of the cylinder. The case

B when n = 1 is represented in Fig. 212. In an

analogous manner we can get a solution for the case when tangential forces of
intensity B, sin (nwz/l) act on the surface of the cylinder. ‘

By takingn = 1, 2, 3, . . . , and using the superposition principle, we arrive

at solutions of problems in which the normal pressures on the surface of the cylinder

can be represented by the series

Axcos1rTz+Achs2—7lrz—+Ascos3—{€+--- )
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and the shearing forces by the series

Blsin"—l’+32sin3’li‘-+3,,sin3—’l*—z-+..- )

If we take for the stress function ¢, instead of expression (b), the expression -
¢ = f(r) cos kz
and proceed as before, we find, instead of expression Q'), the stress function
¢ = cos kz[boJ o(tkr) + bi(ikr)J1(kr)] (0)

By a suitable adjustment of the constants k, bo, b1, we obtain the solution for the
case in which normal pressures on the cylinder are represented by a sine series and
the shearing forces by cosine series. Hence, by combining solutions (j) and (o), we
can get any axially symmetrical distribution of normal and shearing forces over the
surface of the cylinder. At the same time there will also be certain forces dis-
tributed over the ends of the cylinder. By superposing a simple tension or com-
pression we can always arrange that the resultant of these forces is zero, and
their effect on stresses at some distance from the ends becomes negligible by virtue
of Saint-Venant’s principle. Several examples of

symmetrical loading of cylinders are discussed by 4

L. N. G. Filon in the paper already mentioned.! T i T ‘I‘ ‘l‘ ‘I Us
We give here final results from his solution for the

case shown in Fig. 213. A cylinder, the length of /=74 1/ 2P
which is equal to =ra, is submitted to the tensile |
action of shearing forces uniformly distributed over 1 1 l l l 1 Us
the shaded portion of the surface of the cylinder

indicated in the figure. The distribution of the 3 '
normal stress o, over cross sections of the eylinder . N

is of practical interest, and the table below gives the
ratios of these stresses to the average tensile stress,
obtained by dividing the total tensile force by the
cross-sectional area of the cylinder. It can be seen that local tensile stresses near
the loaded portions of the surface diminish rapidly with increase of distance from
these portions and approach the average value.

z
Fia. 213.

2 r=20 r=02a|r=04a|r=06a| r=a
0 0.689 0.719 0.810 0.962 1.117
0.05!7 0.673 0.700 0.786 0.937 1.163
0.101 0.631 0.652 0.720 0.859 1.344
0.151 0.582 0.594 0.637 0.737 2.022
0.200 0.539 0.545 0.565 0.617 1.368

! Loc. cit. See also G. Pickett, J. Applied Mechanics (Trans. A.S.M.E.), vol. 11,
p. 176, 1944 '
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Another application of the general solution of the problem in terms of Bessel's
functions is given by A. N4dai in discussing the bending of circular plates by a force
concentrated at the middle? (Fig. 214).

129. The Circular Cylinder with a Band of Pressure.?
When a short collar is shrunk on a much longer shaft the
gimple shrink-fit formulas, valid when collar and shaft are
of equal lengths, are not accurate. A much better
approximation is obtained by considering the problem,
indicated in Fig. 215a, of a long cylinder with a uniform?
normal pressure p acting on the band ABCD of the surface.

The required solution can evidently be obtained by superposing the effects of
the two pressure distributions indicated in Fig. 215b. The basic problem is there-
fore that of pressure p/2 on the lower half of the cylindrical surface and —p/2 on

Pl - /2
A 0 r B _____
c D— ——— ——
z
e D/ -p/2

Fia. 215.

F1g. 214.

the upper half, the length of the cylinder being infinite, and its solution will now be

given.
We begin with the stress function given by Eq. (o) of Art. 128, writing Io(kr) for
Jo(ikr) and iIy(kr) for J1(ikr). We also write by = pb1. Then

¢ = [plo(kr) — krIi(kr)lb cos kz (a)

This satisfies Eq. (180) no matter what value is given to k. TIf we consider k to
take a range of values we can allow by to depend on k and an increment dk by
writing

by = fk) dk
Putting this in (a) and adding up all such stress functions we obtain a more general
stress function in the form

¢ = A " [pIotkr) — krL(kr)1f (k) cos kz dk ®)

We shall now see how it is possible to select the function f(k) so that this stress
function will give the solution to our problem.

1 A, N4dai, ‘“Elastische Platten,” p. 315, 1925.

2 M. V. Barton, J. Applied Mechanics (Trans. A.S.M.E.), vol. 8, p. A-97, 1941.
A, W. Rankin, ibid., vol. 11, p. A-77, 1944.

3 The pressure in the shrink fit is not uniform in the axial direction.
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From Egs. (179) we find that the shear stress will be

T = ﬁ)m kI (kr) — KoLy (kr) — kIs(kr)
— 2k(1 — W) (kr)]k2 (k) cos kz dk  (c)

where primes denote differentiation with respect to kr. This must vanish at the
suf*face r = a. Putting r = ¢ in the expression in square brackets, and equating
this bracket to zero, we obtain an equation for p which gives

I 0 (ka)

=201 —
p A= + ke T1(ka) (d)
The remaining boundary condition is
a,=g for r=a,z>0
(e
a',-=—g for r=gq,2<0

The value of - obtained from (b) by Eqgs. (179) is

o = — ﬁ)” [(1 — 2 — p)Io(kr) + (kr + ]—f;) Il(kr)] K (k) sin kz dk  (f)

We now make use of the fact that?!

Tforz >0
. 2
© gin kz dk =
A % = Oforz =0 ()]
- ’2-’for 2<0
If we multiply this by p/x, we obtain
g forz >0
p [ ® sin kz
;/; T dk = Oforz =0 (»)
- gfor z2<0

in which the values on the right correspond to the boundary values for o, given by
(¢). The boundary conditions (e) are therefore satisfied if we make the right-hand

side of Eq. (f), with r = q, identical with th - i i
s ical wi e left-hand side of Eq. (k). This

- [(1 — 2 — ), (ka) + (ka + isz) I,(ka)] k) = B2 4)

atnd this eqtgatlon determines f(k). The stress components are then found from the
stress function (b) by means of the formulas (179) , and will be integrals of the same
ig!f;eraltpature as ‘that of Eq. (j:), .which gives o;. Values, obtained by numerical
n g;a; ion, are gwen‘by. Rankin in the paper cited on page 388. The curves in

18. 216 show the variation of the stresses in the axial direction for various radial
distances, and also the surface displacements.

! See for instance I. 8, Sokolnikoff, ‘“Advanced Calculus,” 1st ed., p. 362.
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They are reproduced from the paper of Barton (see page 388) and were obtained
by a different method using Fourier series. From these curves results can be
obtained for the problem of Fig. 215 by superposition, as explained at the beginning
of this article. Curves for the stresses and displacement for pressure bands of
several widths are given in the papers cited. When the width is equal to the radius
of the eylinder the tangential stress g at the surface and at the middle of the pres-
sure band reaches a value about 10 per cent higher than the applied pressure, and
is, of course, compressive. The axial stress o, in the surface just outside the pres-

2 10,,09,08.,06
g -051 :
——Er ] -0 )
Toad ¢ s _8‘; \o i
2 -02
-05E2 - g -3 g -0
~-04 o @ & 1a°
= _o3{lidion : 01 % 3z
~02 %,I 0.2 ’
3 - 03
-2a __?E -a _% 0.1 l 2 / o4
0% a ¥ 05
02
03 ~0.51
] 4 gg o, 04
g 7 -0.3
02 ke
~0318}. = 08
~03 i = ) 0.5 i
-02 | 2 i
2 ! 3 &0 :
2 -0} ! \0.4 |
} 5 Ly
0 a3 a-£ 0 § a ¢ 2a
ot (i u}r :u/llo
g fito  ug=pall-v)/2E oy
= N 08 1 a
S 7 S : 044 a ¥ 2a
:_ v I~ o3& _~ _4& na Y4
04 | I\lz 2a 7 a -3 8'8_\
“-P-a-¢ 0 § a P 2 18

Fic. 216.

sure band reaches a tensile value of about 45 per cent of the applied pressure. The
shear stress 7. attains a greatest value, equal to 31.8 per cent of the applied pres-
sure, at the edges of the pressure band AB and CD in Fig. 215 and just below the
surface.

When the pressure is applied all over the curved surface of the cylinder, of any
length, we have simply compressive o, and op equal to the applied pressure, and o
and .. zero.

Solutions have been obtained in a similar manner for a band of pressure in a hole
in an infinite solid,! and for a band of pressure near one end of a solid cylinder.?

1. J. Tranter, Quart. Applied Math., vol. 4, p. 298, 1946; O. L. Bowie, 1bid., vol.

5, p. 100, 1947.
2 C. J. Tranter and J. W. Craggs, Phil. Mag., vol. 38, p. 214, 1947,
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130. Twist of a Circular Ring Sector. This problem is of practical interest in
connection with the calculation of stresses in close-coiled helical springs. Consider
a ring sector under the action of two equal and opposite forces P along the axis
through the center of the ring and perpendicular to the plane of the ring (Fig. 217).
These forces produce the same torque M; = PR in all cross sections of the ring. If
the cross-sectional dimensions of the ring are small in comparison with the radius
R, formulas derived for the torsion of prismatical
bars can be used with sufficient accuracy in calculating
the stresses. In the case of heavy helical springs the
cross-sectional dimensions are no longer small, and
the difference in length of outer and inner circum-
ferential fibers must be considered. In this manner
it can be shown that at inner points, such as 7, the
shearing stress is considerably larger than that given
by the theory of torsion of straight bars.! For a
more rigorous solution of the problem we apply the
general equations of the theory of elasticity in
cylindrical coordinates? [Egs. (170), page 306].
Assuming that in this case of torsion only the shearing-stress components 74 and
¢ are different from zero (Fig. 218), we find, from Eqs. (170),

Fia. 217.

O7r0 , O10: , 2140
ar Ta t oy =0 @

Consider now the compatibility equations (130). From Fig. 219 we find

Tyz = T9, COS @
T2y = T70(C082 8 — 8in? §) = 7.9 cos 20

R
mn
a tyz Toz
r—lo z & T f x
taz| _fJC ¢
z %oz e
'ré Z},o 7—',-49 ———-;—»
m N =
3 z Yy
Fia. 218. Fig. 219.

Substituting in the fourth and sixth of Eqs. (130) and remembering that
O =0rtogto.=0

! An elementary theory of twist of a ring sector was given by V. Roever, V.D.I.,
gol. 57{ 19%3. See al.so M. Pilgram, Artill. Monatshefte, 1913. An experimental
etermination of maximum stress by measuring strain at the surface of the coil was
ma;(}; by A. M. Wahl, Trans. A.S.M.E., 1928,
his solution is due to O. Géhner, Ingenieur-Archi
. Ingenieur-Archiv, vol. 1, p. 619, 1930; vol. 2
op. 1 and 381, 1931; vol. 9, p. 355, 1’938. ’ P e
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we find
8%rg, , 1070. | O%rge _ TO: _
ot Troar T 1 0 ®
Orep 1or g _ 4e _ o
ar? r or dz2 r?

The remaining four of the compatibility equations fsee Eqs. (g), page 346] are
satisfied by virtue of our assumption that o, = o9 = 0z = 772 = 0. Thus the prob-
lem reduces to the solution of Egs. (a) and (b). For this solution we use a stress
function ¢. We satisfy Eq. (e) by taking
GR?d GR? o
2¢ e (c)

Teg = —5— T =
i r? 0z o 2 or

where @ is the modulus of rigidity and R the radius of the ring. Substituting (c)
in Eqgs. (b), we find

o (3, 0% _304) _g

ar \or? 922 ror

2 (9%, 2% _338) _q

oz\or2 ' 9z ror

from which we conclude that the expression in the parentheses must be a constant.
Denoting this constant by —2¢, the equation for determining the stress function
¢ is

%¢ ¢ 3¢

art = 922 ror 2 =0 @
We introduce now, instead of coordinates r and z (Fig. 218), new coordinates

fand ¢,
g=R —r, t =z

and Eq. (d) becomes

a9 , 0% 3 90 g
ot Tap t pyoe 20 ©
R{l1 -5
R
Considering £/R as a small quantity, and using the expansion
1 | 2
14245 ...
T ET TETR )
R
we shall now solve Eq. (¢) by successive approximations. Assume
¢=¢o+ o1+ P2+ - (9)
and determine o, ¢1, ¢z, . . . in such a manner as to satisfy the equations
3%¢0 %40 _
ot T2=0
Por P 3060
a£2 il R 0% 0 (k)
9%y |, %2 | 3941 | 3Edda _ 0

a8 T o TEar TR ot
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Then, as the number of terms in the series (g) increases, the sum of Egs. (k)
appr9aches more and more closely Eq. (¢), and the series (¢) approaches the exact
solution for the stress function ¢. Consider now the boundary conditions. The
resultant shearing stress at the boundary (Fig. 218) must be in the direction of the
tangent to the boundary, hence

) 7r9 08 (N£) — 7p.c0o8 (N§) =0

or, by using Eqgs. (¢),
GR? (20t | s0dt) _

r2 \drds ' 9kds) 0

This s}}ows tha.‘.c ¢ must be constant at the boundary, and we satisfy this condition
by takl-ng solut_lons of Egs. (k) such that ¢, ¢1, ¢2, . . . are zero at the boundary.
Having obtained ¢o', ¢é1, . . . the successive approximations for the stress com-
ponents are now obtained from Eqs. (¢). Introducing the new variables £ and ¢
these equations can be represented in the following form: ,

G ¢ q L)
T = 5 A’ T = 533 3%
AN £)? 9¢ )
(1-%) (*-%) X
Using now the expansion
1 _ 2¢ | 3¢
( i )2 1+ R + RT +
R
and the series (g), we find as the first approximation
8
(o) = G5 (rado = G 28 )
For the second approximation we find from Egs. (7)
_ 28\ 9¢0 , 94
T b G o J Tas =1
(rre)1 [(1 + R) at + 3?] ®
_ 2 9¢0 |, 30 :
mol(o o35
(r82)1 1+ R ) ot + Py
For the third approximation,
2¢ | 3£\ 99 2
(r+0) =G[(1+— 3E%Y 3¢, ( i)éﬂl 991
! R TR )ar T\ TR )e Tas o

o =€ [ (145 +55) %04 (1 +3) 5 + 2]
Sec‘;\.’e apply tl‘lis general discussion to the particular case of a ring of circular cross
ion of radius a. The equation of the boundary (Fig. 218) is
; £2+§2—a2=0- - ()
and the solution of the first of Eqs. (h), satisfying the boundary condition, is

$o= — S (&2 +5 —aY)

e e ETMESIATICE

[ MSTITu Y UL FOLITERNS
o TIm1s OARA
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The first approximation for the stress components, from Egs. (j), is
(r+0)0 = —cG¥, (ros)o = —cGE (n)

This is the same stress distribution as for a circular shaft. The corresponding
value of the torque is

M = —[[(rre¥ -+ 7e08) dE dY (0)
Substituting from Egs. (n),
4
a1, = F%, o = 20

To get the second approximation we use the second equation of (k). Substi-
tuting for ¢o the expression above we find

9% | o1 _Bet _ g
952 ac? I
The solution of this equation, satisfying the condition that . vanishes at the

boundary, is

n=2wrr-w

Substituting this in Egs. (k) we find the second approximation for the stress compo-
nents

o= —G (s +55
4R .
. e 3., (»)
(ro)1 = —¢ [E tgr gﬁ(f —a)]
Substituting ¢, and ¢, in the third of Egs. (h), we find
929 3% 3¢
The solution of this equation satisfying the boundary condition is
bo = = g (8 + 55F — 150)(8* + 8 — a?)
By using Eqs. (1) we find the third approximation for the stress components,
5 £ e
(rv0)e = —cG'[{ T L Rt 10a2)] °

j e 3 BE_ o 1o
(7-9,)2-——-CG[E‘*‘SR“gR((z—az)'*‘IGRz 16R2+4R2]U"

Substituting these expressions for the stress compohents into Eq. (o) the corre-

sponding torque is
Grat 3 a?
aris = 52 (14 {5 ) ®

By determining from this the constant ¢, and substituting it in expressions (g), we
can find the stress components as functions of the applied torque (My)s. - Along the
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horizontal diameter of the cross section of the ring (Fi
.21 = = g
from the second of the Egs. (g), we find g (Fig. 218) ¢ = 0, 70y = 0, and

Dz = — 78 138 | 3a* | a%
rode =~ (64 g5 o + 30 + 52

For the inner point ¢, £ = @, and we have

D= — 5a¢ 17 a®
(sz)a CGa (1 +4R +1—6E2.)

For the outer point O, ¢ = —q, and

= _5a ,17 a?
(Tﬂz)a cGa (1 ik -+ R—R—z)

Using Eq. (), the values of these stresses become

5a |, 17 a2
14+>=+ ==
(ras)i — —21:/1': 4E " 16 Rt _ _2M¢(1 +§_q_+7a’
Qo 1+T361%: xa’ 1R gm)
=2M: S5 a 7 a2
w0 = 25 (1 - SR+ S m)

The calculatiO'n of further approximations shows that the final expression for the
greatest shearing stress can be put in the form!

1 1 1la 1 [a\?
U W 7. 2M;
161 — (a/R)? ra?®

T_he distribution of shearing stresses along the horizontal O
dl'ameter for a particular case, a/R = %, is shown in
Flg.' 220. For comparison the first approximation
obtained by applying the formula for a circular shaft is
shown by a dotted line.2 /
T.he method described has also been applied to the
torsion problem for ring sectors of elliptic and rectangular Fia. 220.

cross sections.? For a square cross secti i i
ectior ) s section with sides of length 2 i
approximation gives for the stress at the inner point ¢ @ the third

. _ _0s6P a a?
(o = — 2008 (1 +1.20 5 + 0.56 Ez) (236)
131, i i i
appr(l).Xhl;u? Bendmg of a Clrf:ular Ring Sector. The method of successive
ations used in the previous article can be applied also in discussing pure

PR
, glﬁf f(l)rmula, was com.municated to 8. Timoshenko in a letter from O. Gohner
elementary solutions mentioned before (see p. 391) give for (rg.)s values.

which are in d :
good agreement with
3 Gohner, lo. cit with the results calculated from Eq. (235).
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bending of a sector of a circular ring.! If two equal and opposite couples M are

applied at the ends of a circular ring sector in the plane of the center line of the ring

(Fig. 221), they produce strain symmetrical with

respect to the z-axis, and the shearing stresses .9

~ 7 Vefar and 7o in the meridional cross sections of the ring

7 are zero. The remaining four stress components

must satisfy the equations of equilibrium for the
case of symmetrical strain (see Art. 116)

¥

= Orpz , Or — 08 _
R— Fel A @
Zz OTrz + (201 + Trz =0
Fie. 221. ar 0z r

and the corresponding compatibility equations [see Egs. (g), Art. 116]
9%0

2 1
Vier = (or =00 t {155 =
2 1 1906
2 2y — T =
V”+r2(a' ”)+1+vra1' 0 b
1 8% ®)
Vi, + 10— 57 =
1+ » 922
1 020
2 -_—— —————— =
Vi = 13T T + voraz
Taking, as an example, a ring of constant circular cross section and introducing,
instead of r and 2z, the new coordinates (Fig. 218)

E=R—1‘, §‘=Z (C)

Eqgs. (a) and (b) become
dop W Oy T % _
At ar R — ¢ @
a_fﬁ' + ﬁr_f _ " _9
13 ot R — ¢

8% 8% 1 0o 2 1 0%
£ 9% 1 &g 4 _
o i i e AR T
¥, 3%, 1 9oy 2 1 1 90 _
T a a= %l A Rl wrd e T
da, 3%y 1 do; 1 e _ 0
F b e LU R T
6’1’& 627‘2( 1 Org %0

1 oy 1 1 e
o Tapr  R—for (B-—pr ¥ 14voga

As a first approximation we take the same stress distribution as occurs in pure
bending of prismatical bars. Then

<°'§)o = (a'g-)o = (TE;')O =0 (f) ]

09y = —cBt

1 Gohner, loc. cit.
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where

_ aM
xatl

To get the second approximation we consider £ as small in comparison with R and
g.eglect t.he products of £/R and of small corrections in the stresses as small quanti-
ties of higher order. Equations (d) and (¢) then become

a("'g)l 6(7‘“)1 _ c_E;E -0
a¢ ac R

ary), | Olap), @)
ak a ~°
1 9%0): _
Aley), + T, oe = 0
1 1
A(og), +R‘ (1 + m) cE =0
1 8%0); _ ©)
Aley), + 55 og — 0
1 9%e)
Alredds + 775 3gap = ©
where the symbol A means 92/9£2 + 92/9¢2
We introduce now a stress function ¢;. By taking
E
(9, = 3 (& + 2 —a) + G 52
_ B
GOl ) @
_ _<E 2
(e = ~ 7 agor

we satisfy Eqgs. (d’). Substituting (g) in Egs. (¢’), we find that the stress function
¢1 should satisfy the equation

_ 14 2»

AAgpy = — i+, ()]
The boundz-u'y conditions for ¢, are obtained from Egs. (12). As the first term in
the expression for (s¢): is zero at the circular boundary and

1=%, _ gt
s s

i a1\ _ d (81

w () -0 5(5)-o

Thus 8¢:/8t and 9¢1/9¢ are constant along the boundary, and we can assume that
¢12nd d¢,;/dn are zero at the boundary. Equation (k) together with these bound-

?13’; conditions completely determines the stress function ¢;. It is interesting to
e that Eq. (A) and the above boundary conditions are identical with the equa-

we find that
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tions for the deflection of a plate clamped at the edges and uniformly loaded. In
the case of a circular plate we know the deflection surface. This deflection gives
us the expression for the stress function

b= — LT2
1= T8I )

Substituting in Eqgs. (¢) we find the following expressions for the stress components:

cE

(52 + ;2 — a2)2 (k)

(eph = 6B 5 ) {(7 + 62)(&2 — a?) + (6 + 2017
(o = — TS B8 4 1t — 0 ®

(o) __c£'1+2v
1T 8R T + v

&§

Substituting these expressions in Eqs. (¢}, we find

0*ag)y, __ cE(4 4+ 5v + 20%)
FEE 2R(1 + »)
62(0'9)1 _ cE(3v + 2v%)
atz 2R +»)
82("'0)1
dEar 0

Integrating these and adjusting the constants of integration so as to make the dis-
tribution of normal stresses over cross sections of the ring statically equivalent to

the bending moment M, we find
4p2)E2 — 42)2 — 2
41”[5 (8 + 10 + 4%)& (6v + 4v?)¢ 2 + v)a l (m)

o)y = = oot 81 + »E
Taking ¢ = 0 and £ = @, the stress at the inner point ¢ (Fig. 218) is

aM 6-+9v+4u2_q_}

(0'0)1 = —;&5{1 + 8(1 + y) R

For » = 0.3, the above equation becomes
4M a
0y = = 5 (1 +087 ) (n)

Calculations of further approximations result in the following expression for the
stress at the inner point! (¢ = a):

M o | 08i/0"]
op= = o [1 +087T 5 + 17— (/R (p)
The elementary theory of bending of curved bars, based on the assumption that
cross sections remain plane and neglecting the stresses or, gives in this case?

AM a a?
cy = —171,-"7[1 +0.75R—+0.50-R§+ . ]
1 This formula was communicated to S. Timoshenko in a letter from O. Gohner.
2 §ee S. Timoshenko, ““Strength of Materials,” 2d ed., vol. 2, p. 73.

CHAPTER 14
THERMAL STRESS

132. The Simplest Cases of Thermal Stress Distribution. One of
t?l(? causes of initial stresses in a body is nonuniform heating. With
rising temperature the elements of a body expand. Such an expansion
generally cgnnot proceed freely in a continuous body, and stresses due
f,o the heating are set up. In many cases of machine design, such as
in the design of steam turbines and Diesel engines, thermal st;esses are
of great. practical importance and must be considered in more detail

The simpler problems of thermal stress can easily be reduced to prob;
lems of boundary force of types already considered. As a first example

~

/.
(4

Yy (a)
Fia. 222,

itlelt us consider a thip rectangular plate of uniform thickness in which
e temperature 7' is an even function of y (Fig. 222) and is inde-
setrll.delnt of z and ; The longitudinal thermal expansion a7 will be
ntirely suppressed by applying to each element of the pl i

- t -
tudinal compressive stress plate the long!

o = —aTE (a)

Slnce.the plate is free to expand laterally the application of the stresses
1E:i)nv:l}lll nott produce any stresses in the lateral directions and to main-
bl es resses.(a) throughout the plate it will be necessary to dis-
ot € compressive forges of the magnitude (a) at the ends of the plate

y. These compressive forces will completely suppress any expan-

- slon of the plate in the direction of the z-axis due to the temperature

Z;Sf T;ﬂ To get the thermal stresses in the plate, which is free from
ernal forces, we have to superpose on the stresses (a) the stresses
399
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produced in the plate by tensile forces of intensity aTE distributed at
the ends. These forces have the resultant

[ arEdy

and at a sufficient distance from the ends they will produce approxi-
mately uniformly distributed tensile stress of the magnitude

1 [t

gé . aTE dy
so0 that the thermal stresses in the plate with free ends at a considerable
distance from the ends will be

1 [t
o =5 /_c aTE dy — o«TE )

Assuming, for example, that the temperature is distributed paraboli-
cally and is given by the equation

2
we get, from Eq. (b),

2
s = %aToE —~ oT.E (1 - %) (©)

This stress distribution is shown in Fig. 222b. Near the ends the
stress distribution produced by the tensile forces is not uniform and
can be calculated by the method explained on page 167. Superposing
these stresses on the compressive stresses (a), the thermal stresses near
the end of the plate will be obtained.

If the temperature T is not symmetrical with respect to the z-axis,
we begin again with compressive stresses (@) suppressing the strain e,.

In the nonsymmetrical cases these stresses give rise not only to a result-

ant force — f _-l;a oET dy but also to a resultant couple — f :c aETy dy,

and in order to satisfy the conditions of equilibrium we must superpose
on the compressive stresses () a uniform tension, determined as before,
and bending stresses ¢’’, = oy/c determined from the condition that

the moment of the forces distributed over a cross section must be zero.

Then
+e 2 +e
/ oy’ dy _ [ o«ETydy =0

— c
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from which

v 3 te 3 e
== ﬁ/_c aETydy, o' = 2—6%/_ aETy dy

Then the total stress is

- —amr+ L [T 3y [*°
0 = —a +§E . aETdy-|—2—~03 ~ aETy dy (d)

I.n this discussion it was assumed that the plate was thin in the
z-direction. Suppose now that the dimension in the z-direction is
large. We have then a plate with the zz-plane as its middle plane, and
a thickness 2c. Let the temperature T be, as before, independen’,o ofx
and z, and so a function of y only.

’rhe free thermal expansion of an element of the plate in the 2- and
z-directions will be completely suppressed by applying stresses o, o,
obtained from Egs. (3), page 7, by putting ¢, = ¢, = —aT, ¢ ——-’ 0
These equations then give o .

aET

TETREETT S (e)

.The elements can be maintained in this condition by applying the dis-
tributions of compressive force given by (e) to the edges (x = constant
z = c?nstant). The thermal stress in the plate free from externai
force: is obtained by superposing on the stresses (¢) the stresses due to
appllfzation of equal and opposite distributions of force on the edges.
If T is an even function of y such that the mean value over the thick-
ness of the plate is zero, the resultant force per unit run of edge is zero
and by Saint-Venant’s principle (Art. 18) it produces no stress excep’r’,
near the edge.

I'f th(? mean value of T is not zero, uniform tensions in the z- and
z-directions corresponding to the resultant force on the edge must be
superposed on the compressive stresses (¢). If in addition to this the
temperature is not symmetrical with respect to the xz-plane, we must

add the bending stresses. In this X
. manner fi
equation we finally arrive at the

- _ aTl 1 +e
fe = 0= = + / oTE dy

+e¢
2651 — ») /_c aTEydy (f)
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which is analogous to the Eq. (d) obtained before. By using Eq. (f)
we can easily calculate thermal stresses in a plate, if the distribution of
temperature T over the thickness of the plate is known.

Consider, as an example, a plate which has initially a uniform temperature Te
and which is being cooled down by maintaining the surfaces y = *cata constant
temperature T1.! By Fourier’s theory the distribution of temperature at any

instant ¢ is

T="T +_%(To — Ty (e‘f’xf cos % — %e'ﬁ‘ ©os %—;—y + - ) (9

in which p1, ps = 3%y, + « « ,Pn = n2py, . . . ,arecertain constants. Substitut-
ing in Eq. (), we find

oy BT =T (2 ) Lo (2 o con 32)

oeme = 2y L G o) T T
Lo (2 —cos )+ - -
+5e1’ (51r cos 2c)+ ] ()

After a moderate time the first term acquires dominant importance, and we can
assume
__4aE(Ty — T:)  p (2 Ty
Sk g e B 2c)

For y = +c we have tensile stresses

- 4aE(T, — Th)

6z = 0; e‘m’g
® (1 — ») T

At the middle plane y = 0 we obtain compressive stresses

 4aB(To—T)) (_g
===y U T)

The points with zero stresses are obtained from the equation

2 Ty _
ol cos g = 0
from which
y = $0.560c

If the surfaces y = +e of a plate are maintained at two different
temperatures T1, Ts, a steady state of heat flow is established after a
certain time and the temperature is then given by the linear function

1 1 .
T=§(T1+Tz)+—2—(T1+T2)% OF

1 This problem was discussed by Lord Rayleigh, Phal. Mag., series 6, vol. 1,
p. 169, 1901,
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Substitution in Eq. (f) shows that the thermal stresses are zero,?!
provided, of course, that the plate is not restrained. If the edges ar’e
perfectly restrained against expansion and rotation, the stress induced
by the heating is given by Egs. (¢). For instance if Ty = — 7T, we
have from (2)

- y .
T =T~ )
and Egs. (e) give
- oT Y
Oz g, = 1 — T1 _C- (k)
The maximum stress is
_ _ aET1
(O'z)max. - (o'z)max. - 1 — (l)

The thickness of the plate does not enter in this formula, but in the
case of a thicker plate a greater difference of temperature i)etween the
two su'rfaces usually exists. Thus a thick plate of a brittle material is
more liable to break due to thermal stresses than a thin one.

As a last example let us consider a sphere of large radius and assume
thajc there occurs a temperature rise 7 in a small spherical element of
radius a at the center of the large sphere. Since the element is not free
to expar}d a pressure p will be produced at the surface of the element
The radial and the tangential stresses due to this pressure at any poini:,
of the sphere at a radius r > a can be calculated from formulas (197)
and (198) (see page 359). Assuming the outer radius of the sphere as
very large in comparison with a we obtain from these formulas

- _pe _ pa?
oy 737 % =53 (m)
At the radius r = a we obtain
gy = — D, oy = %p

and the increase of this radius, due to pressure p, is

Ar = (ae) s = —g,— lo: — »(or + 0))rma = % 1+ »)

;I‘lﬁs i.ncrease must be equal to the increase of the radius of the heated
pherical element produced by temperature rise and pressure p. Thus

'In general, when T i 1 i
, is a linear function of z z, the strai i
free thermal expansion of each element, viz., e o corresponding to

& =¢ =¢ = al, Yoy = Yze = Yyz = 0

sati - -
atisfies the conditions of compatibility (129) and there will be no thermal stress,
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we obtain the equation

a
aTa—%(1—2y)=2p%(1+p)

from which

_ 2 oTE (
P=31 n)
Substituting in equations (m) we obtain the formulas for the stresses

outside the heated element

_2 aTEa? _ l aTEa?
3 —»r T30 — e

133. Some Problems of Plane Thermal Stress. Suppose that a
strip of thin plate (Fig. 223) is nonuniformly heated so that the tem-
perature T is a function of the longitudinal coordinate x only, being

(0)

Oy =

T=f(x) aET
. S =
¢ l }D Oy Tze
. z |l x |
:Vr i b \
Yoo ILF .
B B
(a) 6)
Fia. 223.

uniform across any given cross section. If the plate is cut into strips
such as AB (Fig. 223), these strips expand vertically by different
amounts. Due to the mutual restraint there will be stresses set up
when they are in fact attached as in the plate.

Considering the unattached strips, their vertical expansion is sup-
pressed if they are subjected to compressive stress

oy = —aET (a)
by applying such stress at the ends A and B of each strip. The strips

fit together as in the unheated plate. To arrive at the thermal stress 1

we must superpose on (a) the stress due to the application of equal
and opposite forces, i.e., tension of intensity «ET, along the edges
y = ¢ of the strip. ;
If the heating is confined to a length of the strip short in compariso
with its width 2¢, such as CDFE in Fig. 223, the effect of the tensions
«ET will be felt only in the neighborhood of CD on the top edge, and of
EF on the bottom edge. Each of these neighborhoods can then be
considered as presenting a problem of the type considered in Art. 34,
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It. was pointed out on page 95 that a normal stress on a straight
boundary produces a like normal stress parallel to and at the boundary
Hence the tensions «ET will produce tensile stress « ET in the x-direc-'
tion. Both normal stresses die away as we proceed into the plate nor-
mal to the edge. On superposing these stresses on the compressive
stress (a) in the y-direction, we obtain curves! for o, and a, along a line
such as AB in the hottest part of the plate of the character shown in
Fig. 223b. Near the edges the prevailing stress is o,, with the value
aET, juensile when T is positive, and near the middle the prevailing
stress is oy, & compressive stress of magnitude «ET when 7 is positive.
The maximum stresses are of magnitude «E7T ‘

max,s

T S/ c &8
a1,
| = L1
/ c 4
+
P
— — c 2
+
Y e -c£=l
+ /
L2
[T — c
Edge CL.
- c >
Fia. 224.

If the temperature T is a periodic function of z the application of

%3}gle tensions «ET presents a problem of the type considered in Art. 23.
en

T = Tysin ax (®)

we find from Egs. (k) of Art. 23, putting A = B = —aET, in accord-
ance with Eq. (f),

0o = —2aBT, (ac cosh ac — sinh ac) cosh ay — ay sinh ay sinh ac
sinh 2ac + 2ac
, o - sin ax
oy = 2T, (ac cosh ac 4 sinh ac) cosh ay — oy sinh oy sinh ac .
S sinh 2ac + 2ac , "SI o
Tey = 20ET, % cosh ac sinh ay — ay cosh ay sinh ac
sinh 2ac¢ + 2ac cos oz

tJ. N. Goodier, Physics, vol. 7, p. 156, 1936.
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Together with the compressive stress oy = —aET from Eq. (@), these
give the thermal stress in the plate.! In Fig. 224 the distributions of
o, along the lines of maximum temperature for various wave lengths
9] = 2r/a are shown. We see that the maximum stress increases as
the wave length diminishes and approaches the value aETo. Having
the solution for a sinusoidal temperature distribution, other cases in
which the temperature is a periodic function of z can be treated. It
can be concluded also that the maximum stress in plates of finite length
can differ only slightly from the value aET, obtained for an infinite
strip.

134. The Thin Circular Disk: Temperature Symmetrical about
Center. When the temperature T' does not vary over the thickness
of the disk, we may assume that the stress and displacement due to the
heating also do not vary over the thickness. The stresses o, and oo
satisfy the equation of equilibrium

do, , 6, — 00

dor 2 =% 0 (@)
obtained from Eq. (40), page 58, by putting R = 0. The shear stress
7,9 is zero on account of the symmetry.

The ordinary stress-strain relations, Egs. (52), page 66, for plane
stress, require modification since now the strain is partly due to thermal
expansion, partly due to stress. If ¢ represents the actual radial
strain, ¢ — a7 represents the part due to stress, and we have

& — al = % (o, — voe) (d)
and similarly
e — al = l%(ao — vay) (©)

Solving (b) and (c) for o, oo We find
E

Ll [e&r + ves — (1 + v)aT],
gp = 1_}_2——1,—5 [eo + ver — (1 + nNaT] (d)
and with these Eq. (a) becomes
r—d—(e +ve)+(1—v)(e—e)=(1+v)ard—T (e)
ar T T dr E

1 The problem was discussed by J. P. Den Hartog, J. Franklin Inst., vol. 222,
p. 149, 1936, in connection with the thermal stress produced in the process of
welding. ’
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If u denotes the radial displacement we have, from Art. 28,

- du _ Y
a7y &)
Substituting these in (¢) we obtain
dw , ldu _u aT
mtrg —p= ey
which may be written
d|1 diru) | ar
IS R

Integration of this equation yields

1 T
u=(1+y)a;/; Trdr-i—C’ﬁ-j—% (h)

where the lower limit @ in the integral can be chosen arbitrarily. For

a disk with a hole it may be the inner radius. For a solid disk we may
take it as zero.

The stress components are now found by using the solution (h) in
Egs. (f), and substituting the results in Eqgs. (d). Then

_ _op. L E
g, = ok PL Tr dr + 1 — 2 [01(1 + V) - Cz(l - V) ;12] (’L)

S T E
o = alf .1'—2‘[, Trdr—aET-l——l——__————[Cl(l—l-v)-l-Cg(l——V)r—lz] N

1’2
The consta,{lts C,, C; are determined by the boundary conditions.
For a solid disk, we take a as zero, and observing that

Y
lim ~ Trdr =0

—o0T Jo
:\lrf see f;om Eq. (h) that C; must vanish in order that « may be zero at
e center. At the edge r = b we must h =
froms B (0 ave ¢, = 0, and therefore
b
C.=(1 - ")%ﬁ Tr dr

The final expressions for the stresses are consequently

e(L [ mar-Lf
@B\ |, rr—ﬁoTrdr (237)

B 1 [? 1 [
”"_"’E(—T"'?ﬁ . Trdr+;5]; Trdr) (238)

f

Oy
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These give finite values at the center since

lilﬁ—% | Trdr= l'To
07" Jo 2
where T is the temperature at the center.

136. The Long Circular Cylinder. The temperature is taken to be
symmetrical about the axis, and independent of the axial coordinate
2.1 We shall suppose first that w, the axial displacement, is zero
throughout, and then modify the solution to the case of free ends.

_ We shall now have three components of stress, or, g4, 0;, all three
shear strains and stresses being zero on account of the symmetry about
the axis and the uniformity in the axial direction. The stress-strain
relations are

e — oT = -é[a, — v(os + 02)]
q—aT=%m—ﬂw+M] (239)

e — ol = %[az — v(or + 09)]

But since w = 0, ¢, = 0, and the third of Eqgs. (239) gives
o, = v(o, + og) — aET (a)

On substituting this into the first two of Egs. (239), these equations
become

1—f
& — (1 + v)al = Ey (ar—livaa>

_1;\,,2» y
& — (1 + v)al = 7 \ov — 17—

It may be seen at once that these equations can be obtained from the
corresponding equations of plane stress, Eqgs. (b) and (c) of the pre-
ceding article, by putting, in the latter equatlons E/(1 — ) for E,
v/(1 — ») for », and (1 + »)a for a. '

Equations () and (f) of the preceding article remain valid here,
The solution for %, o, and oo proceeds in just the same way.” -We may
therefore write down the results by making the above substitutions in
Egs. (h), (¢), and (). Thus for the present problem

©

1 The first solution of this problem is that of J. M. C. Duhamel, Memoires . . . .

par divers savants, vol. 5, pi 440, Paris, 1838,
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u=]ii_:-a'%/rTrdr+Clr+gz (e)
"F%'r—lzﬁ T”d”‘f]iTﬁliu(l El2v+%> ©
and, from Eq. (a),

Normal force distributed according to Eq. (f) must be applied to the
ends of the ecylinder in order to keep w = 0 throughout. If we super-
pose a uniform axial stress o, = (5, we can choose C; so that the
resultant force on the ends is zero. The self-equilibrating distribution
remaining on each end will, by Saint-Venant’s principle (see page 33),
give rise only to local effects at the ends.

The stresses ¢, 6o Will still be given by Egs. (d) and (¢). The dis-
placement u, however, is affected by the axial stress €. A term
—»C3r/E must be added on the right of Eq. (¢). The axial displace-
ment is that corresponding to the uniform stress Cs.

Solid Cylinder. In this case we may take @, the lower limit of the
integrals in Egs. (¢), (d), and (e), as zero. The displacement u must
vanish when r = 0. This requires that C. = 0.

The constant C is found from the condition that the curved surface
r = b is free from force, so that (s,)r—s = 0. Thus from Eq. (d),
putting C; = 0, a = 0 we find

Cy a1 bT d
AF A0 —=2» 1=w02)s % @)
T_I}e resultant of the axial stress (f) is
b
2raE 2vEC
L 2mr dr = — S il E—
/;a xr dr l—v_/ Trdr+(1+p)(1—2y)7rb2

and the resultant of the uniform axial stress C;is C; - #b%.  The value
of C'; making the total axial force zero is therefore given by

21raE 2vEC
Cy-mh? = . 2wmCy
s V/O Trdr — 5 50 =2 ™ (h)
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The final expressions for u, o, 04, 0, are, from Egs. (¢), (d), (¢), (f), (9),
and (h),

1+ b 1 [r
u =7 :-a[(1—2v)l%ﬁ7’rdr+;ﬁ7’rdr] (240)

aE (1 [° 1"
or 1_}}(?[) Trdr—ﬁf Trdr) (241)

oE (1 [° 1 [T

00=1_v(ﬁ'/; TTdr+;§‘/(; TTd’I'—T) (242)
oE (2v [°

o =1 y(ﬁﬁ Trdr — T) (243)

Take, for example, a long cylinder with a constant initial temperature To. If,
beginning from an instant ¢ = 0, the lateral surface of the cylinder is maintained
at a temperature zero,! the distribution of temperature at any instant ¢ is given by

the series?
T="T, z Ay (ﬂ,. %) et ®

n=1

in which Jo(Bar/b) is the Bessel function of zero order (see page 385), and the
8's are the roots of the equation Jo(8) = 0. The coefficients of the series (7) are

2
A” = ﬁnJl(Bn)

and the constants p, are given by the equation

=k B
pﬂ_cp b2 (j)

in which k is the thermal conductivity, ¢ the specific heat of the material, and o
the density. Substituting series (2) into Eq. (241) and taking into account the fact

that?
LTJO (Bn—g) rdr = %Jl (Bn;—;)

oo = 2B N o (L S LD ®

we find that

n=

1Tt is assumed that the surface of the cylinder suddenly assumes the tempera=
ture zero. If the temperature of the surface is T instead of zero, then To — T
must be put instead of T’ in our equations.

2 See Byerly, ‘‘Fourier Series and Spherical Harmonics,” p. 229. The calcula-
tion of thermal stresses for this case is given by A. Dinnik, ‘‘ Applications of Bessel’s
Function to Elasticity Problems,” pt. 2, p. 95, Ekaterinoslav, 1915. See also
C. H. Lees, Proc. Roy. Soc. (London), vol. 101, p. 411, 1922.

3 See E. Jahnke und F. Emde, “Funktionentafeln,” p. 165, Berlin, 1909.

THERMAL STRESS 411
In the same manner, substituting series (i) in Eq. (242), we obtain

_ 2¢ET, e f 1 1 DJuBa(r/B)]  Jo[Ba{r/b)]
=TT, "219 " {ﬂn’ Br Ji(Ba) /;n-]l(ﬂn) } @
Substituting series (i) in Eq. (243) we find
_2aET, 3 (2 JulBalr/B)]
=T z o {E:i " Bud1(Bn) } (m)

n=1

Formu}as (k), (1), and (m) represent the complete solution of the problem. Several
numerical examples can be found in the papers by A. Dinnik and C. H. Lees,
mentioned above.!

Figure 225 represents? the distribution of temperature in a steel
cylinder. It is assumed that the cylinder had a uniform initial tem-
perature equal to zero and that

beginning from an instant { = 0 Z .
the surface of the cylinder is main- 100 67
tained at a temperature ;. The 90 ] Z
temperature distributions along 80 AN \‘\ N A
the radius, for various values of 1 NN NN

I : O GY £
¢/b® (t is measured in secondsand E g0 \\\ AN é3va |
b in centimeters), are represented o 50 A AN NN N -
by curves. It will be seen from 8540 \ Y N Qo;
Egs. () and (j) that the tempera- & 30 \ NN \\ J _:
ture distribution for cylinders of 20 NN e
various diameters is the same if 0 NN RS2
the time of heating ¢is propor- 0 DN/
tional to the square of the diam- 1009 0807060504030201 0
eter. From thefigure, theaverage f
temperature of the whole cylinder Fic. 225.

and also of an inner portion of
the cylinder of radius r can be calculated. Having these temperatures
we find the thermal stresses from Egs. (241), (242), and (243). If we

1 T(?n{perature distribution in solids during heating and cooling was discussed
by Wllh_amson and Adams, Phys. Rev., series 2, vol. 14, p. 99, 1919. An experi-
mental investigation of the effects of fire and water on columns has been made by
irsxibels;gz,lGriﬂin, Robinson, and Wilson. See U. S. Bur. Standards, Tech. Paper

, .

2 The figure is taken from A. Stodola, *Dampf- i ”
b, 901 1008 , mpf- und Gasturbinen,” 6th ed.,
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take a very small value for ¢, the average temperatures, mentioned

above, approach zero and we find at the surface

OlETl
11—

o =0, gy =6, = —

This is the numerical maximum of the thermal stress produced in a
cylinder by heating. It is equal to the stress necessary for entire sup-
pression of thermal expansion at the surface. During heating this
stress is compression, during cooling it is tension. In order to reduce
the maximum stresses it is the usual practice to begin the heating of
shafts and rotors with a somewhat lower temperature than the final
temperature Ty, and to increase the time of heating in proportion to
the square of the diameter.

Cylinder with a Concentric Circular Hole.r The radius of the hole
being a, and the outer radius of the cylinder b, the constants Cy, C:in
Eqgs. (c) (d), (e) are determined so that o, Wlll be zero at these two
radii. Then

¢, G
1 — 2y a2

ol 1 C. C. _
“T——b‘f Trdr+ 175 (1———2»‘55)—0

and from these

EC,  oE a [
1+v—1—vb2,—a2ﬁTrdr

ECl _ aE 1 b TT dr
AF»0—-20») 1—w»b2—a?)s

Substituting these values in (d), (¢), and (f), and adding to the last the

axial stress Cs required to make the resultant axial force zero, we find

the formulas

2 __ 2 b r

o = 1°‘f H%(; = Z?/ Trdr — f Tr dr) (244)
2 P b T

oo = lo‘fv%ﬁ(l’;zf;f Tr dr + / Trdr — Tr2> (245)
/ ‘

v, = %(ﬁ] Tr dr — T) (246)

Consider, as an example, a steady heat flow. If T':is the temperature
on the inner surface of the eylinder and the temperature on the outer

1 See R. Lorenz, Z. Ver. deutsch. Ing., vol. 51, p. 743, 1907.

THERMAL STRESS 413

surface is zero, the temperature T' at any distance r from the center is
represented by the expression

T= T'i b

Tog(b/a) %8 7 (n)

Substituting this in Eqs. (244), (245), and (246), we find the following
expressions for the thermal stresses:!

oo BT [ a8
T3 — ) loglh/a) | T Br T B —a)\\ ) BL

_ aET; . b a? b

ST =) logl/a) L T %8 T BT =) (1 + )log ] (247)
_ aBET; [ _ b 24 b

= gi = pyloglia |1 T 28T T mE a8 a]

If T, is positive, the radial stress is compressive at all points and
becomes zero at the inner and outer surfaces of the cylinder. The

e—— % 0'2
or
o i I
| 0&
3 6
Fia. 226.

stress components oy and o, have their largest numerical values at the
inner and outer surfaces of the cylinder. Taking r = a, we find that

N 2
(0'0)1'=a = (a'z)r-=a = '——Eﬂt—— 1 — L logé (24:8)
b b2 — a? a
2(1 — ») loga
For » = b we obtain

. 2
(o) = ()pms = — 2T b(1 — T log g) (249)
2(1 — ») log 2

The distribution of thermal stresses over the thickness of the wall for a
particular case a/b = 0.3 is shown in the Fig. 226, If T is positive,
the stresses are compressive at the inner surface and tensile at the outer
surface. In the case of such materials as stone, brick, or concrete,
which are weak in tension, cracks are likely to start on the outer surface
of the cylinder under the above conditions.

1 Charts for the rapid calculation of stresses from Eqs. (247) are given by
L. Barker, Engineering, vol. 124, p. 443, 1927,
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If the thickness of the wall is small in comparison with the outer
radius of the cylinder, we can simplify Egs. (248) and (249) by putting
b b m?  md

—6,=1+m, loga=m———2—+3

and considering m as a small quantity. Then

o«ET; m ,
(60)r=a = (az)r=a = - "2_('1‘___7) 1 + —§) (248)
(0'0)r=b = (o'z)r=b = g(ixlg_?t—vj 1 — %}) (249/)

If the temperature at the outer surface of the cylinder is different from
zero, the above results can be used by substituting the difference
between the inner and the outer temperatures, T, — T, in all our
equations instead of T'.

In the case of a very thin wall we can make a further simplification
and neglect the term m/3 in comparison with unity in Eqgs. (248") and
(249"). Then

0 = @ = = s

(00)r=t = (o)1= = g(aTE%

(250)

and the distribution of thermal stresses over the thickness of the wall
is the same as in the case of a flat plate of thickness 2¢ = b — a, when
the temperature is given by the equation (Fig. 222)

_ Ty
Tb—a

and the edges are clamped, so that bending of the plate, due to non-
uniform heating, is prevented [see Eq. (k), Art. 132].

If a high-frequency fluctuation of temperature is superposed on a
steady heat flow, the thermal stresses produced by the fluctuation can
be calculated in the same manner as explained for the case of flat plates
(see Art. 132).!

1 Thermal stresses in cylinder walls are of great practical importance in the
design of Diesel engines. A graphical solution of the problem, when the thickness
of the wall of the cylinder and the temperature vary along the length of the cylinder,
was developed by G. Eichelberg, Forschungsarbeiten, No. 263, 1923. Some
information regarding temperature distribution in Diesel engines can be found in
the following papers: H. F. G. Letson, Proc. Mech. Eng., p- 19, London, 1925;
A, Niigel, Engineering, vol. 127, pp. 59, 179, 279, 466, 626, 1929.

T

THERMAL STRESS 415

In the foregoing discussion it was assumed that the cylinder is very
long and that we are considering stresses far away from the ends.
Near the ends, the problem of thermal-stress distribution is more com-
plicated due to local irregularities. Let us consider this problem for
the case of a cylinder with a thin wall. Solution (250) requires that
the normal forces shown in Fig. 227a should be distributed over the
ends of the cylinder. To find the stresses in a cylinder with free ends
we must superpose on the stresses (250) the stresses produced by
forces equal and opposite to those shown in Fig. 227a. In the case of a

le—&H——>]

M
e . B o
] é

NN

TR

l.’—-.f g4

z z
(a) (6)
Fia. 227.

thin wall of thickness % these forces can be reduced to bending moments
M , 8 shown in Fig. 227b, uniformly distributed along the edge of the
cylinder and equal to

«ET; h?

M=30—"57% (0)

per unit length of the edge. To estimate the stresses produced by
these moments, consider a longitudinal strip, of width equal to unity,
cut out from the cylindrical shell. Such a strip can be treated as a bar

on an elastic foundation. The deflection curve of this strip is given by
the equation!

u ="_—Me‘-ﬂz ( .
26°D cos Bz — sin Bz) (p)

_ A=y ER
B=A"w " P wma—m (@)

a.nd ¢ is the middle radius of the cylindrical shell. Having this deflec-
tion curve, the corresponding bending stresses o, and the tangential
1 See 8. Timoshenko, ‘“‘Strength of Materials,” 2d ed., vol. 2, p. 166.

in which
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stresses oo can be calculated for any value of 2. The maximum deflec-
tion of the strip is evidently at the end z = 0, where

(u) o= M _ CiCT.i '\/1 _— V2
28D 24/3( — )

The corresponding strain component in the tangential direction is
aT,: v 1 — 2 (7‘)
23 (1 — »)

The stress component in the tangential direction at the outer surface
of the wall is then obtained, using Hooke’s law, from the equation

o = Hey + v0 =aETi‘\/1—V2_ vaET;
! T T /3 -y 20—

Adding this stress to the corresponding stress calculated from Egs.
(250), the maximum tangential stress for a thin-walled cylinder at the

free end is
_ aET; (/1 -9
(aﬂ)max. - 2(1 _ V) ( —\/§ bl 4 + 1) (251)

U
€ = —
c

Assuming v = 0.3, we find
(00)mae. = 1.255("{?—_%

Thus the maximum tensile stress at the free end of the cylinder is 25
per cent greater than that obtained from Egs. (250) for the stress at
points remote from the ends. From Eq. (p) it can be seen that the
increase of stress near the free ends of the cylinder, since it depends on
the deflection u, is of a local character and diminishes rapidly with
increase of distance z from the end.

The approximate method of calculating thermal stresses in thin-
walled cylinders, by using the deflection curve of a bar on an elastic
foundation, can also be applied in the case in which the temperature
varies along the axis of the cylindrical shell.!

136. The Sphere. We consider here the simple case of a tempera- '

ture symmetrical with respect to the center, and so a function of r, the
radial distance, only.?

194 Timoshenko and J. M. Lessells, “Applied Elasticity,” p. 147, 1925, and
C. H. Kent, Trans. A.S.M.E., Applied Mechanics Division, vol. 53, p. 167, 1931.

2 The problem was solved by Duhamel, loc. cit.; F. Neuman, Abhandl. Akad.
Wiss., Berlin, 1841; see also his ““Vorlesungen iiber die Theorie der Elastizitéit der
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*On:account of the symmetry there will be three non-zero stress com-
ponents, the radial component o,, and two tangential components o,
as in Art. 121, and these must satisfy the condition of equilibrium, in
the radial direction, of an element [Fig. 202, Eq. (e), page 359]

do, , 2

~d—r ;(O’r—tn) =0 (a)
The stress-strain relations are
& —al = —1—( 2
r — ol = 5 (o — vo;) b)
1
¢ — al = E[m — v(o; + 04)] (c)

and, u being the radial displacement, we have

du

€& = 717 € = % (d)
From (b) and (¢) we find
E
Oy = (1 + V)(l —_ 21') [(1 - V)er + 2ve; — (1 + u)aT] (e)
E
= TEa ) e~ (T »

Substituting these in (a), then replacing e, €; by the values given in (d)
we find the differential equation for u

@_I_gd_u_gg_l—!—v. ar
arr T rdr T T 1= Ydr (9)

which can be written

| =

x

r

1d 14 4T
[ﬁa“w]—l_fam

The solution is

_l+ty

1 r
u =y a-F/;Trzdr+C’1r-l—% (h)

where C; and C, are constants of integration to be determined later
from boundary conditions, and a is any convenient lower limit for the
integral, such as the inner radius of a hollow sphere.

fyeste_n‘ Korper,” Leipzig, 1885; J. Hopkinson, Messenger of Math., vol. 8, p. 168,
1879. Nonsymmetrical temperatures were considered by C. W, Borchardt
Monatsber. Akad. Wiss., Berlin, 1873, p. 9. ' i
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This solution can be substituted in Eqgs. (d), and the results used in
Eqgs. (¢) and (f). Then

1=

_ aE 1 9 ECl ECz 1__ aET -
a't—l—V;-é[Tdr-i— +1+V7'3 1—1’ (])

_ 2kE 1 , EC, _ 2EC; 1 :
o = Fde+ T—2 T+» 7 ®

We shall now consider several particular cases.

Solid Sphere. In this case the lower limit a of the integrals may be
taken as zero. We must have u = 0 at 7 = 0, and, from Eq. (k) this
requires that C. = 0, since

. 1 r
lim Tr2dr =0
—0 72 J,
The stress components given by (i) and (j) will now be finite at the
center since
imL [’ _ T
—07% | Tridr = 3
where T, is the temperature at the center. The constant C. is deter-
mined from the condition that the outer surface r = b is free from
force, so that o, = 0. Then from Eq. (), putting o, =0, a = 0,
C;=0,r =b, we find

EC, _2E 1 [°,,
1—2»‘1—,,'1?[)71””

and the stress components become

oy = 12ZE (b"‘ f Tr2dr — 5 / Tr? dr)
y (252)
oy = (33' f Tr? dr + / Tr2 dr — T)

The mean temperature of the sphere within the radius r is
r r
ar [ Trdr g g
——-————éwﬁ = 1'_-5 A Tr2dr

Therefore the stress ¢, at any radius = is proportional to the difference
between the mean temperature of the whole sphere and the mean tem-
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perature of a sphere of radius . The tangential stress at any point is

2aF
31 —v)
multiplied by the expression

[The mean temperature of the whole sphere + (3 the mean temperature
within the sphere of radius r) — §T7]

If the distribution of temperature is known, the calculation of stresses
in each particular case can be carried out without difficulty.’ An
interesting example of such calculations was made by G. Griinberg? in
connection with an investigation of the strength of isotropic materials
subjected to equal tension in three perpendicular directions. If a
solid sphere at a uniform initial temperature T' is put in a liquid at a
higher temperature 7, the outer portion of the sphere expands and
produces at the center of the sphere a uniform tension in all directions.
The maximum value of this tension occurs after a time

t = 005742 ,j” (k)

Here b is the radius of the sphere, k the thermal conductivity, ¢ the
specific heat of the material, and p the density. The magnitude of this
maximum tensile stress is?

or =0y = 0771 ;—< (
The maximum compressive stress occurs at the surface of the sphere at
the moment of application of the temperature T: and is equal to
aE(T, — To)/(1 — »). This is the same as we found before for a
cylinder (see page 412). Applying Egs. (k) and (I) to the case of steel,
and taking b = 10 cm. and T, — Ty = 100°C., we find ¢, = ¢¢ = 1,270
kg. per square centimeter, and ¢ = 33.4 sec.

Sphere with a Hole at the Center. Denoting by a and b the inner and
outer radii of the sphere, we determine the constants C; and C: in ()

) (Ts — To) O

1 Several examples of such calculations are given in the paper by E. Honegger,
Festschrift Prof. A. Stodola, Ziirich, 1929. A table for calculating the distribu-
tion of temperature during cooling of a solid sphere is given by Adams and William-
son, loc. cit.

* G. Griinberg, Z. Physik, vol. 35, p. 548, 1925.

31t was assumed in the analysis that the surface of the sphere takes at once the
temperature 7'; of the fluid.
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and (j) from the conditions that o, is zero on the inner and outer sur=
faces. Then from () we have
EC,  2EC, 1 _
1—2v 14» at
2¢F 1 /" , EC, 2EC, 1 _

T 1= b

Solving for C; and C; and inserting the results in (7) and (j) we find

3 3 b T
a, = 12(_1_EV [(bc — a(z)r‘* [ Tr2dr — :—3 / Tr? dr]
a a (253)
2E [ 2r4+a® [°., R A |
Ut:l——v[2(b3—a3)r3_/;Tr dr-i-% aTr dr 2T

Thus the stress components can be calculated if the distribution of

temperature is given.

Consider, as an example, the case of steady heat flow. We denote
the temperature at the inner surface by T and the temperature at the
outer surface we take as zero. Then the temperature at any distance

r from the center is
Tia b _

Substituting this in expressions (253), we find

ET; _ab 1 a’h?
ar=ft_vgs—_““as[a+b—;(b2+ab+a2)+—TT]

_aBET; ab R 5 _ @%b’
Uz—‘l_vbs_aa‘[a_i_b Qr(b+ab+a 2r3

We see that the stress o, is zero for r = a and r = b. It becomes a
maximum or minimum when

3a?b?
a? + ab + b?

r? =

The stress o, for T; > 0, increases as r increases. When r = a, we
have

o= — «ET; b — a)(a + 2b) )
2(1 — ») b® — a®
When r = b, we obtain
oET; a(b — a)(2a +b) )

7= o1 = ) bt — a?
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In the case of a spherical shell of small thickness we put
b=a(l +m)

where m is a small quantity. Substituting in (») and (o) and neglect-
ing higher powers of m, we obtain

- __ eBT: (|2
for r = a, o = 2(1_V)(1+§m)
— _ aET,- _2

forr =0, o = 5T — ) (1 —3—m)

If we neglect the quantity $m we arrive at the same values for the
tangential stresses as we obtained before for a thin cylindrical shell
[see Eqs. (250)] and for a thin plate with clamped edges.

137. General Equations. The differential equations (132) of equi-
librium in terms of displacements can be extended to cover thermal
stress and strain. The stress-strain relations for three-dimensional
problems are

& — al = %[a, - V(o'u + 0'2)]

& = of = oy = oz + 2] @

& — ol = 2l — (o + )]

T Tyz Tz
Yoy = _Gi”, Yyz = 'é’ Yoz = E (b)

Equations (b) are not affected by the temperature because free thermal
expansion does not produce angular distortion in an isotropic material.
Adding Egs. (a) and using the notation given in (7) we find

e=%(1 — 2))0 + 3aT
Using this, and solving for the stresses from Eqs. (a), we find
_ oET
Oy = Ae + 2G€¢ 1—_—’2—1" (C)

............

Substituting from this and Egs. (6) into the equations of equilibrium
(127), and assuming there are no body forces, we find

alb  oT _ 0
1—2v0x (254)

M+6 2t GV~

v .

© T3 0ARA
gIBLIOTECA CENTRALA |
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These equations replace Egs. (131) in the calculation of thermal
stresses. The boundary equations (128), after substituting from Eqs.
(c) and (6) and assuming that there are no surface forces, become

«ET l=kel+G(%l+%m+aun)

1 —2v oy 9z
du T dw (255)
+G(%l+55m+35n)

Comparing Eqs. (254) and (255) with Eqgs. (131) and (134) it is seen
that terms
aE dT ol 0T aF dT
T1-=%0 @ 1-2vdy T 1—2vaz

take the places of components X, Y, Z of the body forces, and terms

aETl aETm aETn
1—-2v7 1—2v 7 1—2v

replace components X, Y, Z of the surface forces. Thus the displace-
ments u, v, w, produced by the temperature change T, are the same as
the displacements produced by the body forces

oE 0T ok oT oE 0T
X=—-1—%a Y‘"1—2u@’ Z=—1_g9,9 @
and normal tensions
oET ©
1 — 2

distributed over the surface.

If the solution of Eqs. (254) satisfying the boundary conditions
(255) is found, giving the displacements u, v, w, the shearing stresses
can be calculated from Eqs. (b) and the normal stresses from Egs. (c).
From the latter equations we see that the normal stress components
consist of two parts: () a part derived in the usual way by using the
strain components, and (b) a “hydrostatic’ pressure of the amount

oET
1—2» )

proportional at each point to the temperature change at that point.
Thus, the total stress produced by nonuniform heating is obtained by
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superposing hydrostatic pressure (f) on the stresses produced by body
forees (d) and surface forces (e).

The same conclusion may be reached in another way. Imagine that
the body undergoing nonuniform heating is subdivided into infinitely
small elements and assume that the thermal strains & =€ =€ = al
of these elements are counteracted by applying to each elélmenz 4 uni-
form Ppressure p, the magnitude of which, from Eq. (8), is given by (f)
In this way thermal strain is removed, and the elements fit one anothe1:
al}d form a continuous body of the initial shape. The pressure dis-
tribution (f) can be realized by applying certain body forces and sur-
face pressures to the above body formed by the elements. These forces
must satisfy the equations of equilibrium (127) and the boundary
conditions (128). Substituting in these equations

oET

izg ™m~==m=0 ()

0'1=0'y=0'z= -—-p: —_—
we find that, to keep the body formed by the elements in its initial
shape, the necessary body forces are

ol 9T
1 —2y0z

aF 8T oE 9T

X = = @& 91 —
1— 20y’ Z—l_zyﬁz (R)

’ Y

and that the pressure (f) should be applied to the surface.

We now assume that the elements are joined together, and remove
the f01:ces (h) and the surface pressure (f). Then the the;rmal stresses
are evidently obtained by superposing on the pressures (f) the stresses
which are produced in the elastic body by the body forces

X = _Tia_f_’, y=—_ ok 8T ., oE 3T
— 2v oz 1 — 2y 0y 1 —2y9z
and a normal tension on the surface equal to
aET
1—2»

These latter stresses satisfy the equations of equilibrium

do, , 91 or E oT

i) _|_ zY zz . of _

ox '6y+az 12,9z =0

%f aTz‘:ll aTyz aE E)T
8y+ax+az_1—2,,@=° (256)
do. | or ar E 9T

i + xz i . «. oL _

0z ax+ay 1=29 -0
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and the boundary conditions

eET
o + Tom + TN = =9

ET
aym + Tyn + Tal = la__ 2 m (257)

aET
on + Tl + Tem = 1=2"

together with the compatibility conditions discussed in Art. 77. The
solution of these equations, superposed on the pressure (f), gives the
thermal stresses in a body undergoing temperature change.

Plane strain will occur in a long eylindrical or prismatic body when the tempera-
ture, although varying over a cross section, does not vary along lines parallel to
the axis of the cylinder or prism (the z-axis). Then T is independent of z.

Beginning again with the stresses (g) which result in zero strain, the necessary
body forces are given by (k) where now Z = 0, and the pressure (f) must be applied
to the surface, including the ends.

Then supposing the elements joined together, we remove the body forces, and
the surface pressure on the curved surface only, keeping the axial strain e zero.
The effects of this removal are obtained by solving the problem of applying body

force

ol 0T oF 8T .
X=-1—%% Y= 1T-%ay @
and a normal tensile stress of amount
aET
1—2» @

on the curved surface only, as a problem in plane strain (e, = 0). This problem is
of the type considered at the end of Art. 16, except that we have to convert Eq.
(32) from plane stress to plane strain by replacing » by »/1 — ». Thus instead of
Egs. (31) and (32) we shall have

_ BT _ 3% _ BT _ 3% _ o ®
ox =75, " v T-2v of VT T azdy
and
24, B L B _ _ oB (9T 0T
art 2 ax2dy? + ays 1 — v \9x?  9y? 0

The required stress function is that which satisfies Eq. () and gives the normal
boundary tension (j). The stresses are then ecalculated from (k). On these we
have to superpose the stresses (g).

The axial stress o, will consist of the term from (g) together with »(e; + oy)
obtained from (k). The resultant axial force and bending couple on the ends can
be removed by superposition of simple tension and bending.

Plane stress will oceur in a thin plate when the temperature does not vary through
the thickness. Taking the z and y plane as the middle plane of the plate we may
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assume .that Os = Tor = Tys = 0 We may also regard each clement as free to
expand in the z—d1re<3tlox}. It will be sufficient, to ensure fitting of the elements, to
suppress the expansion in the z and y directions only. This requires ’

alT

“’=al’=—l_v’ Ta:ll=0 (m)

S\;bs.t,ituting these in the equations of equilibrium (18), page 22, we find that the
required body forces are

_ aF aT _ aEF 3T

X I —vosx Y—l-—-va—y ()

and the nprmal pressure aLT /(1 ~ ») should be applied to the edges of the plate.
. Removn{g these forces, we conclude that the thermal stress consists of (m)
together with the plane stress due to body forces

E T o
X=--2 2 - _ of 3T
1__,,63;’ Y 1 —»ady (0)

an‘d tc} norma} tensile stress aET /(1 — ») applied round the edges. The deter-
Tmnatlon of this plane stress again presents us with a problem of the type considered
in Art. 16. We have only to put in Eqgs. (31) and (32)

aET
1—»

V =

this being the potential corresponding to the forces (o).

When the edges are fixed the problem reduces to finding the stress due to the
body forces (0). A method for solving this problem for the rectangular plate was
explained on page 156.

138. Initial Stresses. The method used above for calculating thermal stresses
can be applied in the more general problem of nitial siresses. Imagine a body
subdivided into small elements and suppose that each of these elements under-
goes a certain permanent plastic deformation or change in shape produced by
metallographical transformation. Let this deformation be defined by the strain

components
’

&, ') &, Yev's Yar's Yud (a)
We assume that these strain components are small and are represented by con-
t%nuous functions of the coordinates. If they also satisfy the compatibility condi-
tions (129), the elements into which the body is subdivided fit each other after the
permanent set (a¢) and there will be no initial stresses produced.

Let us consider now a general case when the strain components (a) do not satisfy
the compatibility conditions so that the elements into which the body is subdivided
do not fit each other after permanent set, and forces must be applied to the surface
of the§e elements in order to make them satisfy the compatibility equations.
Assuming _that after the permanent set (a) the material remains perfectly elastic
and applying Hooke’s law, we find from Egs. (11) and (6) that the permanent set’,
(@) can be eliminated by applying to each element the surface forces

z' = —(ne / =
where 4 e +2Ge"), . .., T = =Gy, .. ®)

¢ =& t+e t+e
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The surface forces (b) can be induced by applying certain body a:nd surface fofces
to the body formed by the small elements. These forces must satl.sfy ‘the equations
of equilibrium (127) and the boundary conditions (128). Substituting the stress
components (b) in these equations we find that the necessary body forces are

a ’ ’ 3 ’ _a_ ’
='5;;()\e +2G€z)+5§(G'ny)+az(G‘Yzz) ()
R C

and the surface forces are
X = —(n + 2Ge) — Gyoy'm — Gvyzin @

By applying the body forces (¢) and the surface forces (d) we remove the initial
permanent set (a) so that the elements fit one another and form a (.:o?tmuous :l)?dy.
We now assume that the elements into which the body was sub(llnfu.ied are joined
together and remove the forces (c) and (d). Then evidently the initial stress.es are
obtained by superposing on the stresses (b) the stresses which are produced in the
elastic body by the body forces

9 ’ ’ Lo — _‘z ’
X=—0+ 20e) — 5 @vs) — 5, @r=d) ()

and the surface forces
X = (e +2Ge) + Gyzy'm + Gyedn "

Thus the problem of determining the initial stresses is re'duced to the uS}x'fml system
of equations of the theory of elasticity in which the magnitudes of the ﬁf:mt'lous body
and surface forces are completely determined if the permanent set (a) is given.

In the particular case when & =¢ =¢ =of and 7.,,,’ = i = vy =0,
the above equations coincide with those obtained before in caleulating thermal
stresses. )

Let us consider now the reversed problem when the initial stresses are known
and it is desired to determine the permanent set (@) which produces these stresses.
Tn the case of transparent materials, such as glass, the initial stresses can be
investigated by the photoelastic method (Chap. 5). In other cases these §tresses
can be determined by cutting the body into small elements and measuring the
strains which oceur as the result of freeing these elements from S}lrfa,c? force?s
representing initial stresses in the uncut body. From the previo.us dlSCuSS}On it is
clear that the initial deformation produces initial stresses on%y if the stra.m com-
ponents (a) do not satisfy the compatibility equations; otherwise these strains may
exist without producing initial stresses. From this it follows that knowledge of the
initial stresses is not sufficient for determining the strain components (a): If a
solution for these components is obtained, any permanent strain system satisfying
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the compatibility equations can be superposed on this solution without affecting
the initial stresses.!

Initial stresses, producing doubly-refracting properties in glass, present great
diffculties in manufacturing optical instruments. To diminish these stresses it
is the usual practice to anneal the glass. The elastic limit of glass at high tempera-
tures is very low, and the material yields under the action of the initial stresses.
If a sufficient time is given, the yielding of the material at a high temperature
results in a considerable release from initial stresses. Annealing has an analogous
effect in the case of various metallic castings and forgings.

Cutting of large bodies into smaller pieces releases initial stresses along the
surfaces of cutting and diminishes the total amount of strain energy due to initial
stresses, but the magnitude of the maximum initial stress is not always diminished
by such cutting. For example, suppose a circular ring (Fig. 228) has initial stresses
symmetrically distributed with respect to the center and the initial stress component
oy’ varies along a cross section mn according to a
linear law (ab in the figure). Cutting the ring me &
radially, as shown in the figure by dotted lines,
releases the stresses oy along these cuts. This is
equivalent to the application to the ends of each
portion of the ring of two equal and opposite couples
producing pure bending. The distribution of the
stress o along mn, due to this bending, is nearly
hyperbolic (see Art. 27), as shown by the curve
cde. The residual stress along mn after cutting is
then given by oy + op’ and is shown in the figure
by the shaded area. If the inner radius of the ring Fia. 228.
is small there is a high stress concentration at the
inner boundary, and the maximum initial stress after cutting, represented in Fig.
228 by be, may be larger than the maximum initial stress before cutting. This or
similar reasoning explains why glass sometimes cracks after cutting.?

139. Two-dimensional Problems with Steady Heat Flow. In
steady heat flow parallel to the zy-plane, as in a thin plate or in a long
cylinder with no variation of temperature in the axial (z-)direction, the
temperature T will satisfy the equation

T | T
Frs W = (a)

Consider a cylinder (not necessarily circular) in a state of plane
strain, with e, = v, = v,, = 0. The stress-strain relations in Carte-

1 The fact that permanent set (a) is not completely determined by the magni-
tudes of initial stresses is discussed in detail in the paper by H. Reissner; see
Z. angew. Math. Mech., vol. 11, p. 1, 1931. »

2 Several examples of the calculation of initial stresses in portions cut out from
a circular plate are discussed in the paper by M. V. Laue, Z. tech. Physik, vol. 11,
p. 385, 1930. Various methods of calculating residual stresses in cold-drawn

tubes are discussed in the paper by N. Dawidenkow, Z. Metallkunde, vol. 24, p. 25,
1932,
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sian coordinates are analogous to Eqs. (a) and (b) of Art. 135 in the
case of plane strain. Corresponding to Eqs. (b) we shall have

e,—(1+v)aT=}—;]—y2(a,—1—_—i——Va,,)
1 - v ®)
e — (1 +v)aT=T<ay—md,)

We now inquire whether it is possible to have ¢,, o, and 7., zero.
Putting ¢, = 0, = 0 in Eqs. (b) we find

e = (1 4+ »)aT, & = (1 + v)aT (¢)

and of course v,, = 0.
Such strain components are possible only if they satisfy the condi-
tions of compatibility (129). Since ¢, = 0 and the other components
of strain are independent of 2, all of these conditions except the first
are satisfied.
The first reduces to
9%,

e | 0%
ax?

dy? =0

+
But on account of Eqgs. (¢) and (a), this equation also is satisfied. We
find, therefore, that in steady heat flow the equations of equilibrium,
the boundary condition that the curved surface be free from foree, and
the compatibility conditions, are all satisfied by taking

Oz = 0y = Tgy = 0, o, = —aET (d)

For a solid cylinder the above equations and conditions are complete,
and we can conclude that in a steady state of two-dimensional heat
conduction there is no thermal stress except the axial stress ¢, given by
Egs. (d), required to maintain the plane strain condition ¢, = 0. In
the case of a long c¢ylinder with unrestrained ends we obtain an approxi-
mate solution valid except near the ends by superposing simple tension,
or compression, and simple bending so as to reduce the resultant force
and couple on the ends, due to ¢,, to zero.

For a hollow cylinder, however, we cannot conclude that the plane
strain problem is solved by Eqgs. (d). It is necessary to examine the
corresponding displacements. It is quite possible that they will prove
to have discontinuities, analogous to those discussed on pages 68
and 120.

For instance suppose the cylinder is a tube and a longitudinal slit
is cut, as indicated in Fig. 229b. If it is hotter on the inside than on
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the outside it will tend to uncurl, and the slit will open up. There will
be a discontinuity of displacement between the two faces of the slit.
Thus the displacement should be represented by discontinuous func-
tions of 8. The cross section is solid, <.e., singly connected, and Eqgs.
(d) give the stress correctly for plane strain. But if the tube has no
slit (Fig. 229a) discontinuities of displacement are physically impossi-
ble. This indicates that the assumed temperature distribution will in
fact give rise to stress components ¢, gy, T, representing the stress
produced by suitably drawing together again the separated faces of the

ClE

(b)
Fia. 229.

slit tube and joining them (cf. Art. 39 and Fig. 82). The component
o, will also be affected by this operation.

To investigate this question further, we rewrite Egs. (c) as

ou _ , o _ .,
ar & ay_ﬁ ()

where ¢ = (1 + »)al. Since v,, = 0 we can write

v | du

3z Ty =0 n
and

v ou

o oy 2 ©

«; being a component of rotation (see page 225). Equations (f) and (g) yield

L]
S e e *)
and these with (¢) give
a¢ dws d¢ dwe .
w T W T a @

Equations (¢) are Cauchy-Riemann equations, discussed in Art. (55). They show
that ¢ + fw, is an analytic function of the complex variable z + {y. Denoting
this function by Z, we have

Z = ¢ + jw, 1)
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If ws, o1, us, v2 are the values of u, v at two points 1, 2 in the cross section of the
cylinder the differences uz — u1, 2 — v1can be expressed as

2 fou ou 2fav o
ug—u1=f1 (—é;d.’b +-@dy), vz—'vx—/; (ﬁdx+5§dy)

where the integrals are taken along any curve joining the two points and lying
entirely in the material. Multiplying the second by 7 and adding to the first

we find
. 27 o J . fd a
Uz — up + iz — 1) = fl :%da:+5%dy+z(5%dx +—ldy)] *)

and it is easily verified from Egs. (¢) and (k) that the integral on the right-hand
2

gide is the same as (¢ + twe)(dx + i dy) or 1 Z dz. Thus Eq. (k) becomes

1
uz—u1+i(vz—v1)=/;2Zdz o

The displacements will be single-valued when this integral vanishes for a complete
circuit of any closed curve, such as the broken-line circle in Fig. 229, which can
be drawn in the material of the cross section. We shall use this result later in
solving a thermal-stress problem of the bollow circular cylinder.

Not only the displacements, but also the rotation w, must be continuous. We

have

2 £ dw, Bew,
(e — oo = [ (B e+ 522 ay)
and using Eqs. (¢) this becomes

(ws)2 — (weh = _[12 (— %%dx + :—idy)

Since ¢ is proportional to T, this integral is proportional to the amount of heat
flowing per unit time, per unit axial distance, across the curve joining points
1 and 2. If this is a closed curve (w:)2 — (ws)1 must vanish, and therefore the
total heat flow across the curve must be zero. If a pipe has heat flow from inside
to outside or vice versa this condition is not fulfilled and the stress is not correctly
given by Egs. (d).

But if the pipe is slit, as indicated in Fig. 220b, the displacement or rotation at
point 2 can differ from that at point 1, for instance if the heating causes the slit to
open up. The simple state of stress given by Eqgs. (d) is then correct. To arrive
at the state of stress which exists in the pipe when it is not slit, we have to superpose

the stress due to closing the gap. The determination of this dislocational stress' ]

involves problems of the types illustrated by Figs. 45 and 82.

1The relation between thermal stress in steady heat flow and dislocational
stress was established by N. Muschelisvili, Bull. Elec. Tech. Inst., St. Petersburg,
vol. 13, p. 23, 1916, and independently by M. A. Biot, Phil. Mag., series 7, vol. 19,
p. 540, 1935. Thermal stresses in a hollow circular cylinder, and in a square
cylinder with a circular hole, have been determined photoelastically by this method
by E. E. Weibel, Proc. Fifth Intern. Cong. Applied Mechanics, Cambridge, Mass.,
1938, p. 213.
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Coysider, for example, a hollow circular cylinder of outer radius b, with a con-
centric bore of radius a. If the temperature T; at the inner surface is uniform
ax.ld t.,he temperature at the outer surface is zero, the temperature T at any radius’
ris given by Eq. (n) of Art. 135. We may write this as

T = —A1l
where ogb+ Alogr (m)
R L
4= log (b/a) (n)

The constant term — A log b in Eq. (m) can be ignored, since a uniform change of
temperature does not cause thermal stress. Then, since log z = log r + 6,

Z=¢€¢+1%, =04 »)aTl + tw,
=14 vadlogr + jw, = (1 + »)ad log 2

Writing B for (1 + »)ad, we have from Eq. (I)

(o)

'I_‘his equaiiion applies to any curve between points 1 and 2 lying wholly in the mate-
n.al. It gives the relative displacement of the two points when the temperature is
given by‘ Eq. (m) and the stress by Egs. (d).

Applying 1t-to a circular path of radius r starting at 1 (Fig. 229), going round the
hole, and ending at 2, we have, since 6, = 0, §; = 2,

. 2
uz—u1+1,(vz—01)=Bf logzwlz=B|:z(logz—l)]2
1 1

[z(og z — 1)} = reit™ (log r + 7 -21) — refe logr +7-0) =7 - 2xr
Inserting this in Eq. (o) we find
U — ur =0, v2 — vy = B - 2xr (p)

Th«_a relative displacement is not zero, and therefore it is necessary to consider the
c)flmder as slit, so that the point 2 can move away from the point 1 by the vertical
displacement 2xrB (Fig. 229b). The movement of the upper face of the slit relative
to the lower face is equivalent to a rotation 2xB in the clockwise sense about the
center of the cylinder. However, B is negative if T'; is positive. Then the slit
opens to a gap subtending an angle —2xB at the center. The problem of closing
such a gap was solved on page 69 for the case of plane stress. The solution can be
converted to plane strain by the substitutions given on page 34. The stress com-
ponents which result, combined with the axial stress 0. = —aET from Eqgs. (d), are
1deIntica1 with those given by Eqs. (247). 7
nside and outside temperatures which var, i
ropte b o sefies vary round the boundary circles can be

Ti=A04+ Aicos 0 + Ay cos 20 + - 4+ Bysi .
r Tt 18in @ 4+ Bysin 20 4 - - -
To = AJ + Ay 0050+ A7 cos 20 + + - -+ By sin 0+ B sin 20 + - - @

E.;Ihe t@ermal stress due to the several terms can be treated separately, that due to
C: umforr:lx terms Ao, Ao/ being covered by the preceding case, with T'; = A, — Ao’

rresponding to the terms cos 6, sin 8; cos 26, sin 26; et i i .
o Donding o e A ; X ; ete., the function Z will have

2y z_l; 2’, z2; ete. (’)
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Now [z* dz taken round a complete circle of radius r vanishes unless n = —1, for
we have

2
] o dz = / rrenOresdl df = gl ]; " it g
2 -
= grntl /(; " [cos (n + 1)8 + ¢sin (n + 1)6] d6

This is clearly zero unless n + 1 = 0, in which case we have
/ % oni (s
£

Thus the only term in () which will produce a non-zero integral on the right of Eq.
(0) is the term 27, It follows that the terms in cos 26, sin 26, and higher harmonics
in the temperature series (g) do not produce any relative displacement of the twc
faces of the slit in the slit tube. The net heat flow from inside to outside corre-
sponding to such terms is zero, and the only stress they produce is that given by
Eqgs. (d).

The terms in (¢) which give rise to a term in 271in Z are those in cos 6, sin 6. Tt
is sufficient to consider cos 6 only, since the effects of the sin 8 terms can be deduced
from those of cos # by changing the initial line § = 0. Accordingly we consider
only

T; = Ay cos 9, Ty = Ay cos @ ®

The problem of determining the steady temperature distribution corresponding to
these boundary values is solved by taking the temperature T as the real part of a
function

-(-;—1 + Caz (u)

and determining C, and (' so that the conditions (t) are satisfied. The values are

a?? (A, Al') _A/b— A

Co = ——-— ®

b2 — a2

The term C:/z in (u) corresponds to the value
A+ »a %

for the function Z. Inserting this in Eq. (!) and making use of (s), we find that the
displacement discontinuity is given by

uz — u1 + 1:(1)2 —_ 1)1) = . 27r(1 + v)aCy
and therefore )
Uz — uy = 0, v2 — v1 = 27(1 + »)aCy

This means the top face of the slit in Fig. 229 moves down by 2+(1 + »)aC, into.
the space occupied by the bottom face and material below it. Physically this is
impossible, of course, and is prevented by forces between the faces sufficient to
create a counteracting displacement. The stress set up by this counteracting dis~
placement is determined as explained at the end of Art. 39, in the present case for
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planie strain, of course. The stress components to be combined with the axial
stress of Eqs. (d) are

r? r2
2p2 2 2
oo”‘xcosﬂ-r(gr—l:'+a ;L-b —3)

2
'rro=xsino-r(1 -—%—) (b—:—l)
r r

= g (e A0y o
a b /bt —at

2(1 — »)

2 2
o-,=xcoso-r(1——a— b—l)

where

The axial stress is given by Eq. (d), with T determined from Eqgs. (u) and (), so
long as axial expansion or contraction is prevented. If the ends are free the axial
stress due to removal of the force and couple on each end must be considered.

140. Solutions of the General Equations. Any particular solution we can
obtain of Eqgs. (254) will reduce the thermal-stress problem to an ordinary problem
of surface forces. The solution for u, v, w will lead by means of Egs. (a) and (b) of
Art. 139, using Egs. (2), to values of the stress components. The surface forces
required, together with the nonuniform temperature, to maintain these stresses,
are then found from Egs. (128). The removal of these forces in order to make the
boundary free, so that the stress is due entirely to the nonuniform temperature,
constitutes an ordinary problem of surface loading.

One way of finding particular solutions of Eqgs. (254) is to take

A4 4 w9

U = — V= —

oz 3y Y (@)

where ¢ is a function of z, y, 2, and also of time ¢ if the temperature varies with
time.

Using Egs. (5) and (10) we can write Eqgs. (254) in the form

de aT
3z + A - v = 2(1 + V)aa

(3)
Since ¢ = g—: + g—;’ + ‘ZL:, Egs. (a) lead to ¢ = V%, and Eqs. (b) become
[¢] aT
a - P)a_wil =(1 4+ v)aa
(e)

4/dy and 8/a2 replacing @/9z in the second and third of these equations. All three
equations are evidently satisfied if we take the function! ¥ as a solution of the
equation

Vi = } i_ :aT (d)

! Functions of this kind were used by E. Almansi in the problem of the sphere.

See (1) Atti reale accad. sci. Torino, vol. 32, p. 963, 1896-1897; (2) Mem. reale
accad. sci. Torino, series 2, vol. 47, 1897.
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Solutions of equations of this type are considered in the theory of potential.! A
solution can be written down as the gravitational potential of a distribution of
matter of density —(1 + »aTl/4x(l — »), which is?

P TR ©

where T(n,0) is the temperature at a typical point §, =, { at which there is an ele-
ment of volume df dn dt, and 7’ is the distance between this point and the point
z, y, 2. Equation (e) gives the complete solution of the thermal-stress problem of
an infinite solid at temperature zero except for a heated (or cooled) region.3 The
cases of such a region in the form of an ellipsoid of revolution and a semi-infinite
circular cylinder, uniformly hot, have been worked out.t For the ellipsoid the
maximum stress which can occur is «ET/1 — #, and is normal to the surface of the
ellipsoid at the points of sharpest curvature of the generating ellipse. This value
occurs only for the two extreme cases of a very flat or very elongated ellipsoid of
revolution. Intermediate cases have smaller maximum stress. For a spherical
region the value is two-thirds as great.

When T is independent of z, and w = 0, we shall have plane strain, with ¢, u, and
v independent of z. Equation (d) becomes

2 oy _ 1ty
ax’+6y2—1—vaT )

A particular solution is given by the logarithmic potential

¢=2_r.r:—”.af/T(£,n)logr'dEdn ()]

where
ro=l— 5+ @ —

For a thin plate, with no variation of T through the thickness, we may assume
plane stress, with o. = 72: = 74z = 0, and %, v, oz, 9y, Txy independent of z. We have
then the stress-strain relations [cf. Eqgs. (d) of Art. 134]

E ou v
oz =152 | oz + v-—ay -1+ v)aT]
E v du
e E [ o - aaer ] ®

__L(al+3_’£
T S 30+ ) \oz ' 0y/.

1 See, for instance, “ Theory of the Potential,” by W. D. MacMillan, New York,
1930.

% This potential function was used by C. W. Borchardt in the problem of the
sphere. See Monatsber. kinigl. Preuss. Akad. Wiss., Berlin, 1873, p. 9.

3 J. N. Goodier, Phil. Mag., vol. 23, p. 1017, 1937. The semi-infinite solid is ‘
considered by R. D. Mindlin and D. H. Cheng, J. Applied Phys., vol. 21, pp. 926,

031, 1950.
¢ N. O. Myklestad, J. Applied M echanics (Trans. A.8.M.E.), 1942, p. A-131.

THERMAL STRESS 435

Substituting these in the two equations of equilibrium (18) (with zero body force)
we find the equations

9 fou  aw\ | 1—» (o  d% aT
oz 6:c+6y)+1+v ax? W =2a£
.. e e e e e e e e e ()

These are satisfied by

W,

“=az

@

provided that y is a solution of e O et

a 9
%+TZ= A 4nal  ® |

Comparing with Eq. (f) we see that a

particular solution is given by the loga-

rithmie potential (g) with the factor 1 — » Y N

in the denominator omitted. This gives 4

the complete solution for local heating in Vo

an infinite plate, where the stress and S

deformation must tend to zero at infinity. 72 %
As a first example of this kind we con-

sider an infinite plate at temperature zero »p

except for a rectangular region ABCD of Fia. 230.

sides. 2a, 2b (Fig. 230) within which the temperature is T, and uniform.! The
required logarithmic potential is T

e n—]

_ 1 b fa 1
v=g+nar [°[° Jlogle — 02 + - wdedn 0

The displacements are obtained by differentiation according to (j) and then the
stress con.xponents can be found from (k). The results for ¢, and 7., at points such
as P outside the hot rectangle can be reduced to

- 1 ’ » 1 rir
o0z = Eal 5- (41 — 1),  7ay = EaT g-log r:—ri (m)
the angles 1, ¢ and the distances ry, rs, 3, 74 being those indicated in Fig. 230.
The angles are tho.se subtended at P by the two sides AD, BC of the rectangle
para.ll-el t9 the z-axis. The expression for ¢y is obtained from the first of Egs. (m)}
by using instead of ¢, and ¢, the angles subtended at P by the other two sides AB
DC of the rectangle. ’

The value of o, just below AD and just to the left of 4 is

1
EaoT - 5 (1r — arctan %)

and i P . o .
%IIIE(L 1; gr%ate;t for a rectangle infinitely long in the y-direction, when it becomes
. Both normal stress components change sharply on turning a corner of the

! Goodier, loc. cit,
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rectangle. The shear stress 7z, approaches infinity as a corner is approached.
These peculiarities are, of course, a consequence of the ideally sharp corners of the

heated rectangle.
If the heated area is elliptical! instead of rectangular, the ellipse being

x2 y2
atpE =t

the value of the stress oy just outside the ellipse, near an end of the major axis, is

EoT
1+ (b/a)

which approaches EaT for a very slender ellipse. If the heated area is circular it
becomes $EaT. The stress o; just beyond an end of the minor axis is

EaT
1 4+ (a/b)

and approaches zero for a very slender ellipse.
The method of the present article becomes particularly simple when the temper-
ature varies with time, and satisfies the differential equation of heat conduction?

aT
ria k72T (n)

where « is the thermal conduetivity divided by the specific heat and by the density.
Differentiating Eq. (d) with respect to ¢ and then substituting for 87 /8t from
Eq. (n) we find that the function ¢ must satisfy the equation
W 14+
2 e 2
Viat 1 - vaKV T
We may therefore take

W 1+
3{_1—1!0”‘11

The integral of this which is appropriate for a temperature which approaches zero
as time goes on is

b= -1 [T ()
as may be verified by substitution in Eq. (d), making use of Eq. (n).

Consider for instance a long circular cylinder (plane strain) which is cooling or
being heated toward a steady state of beat conduction. The temperature is not
symmetrical about the axis, but is independent of the axial coordinate z. The
temperature is then representable by a series of terms of the form

Ten = e xst Jﬂ(sr)eina (P)

1 Goodier, loc. cit.
2 See, for instance, “Theory of Heat Conduction,” by Ingersoll and Zobel.

THERMAL STRESS 437

where the real or ima,gi‘nary parts of e? may be taken to obtain cos n8 or sin ne
From Eq. (o) the function ¢ corresponding to this temperature term will be ’

_ _1+ 1
Yoo = — 7 ok 5 Ten ()
A ser‘ies of such terms, corresponding to the series for T, will represent a particular
solutlo.n of the general equations (b). The displacements may be calculated
according to Eqgs. (a), or their polar equivalents,

W
U = — =
or v

AR

i
36

u and v here being the radial and i i
e Stgr the tangential components. The axial component w
The strain components follow from the results of Art. 28, page 65. The stress
components can then be found from the plane strain formulas (a) ar;d (b) of Art
135, together with the last of Eqs. 52, page 66, for the shear stress r,g. )
When such a solution has been obtained it will, in general, be found that it gives
non-zero boundary forces (o, 7.¢) on the curved surface of the cylinder gThe
eﬁ'ects of removing these are found by solving an ordinary plane strain pr'oblem
using the general stress function in polar coordinates given in Art. 39.1 ’

! This problem is worked out for a hollow cyli i
) ; ylinder, with temperature corre d
ing to Eq. (p), in the paper by J. N. Goodier cite(i above. por



CHAPTER 15
THE PROPAGATION OF WAVES IN ELASTIC SOLID MEDIA

141. In the preceding chapters it was usually assumed that the
elastic body was at rest under the action of external forces, and the
resulting problems were problems of statics. There are cases, how-
ever, in which motion produced in an elastic body by suddenly applied
forces or by variable forces should be considered. The action of a
suddenly applied force is not transmitted at once to all parts of the
body. At the beginning the remote portions of the body remain undis-
turbed, and deformations produced by the force are propagated through
the body in the form of elastic waves. If the dimensions of the body
are large, the time taken by the waves to traverse the body becomes of
practical importance and should be considered. We have such prob-
lems, for instance, in discussing the effect of impact or waves produced
by earthquakes. The investigation of the propagation of waves in an
elastic medium is the subject of the following discussion.! We begin

with the simple problem of the propaga-

m oy tion of longitudinal waves in a long
prismatical bar.

x* 142. Longitudinal Waves in Pris-

plane during deformation, the unit elongation at any cross section

mn, due to a longitudinal displacement , is equal to du/dz and the I
corresponding tensile force in the bar is AE(du/dz), where A is the
eross-sectional area.? Considering an element of the bar between the 14

1 Problems of steady vibrations of elastic bodies (standing waves) have been 4
discussed in 8. Timoshenko, “ Vibration Problems in Engineering,”’ New York, 1928. }

214 is assumed that we have here a simple tension in the z-direction and the 3
elongation du/dx is accompanied by lateral contraction of the amount v(0u/9z).
Tnertia forces corresponding to motion of particles in lateral direction are neglected 2
in our derivation. This approximate solution is accurate enough so long as the ]|
length of waves is not small in comparison with cross-sectional dimensions of the 3
bar. In the case of short waves, motion of particles in the direction perpendicular
to the axis of the bar should be considered. See Lord Rayleigh, “Theory of

438

R I matical Bars. Taking the axis of the §
F1a. 231 bar for z-axis (Fig. 231) and assuming 3
that cross sections of the bar remain
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two adj a.cent cross sections mn and myn,, the difference of forces acting
on the sides mn and myn, is

du , 9 i) 2
ap (%% 4 Ou _ ou _ 0*u
. + oy dx) AE Frl AE’a—I2 dz
and the equation of motion of the element is
du %u
Ap dx B = AE Frl
or
u 0%
Iz
T
- pd N X
L——CAt—;’I P

(a)

o - ———
—— - ~—

._z-—:l‘ L] TP
+C. ct

&)
Fia. 232.

in which p is the mass per unit volume of the bar and

c=o|E
- (259)

y 1t can be shown by substitution that any function f(x <+ ct) is a solu-
ion of Eq. (?58). Any function fi(z — ct) is also a solution, and the
general solution of the Eq. (258) can be represented in the form

. u = flz + ct) + fi(zx — ct) (260)
. hl? solution h.a,s a very simple physical interpretation, which can
t:SI vy be explamec.l in the following manner. Consider the second
y I:r} on the right side of Eq. (260). For a definite instant ¢, this term

unction of x only and can be represented by a certain curve such

Zsf tmnp (Fig. 232a), 1.;he shape of which depends on the function f;.
er an interval of time Af, the argument of the function f; becomes

S ” .
Qzl::td,‘r %}}ap. 7; L. Pochhammer, J. Math. (Crelle’s J.), vol. 81, 1876; C. Chree
- J. Math., vol. 21, 1886, and vol. 24, 1890; J. Prescott, Phil. M a,g., vol. 33’

p. 703, 1942: R i
Yods, ; R. M, Dayvies, Trans, Roy. Soc. (London), series A, vol. 240, p. 375,



440 o * " THEORY OF ELASTICITY

z — ¢(t + At). The function fi will remain unchanged provided that
simultaneously with the increase of ¢ by Af the abscissas are increased
by an amount Az equal to ¢ Af. This means that the curve mnp, con-
structed for the moment ¢, can also be used for the instant ¢ + At, if it
is displaced in the 2-direction by the distance Az = c At, as shown by
the dotted line in the figure. From this consideration it can be seen
that the second term of the solution (260) represents a wave traveling
in the direction of the z-axis with a constant speed ¢. In the same
manner it can be shown that the first term of the solution (260) repre-
sents a wave traveling in the opposite direction. Thus the general
solution (260) represents two waves traveling along the z-axis in two
opposite directions with the constant velocity ¢ given by Eq. (259).
This velocity depends only on the modulus E and the density of the
material of the bar. In the case of steel, for instance, we can assume
¢ = 16,850 ft. per second.

The functions f and fi should be determined in each particular case
from the initial conditions at the instant ¢ = 0. For this instant we
have, from Eq. (260),

(W) 1m0 = (@) + f1(2)

&) =i ~ )

Assume, for instance, that the initial velocity along the length of the
rod is zero and there is an initial displacement given by the equation
(U)o =F (90)
Conditions (a) are satisfied by taking
| @) = fi(a) = (@)
Thus in this case the initial displacement will be split into halves which

will be propagated as waves in two opposite directions (Fig. 232b).
The velocity of propagation of

(@)

i waves in prismatical bars can be
= 4{ x obtained from elementary considera-
. tions. Assume that a uniformly
ct “distributed compressive stress is

Fie. 233.

suddenly applied to the left end of a

prismatical bar (Fig. 233). It will produce at the first instant auni- |

form compression of an infinitely thin layer at the end of the bar. This
compression will be transmitted to the adjacent layer, and so on. A

wave of compression begins to travel along the bar with a certain. |
velocity ¢, and, after a time interval ¢, a portion of the bar of length ¢t
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will be compressed and the remaining portion will be at rest in an
unstressed condition.

The velocity of wave propagation ¢ should be distinguished from the
velocity v, given to the particles in the compressed zone of the bar by
the compressive forces. The velocity of the particles » can be found by
taking into account the fact that the compressed zone (shaded in the
figure) shortens due to compressive stress ¢ by the amount (¢/E)ct.
Hence the velocity of the left end of the bar, equal to the velocity of
particles in the compressed zone, is

co

V=F ()

The velocity ¢ of wave propagation can be found by applying the equa-
tion of momentum. At the beginning the shaded portion of the bar
was at rest. After the elapse of the time ¢ it has velocity v and momen-
tum Actov. Putting this equal to the impulse of the compressive force,
we find

Act = Actpy (0

Using Eq. (b), we find for ¢ the value given by Eq. (259)! and for the
velocity of particles we find

/2
V Ep

It will be seen that, while ¢ is independent of the compressive force, the
velocity v of particles is proportional to the stress o.

If, instead of compression, a tensile force is suddenly applied at the
end of the bar, a tension is propagated along the bar with the velocity
¢. The velocity of particles again is given by Eq. (261). But the
direction of this velocity will be opposite to the direction of the z-axis.
Thus in a compressive wave the velocity v of particles is in the same
direction as the velocity of wave propagation, but in a tension wave
the velocity v is in the opposite direction from that of the wave.

From Egs. (259) and (261) we have

P =

(261)

v
o=E- (262)

The gtress in the wave is thus determined by the ratio of the two
V.el.ocltles and by the modulus £ of the material. If an absolutely
rigid body, moving with a velocity v, strikes longitudinally a pris-

! This elementary derivation of the formula for the velocity of wave propagation

is due _to Babinet; see Clebsch, Théorie de 1’élasticité des corps solides, traduite
par Saint-Venant, p. 480d, 1883.
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matical bar, the compressive stress on the surface of contact at the
first instant is given by Eq. (262).! If the velocity v of the body is
above a certain limit, depending on the mechanical properties of the
material of the bar, a permanent set will be produced in the bar
although the mass of the striking body may be very small.?

Consider now the energy of the wave shown shaded in Fig. 233.
This energy consists of two parts: strain energy of deformation equal to

Acto?
2E
and kinetic energy equal to
Actpr? _ Acls®
2  2E :
It will be seen that the total energy of the wave, equal to the work done
by the compressive force Ao acting over the distance (¢/E) ct, is half

potential and half kinetic.
<

o;{ﬂTIf_ﬁﬂ ‘ t‘i (a)
HH
oI i » Y
*c_ C
., fc)

Fia. 234.

Equation (258), governing the wave propagation, is linear, so that,
if we have two solutions of the equation, their sum will also be a solu-
tion of this equation. From this it follows that in discussing waves
traveling along a bar we may use the method of superposition. If two
waves traveling in opposite directions (Fig. 234) come together, the
resulting stress and the resulting velocity of particles are obtained by
superposition. If both waves are, for instance, compressive waves,
the resultant compression is obtained by simple addition, as shown in
Fig. 234b, and the resultant velocity of particles by subtraction.
After passing, the waves return to their initial shape, as shown in
Fig. 234c.

1This conclusion is due to Thomas Young; see his “Course of Lectures on

Natural Philosophy . . . ,” vol. 1, pp. 135 and 144, 1807.
2 Tt is assumed that contact occurs simultaneously at all points of the end section

of the bar.
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Assume that a compression wave is moving along the bar in the
z-direction and a tension wave of the same length and with the same
magnitude of stress is moving in the opposite direction (Fig. 235).
When the waves come together, tension and compression annul each

C

"___’ m
MM T e,
o LLLlL
m €,
- : o @
i)
[+
772
(c)
J ]
Fie. 235.

other, and in the portion of the bar in which the two waves are super-
posed we have zero stress. At the same time the velocity of particles
in this portion of the bar is doubled and equal to 2v. After passing
the waves return to their initial shape, as shown in Fig. 235b. At the:,
middle cross section mn there will be at all times zero stress and we may
consider it as a free end of a bar (Fig. 235¢). Then comparing Figs.
235a and 235b it can be concluded that in the case of a free end a com-
pressive wave is reflected as a similar tension wave, and vice versa.

i I }0 (@)
X
«C z c
—
m
5)
x
|
(c)
4
Fra. 236.

If two identical waves, moving toward one another (Fig. 236a), come
together, there will be doubled stress and zero velocity in the portion of
tFle bar in which the waves are superposed. At the middle cross sec-
tion mn we always have zero velocity. This section remains immova-
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ble during passage of the waves and we may consider it as a fixed end
of the bar (Fig. 236c). Then, from comparison of Figs. 236a and 2365,
it can be concluded that a wave is reflected from a fixed end entirely
unchanged.

Up to now we have considered waves produced by constant forces.
The stress ¢ and the velocity of particles v were constant along the
length of the wave. In the case of a variable force, a wave will be pro-
duced in which ¢ and v vary along the length. Conclusions obtained
before regarding propagation, superposition, and reflection of waves
can be applied also in this more general case.

143. Longitudinal Impact of Bars. If two equal rods of the same
material strike each other longitudinally with the same velocity v (Fig.
237a), the plane of contact mn will not move during the impact! and

P, m P
x (a)
z A
Y Yz
[ 1 - x  (8)
f—1t l
Fia. 237.

two identical compression waves start to travel along both bars with
equal velocities c. 'The velocities of particles in the waves, superposed
on the initial velocities of the bars, bring the zones of waves to rest, and
at the instant when the waves reach the free ends of the bars (¢ = 1/c),
both bars will be uniformly compressed and at rest. Then the com-
pression waves will be reflected from the free ends as tension waves
which will travel back toward the cross section of contact mn. In
these waves the velocities of particles, equal to », will now be in the
direction away from mn, and when the waves reach the plane of con-
tact the bars separate with a velocity equal to their initial velocity v.
The duration of impact in this case is evidently equal to 2I/c and the
compressive stress, from Eq. (261), is equal to v vV Ep.

Consider now a more general case when the bars 1 and 2 (Fig. 237b)
are moving? with the velocities v; and vs(v; > v5). At the instant of
impact two identical compression waves start to travel along both bars.
The corresponding velocities of particles relative to the unstressed por-

114 is assumed that contact takes place at the same instant over the whole

surface of the ends of the rods. .
% Velocities are considered positive if they are in the direction of the z-axis.
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tions of the moving bars are equal and are directed in each bar away
from the surface of contact. The magnitude of these velocities must
be equal to (v; — v2)/2 in order to have the absolute velocities of par-
ticles of the two bars at the surface of contact equal. After an interval
of time equal to I/c, the compression waves arrive at the free ends of
the bars. Both bars are at this instant in a state of uniform compres-
sion, and the absolute velocities of all particles of the bars are

Uy — Vg ’U1—1)2_1)1+1)2

e R 2

The_compression waves will then be reflected from the free ends as
tension waves and at the instant ¢ = 2I/c, when these waves arrive at
the surface of contact of the two bars, the velocities of bars 1 and 2
become
01+”2_v1—02_ v1 + v, V1 — Vg
2 2 " 7 T3

="

Thus the bars, during impact, exchange their velocities.

Y %
=z z * (@)
gy —F A
o $o+us) vy
L f LTI 3 s
24,
Fia. 238,

If the above bars have different lengths, I, and I, (Fig. 238a), the
conditions of impact at first will be the same as in the previous case.
But after a time interval 21;/c, when the reflected wave of the shorter
bar 1 arrives at the surface of contact mn, it is propagated through the
surface of contact along the longer bar and the conditions will be as
shown in Fig. 2385. The tension wave of the bar I; annuls the pressure
between the bars, but they remain in contact until the compression
wave in the longer bar (shaded in the figure) returns, after reflection, to
the surface of contact (at ¢ = 2ly/c). :
. In the case of two bars of equal length, each of them, after rebound-
Ing, has the same velocity in all points and moves as a rigid body.
The total energy is the energy of translatory motion. In the case of
the bars of different lengths, the longer bar, after rebounding, has a
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traveling wave in it, and in calcula;;;ingdt?e total energy of the bar the
his wave must be considered.
enggx}l’s;ﬁei now a more complicated problem qf a bar with a fixed end
struck by a moving mass at the other end? (Fig. 239). -Let M be the
mass of the moving body per unit area of the cross s.ectlon of the bar
and v, the initial velocity of this body. Considering the body as
absolutely rigid the velocity of particlgs at the end of .the bar at the
instant of impact (¢ = 0) is vo, and the initial compressive stress, from

. (261), is
Fo- (201 oo = vo V' Ep (@)

Owing to the resistance of the bar the velocity of the moving body ?,nd
hence the pressure on the bar will gradually decrease, and we obtain a

Z
Yo, (a)
7,
%‘—‘ —fo-o x (6)
v ct
205
(]
LS
o ST (c)
/4
Fia. 239.

compression wave with a decreasing compressiYe stress trafrehng. aéirﬁg
the length of the bar (Fig. 239b). The change In compressmn wit - e
time can easily be found from the equation of motion of the b yd:
Denoting by o the variable compressive stress at the end of the bar an
by v the variable velocity of the body, we find

dv _ ®)
M;i—t'i"d 0

i ineti latory motion in the case of
1The question of the lost kinetic energy of trans! T
. act of bars was discussed by Cauchy, Poisson, and finally by

longitudinal imp d fin
S(,)al.;;gllt-Venant; see Compt. rend., p. 1108, 1866, and J. mathémat. (Liouville), pp-

257 and 376, 1867. . .
2 This problem was discussed by several authors. The final solution was given

by J. Boussinesq, Compt. rend., p. 154, 1883. A history of the prs)blem cgn.bte-

found in “Théorie de I'élasticité des corps solides” C!ebsch, traduite par amu

Venant, see note of par. 60. The problem was also éhs;:lusse;l ly.y L. 131 gﬁ:,?;ed
i i implified the solution an

By using the laws of wave propagation he simp 4 y ten

itiouthegcase of a conical bar. See Trans. A.S.M.E., Applied Mechanics Division,

1930.
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or, substituting for v its expression from Eq. (261),

M de
~Bp dt +o=0
from which
_WE
o= X ©

This equation can be used so long as { < 2l/c. When ¢ = 2l/c, the
compressive wave with the front pressure ¢o returns to the end of the
bar which is in contact with the moving body. The velocity of the
body cannot change suddenly, and hence the wave will be reflected as
from a fixed end and the compressive stress at the surface of contact
suddenly increases by 20, as is shown in Fig. 239¢c. Such a sudden
increase of pressure occurs during impact at the end of every interval of
time T = 2l/c, and we must obtain a separate expression for o for each
one of these intervals. For the first interval, 0 < ¢ < T, we use
Eq. (¢). For the second interval, T < ¢ < 2T, we have the conditions
represented by Fig. 239¢, and the compressive stress ¢ is produced by
two waves moving away from the end struck and one wave moving
toward this end. We designate by s;(f), s:(f), ss(t), . . . the total
compressive stress produced at the end struck by all waves moving
away from this end, after the intervals of time T, 27T, 3T. . . . The
waves coming back toward the end struck are merely the waves sent
out during the preceding interval, delayed a time T, due to their travel
across the bar and back. Hence the compression produced by these
waves at the end struck is obtained by substituting ¢ — T, for ¢, in the
expression for the compression produced by waves sent out during the
preceding interval. The general expression for the total compressive
stress during any interval nT < ¢ < (n + 1)T is therefore

o = 8a(t) + sua(t — T) @)

The velocity of particles at the end struck is obtained as the difference
between the velocity due to the pressure s.(t) of the waves going away,
and the velocity due to the pressure s,_i(f — T) of the waves going
toward the end. Then, from Eq. (261),

v = :/1?—,, [3a(8) — snalt — T)] (e)

The relation between s,(f) and s,_:(t — T) will now be obtained by
using the equation of motion (b) of the striking body. Denoting by «
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the ratio of the mass of the bar to the mass of the striking body, we have

a=tr, VI
M M

Using this, with (d) and (e), Eq. (b) becomes

=% )

Sy

L 6a()) — saalt — TV + 7 [52(0) + 506 = 1] = 0
2at

Multiplying by €7,

Zat ds,.(t) 2a g;—,t 2 dsaa(t — T)
T =g tet sl = dt
2at
+ 2,10,‘eT Spat — T) — %—,—e st — 1)

or

d 2a _ 2;t 4(2 _2_;

dt[ &0 =5 [e saalt — TNl — e sna(t — T)
from which

2ad

| 4a -5 2
sp(t) = saat — T) — e T [/ eT s, 1t — THdt + C’] (9

in which C is a constant of integration. This equation will now be used
for deriving expressions for the consecutive values sy, 82 . . . . During
the first interval 0 < ¢ < T the compressive stress is given by Eq. (c),

and we can put
2al

so = ooe T (7

Substituting this for s,—1 in Eq. (g),

2at
alt) = oo (771 _ e ’_( coe= dt + C
/ —2at )
- —2(1(7,—1) (1 _ éﬂ) 4& - (k)

The constant of 1ntegrat10n C is found from the condition that at the

instant ¢ = T the compressive stress at the end struck increases sud- 4

denly by 200 (Fig. 239¢). Hence, using Eq. (d),

[0’06—2;#] + 200 = [aoe e T 1) + aoe_za(%_l) (1 - é—;—t
L =T

T

4o -2 7‘
—C>e T :
t=T
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from which

€= =71 4 dae)
Substituting in Eq. (%),

— —2a i—1 t
Sy = 8o + ooe (T ) [1 + 4o (1 - —7—,)] ()]

Proceeding further in the same manner
and substitutin
$x—1, into Eq. (g), we find B o instead of

R £
sz = 81+ oee 2(1’ 2) 1+2- 4a(2-_-—— +2-4a 2(2_1)2] ()
T )

7/5 A
a3 / 06 m
sl g | ' I ¢ 1N /19 2t
,% \ ’ | L7
y ,
sl End of impact
4 1368 g
/
S s, 0168 Nhgna of impact
o s
4708
/ 7N \L
S So \ End of jmpact
P e fl N NN NS N | 2¢
2 T 5 6 T — 7
\}"‘End of impact
qu. 240,

Continuing in the same way,
—2qf L.
53 = 52+ o (77%) [1 +2-6a(3 —%)

.3. _tY [ 2-2-3 A\
+2:3:42(3 - ) +22880(s- 1)) @

and so on. In Fig. 240 the functions sy, si, ss, . .'.;'5re"‘represex/1fed
graphlcally foroo = 1 and for four different ratios,' @« = %,%,% 1. By
usmg these curves the compressive stress o at the end struck can easﬂy-

- These curves were calculated b
y Saint-Vi t
rend, pp. 197, 30, 1, eacpered by enant and Flamant See Compt.
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be calculated from Ea. (d). In Fig. 241 this stress is represented
graphically for o = 1 and for @ = %, %, 1. It changes at intervals T,
2T, . . . by jumps. The maximum value of this stress depends on
the ratio @. For a = 1 and a = 1 the stress has its maximum value
att{ = T. Inthecaseof a = 1 the maximum stress occurs att = 27T.

The instant when o becomes equal to zero indicates the end of the
impact. It will be seen that the duration of the impact increases when
« decreases. Calculations of Saint-Venant give the following values
for this duration:

R

1

ol
Rl
o=
-

= 7.419 5.900 4.708 3.068

For a very small o the time of contact can be calculated from the ele-
mentary formula
=l |1
t="xg (P)
which is obtained by neglecting the mass of the rod entirely and assum-
ing that the duration of the impact is equal to half the period of simple
harmonic oscillation of the body attached to the rod.

Functions s, S2, 83, « - - calculated above can also be used for deter-
mining the stresses in any other cross section of the bar. The total
stress is always the sum of two values of s [Eq. (d)], one value in the
resultant wave going toward the fixed end and one in the resultant
wave going in the opposite direction. When the portion of the wavecor-
responding to the maximum value of s (the highest peak of one of the
curves in Fig. 240) arrives at the fixed end and is reflected there, both
of the waves mentioned above will have this maximum value: the total
compressive stress at this point and at this instant is as great as can
oceur during the impact. From this we see that the maximum stress
during impact occurs at the fixed end and is equal to twice the maxi~
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mum value of s. From Fig. 240 it can be concluded at once that for

a=1% 1 % 1, the maximum com i
pressive stresses are 2 X 1.752
2 X 1.60600, 2 X 1.36800, and 2 X 1.13500, respectively. In Fig. 2‘:102’

0 I ] ]

0 5 0 ; : :
15 20 ’
Fia. 242. »

the values of gax. /o0 f i
wsx./00 fOr various values of the ratio o = i
" : . atio ¢ = pl/M are given.!
: or comparison there is also shown the lower parabolic curve cal glI, o
rom the equation ve caleulated
M _ 90
A Ve )

Xll:sc;hoziﬁ be gbtaiped at once in an elementary way by neglecting the
e rod entirely and equating the strain energy of the rod to the

kinetic energy of the striki
) ing body. Th . .
bolic curve? defined by the equati):)n e dotted line shown is a para-

_ M
0'—0'0(\/;—;""1) (r)

g = 0y

ill be seen that f
or la i i
It W v 5 . rge values Of l/a, 1t alWa/yS gives a very gOOd

Th i
e theory of impact developed above is based on the assumption

that onva ak a a he same instant ov he whole surfa 0!

teC tfstt esplcsa t the s instant ert le s ce of

h end of the rod. This condition is difficult to realize in practice and
’

1 .
: See: papers by Saint-Venant and Flamant, loc. cit
curve was proposed by Boussinesq; see Compt. rend., p. 154, 1883
This 2 .y P- y .
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experiments do not agree satisfactorily with the theory.! A much
better agreement with the theory was obtained by using helical springs
instead of rods.2 In such a case the velocity of propagation of longi-
tudinal waves is small, and the time 7' taken by the wave to travel
across the rod and back is large in comparison with the time required
for flattening small unevennesses of the ends.

Another way of making experiments under definite conditions is to
use rods with spherical ends and to consider the local deformation,
which can be found from Hertz’s formula? (see page 372).

144. Waves of Dilatation and Waves of Distortion in Isotropic
Elastic Media. In discussing the propagation of waves in an elastic
medium it is of advantage to use differential equations in terms of dis-
placements [Egs. (131), page 234]. To obtain the equations of small
motion from these equations of equilibrium, it is only necessary to add
the inertia forces. Then, assuming that there are no body forces, the
equations of motion are

a+® X yavu—oLh=0
x . at?
2

de 0%

O+ @y + GV —p5s =0 @58
de *w

NG 7 +CVY =gy =0

in which e is the volume expansion, and the symbol V2 represents
the operation
: - 92 92 92

= T oy T a2

Assume first that the deformation produced by the waves is such that
the volume expansion is zero, the deformation consisting of shearing
distortion and rotation only. Then Egs. (263) become

%u
2 — —_— =
GVu P ot Y

V2

(264)

These are equations for waves called waves of distortion.

18ee W. Voigt, Ann. Physik, vol. 19, p. 44, 1883, and vol. 46, p. 657, 1915.
Tor a complete review of literature on impact see the article by T. Poschl, “Hand-
buch der Physik,” vol. 6, p. 525, Berlin, 1928.

2 Such experiments were made by C. Ramsauer, Ann. Physik, vol. 30, p. 416,1909.

2 Such an investigation was made by J. E. Sears, T'rans. Cambridge Phil. Soc.,
vol. 21, p. 49, 1908. See also J. E. P. Wagstaff, Proc. Roy. Soc. (London), series A,
vol. 105, p. 544, 1924;and W. A. Prowse, Phil. Mag., vol. 22, p. 209, 1936.
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Consider now the case when the deformation produced by the waves

is not accompanied by rotation. Th i
. e rotation " i
spect to the z-axis is (see Art. 75) wtion of an clement with re-

wl:l(@_au
2\9z oy (a)

i};a;;;g_ous :Epzesliiogs give the rotation about the z- and y-axes. The
1ons that the deformation is 7 ] .
o that th 1s urrotational can therefore be repre-

d
v a_u__o ow  dy _ du _ dw

ax  dy ! dy dz 2 oz =0 ®)

These equations are satisfied i 1
: ed if the displ i
from a single function ¢ as follows: placoments t v, w are derived

9¢

_ d¢ ;]
U == V= — =99
ax ] w [ Qi
Then o 33 ©
_ de d
e = V2 —_— = =
@, % = 2 Vip = Vi

Substituting these in Egs. (263), we find that
O\ +26) vy — 223 =
@ Viu ~pgm =0
(265)

lease are equations for irrotational waves, or waves of dilatation

Obtaixz;);ebg;lgzraelrcasg of propaga,tior} of waves in an elastic me‘dium is

Poiamed by s perposing waves of cl.lstortion and waves of dilatation
nds of waves the equations of motion have the commmi

form
2
—_— = a2 V2
in which : % ’ 0
B N+ 2G
a = =
C1 P (267)

for the case of waves of dilatation, and

_ . _ la
a—Cz—\/; (268)

: .
a?; th(la case of waves of distortion. We shall now show that ¢; and
velocities of propagation of waves of dilatation and of disto;t?:n ”
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146. Plane Waves. If a disturbance is produced at a point of an
elastic medium, waves radiate from this point in all directions. At a
great distance from the center of disturbance, however, such waves can
be considered as plane waves, and it may be assumed that all particles
are moving parallel to the direction of wave propaga.tidn (longitudinal
waves), or perpendicular t0 this direction (transverse waves). Inthe
first case we have waves of dilatation; in the second, waves of distortion.

Considering longitudinal waves, if we take the z-axis in the direction
of wave propagation, thenv =w =0 and u is a function of z only.
Equations (265) then give

2, 2
a—a:—: = c;® % (a)

This is the same equation as we had before in discussing longitudinal
waves in prismatical bars [see Eq. (258), page 439] except that the

quantity
\IE
c = J—
P
is replaced by the quantity

\[)\’Iz’a
[ Bt
p

Substituting for A and @ their expressions in terms of E and Poisson’s
ratio (see pages 10 and 9), this latter quantity can be represented in

the form
_ [EGa-n__
o= NTF 90— 2 o

Tt can be seen that ¢ is larger than c. This result is due to the fact
that lateral displacement in this case is suppressed, while in the case of
a bar it was assumed that longitudinal strain is accompanied by lateral
contraction or expansion. The ratio ¢;/c depends on the magnitude of
Poisson’s ratio. Forv = 0.25, ¢1/c = 1.095; for » = 0.30, ¢/c = 1.16.
All the conclusions obtained before regarding the propagation and
superposition of longitudinal waves can also be applied in this case.

Consider now fransverse waves. Assuming that the s-axis is in the |
direction of wave propagation, and the y-axis in the direction of trans-

verse displacement, we find that the displacements % and w are zero and
the displacement v is a function of = and £. Then, from Egs. (264),

o _ . o §

e 2" 3z2
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Agai .
01531: :;e 1Ela,ve an equa.tlon 9f the same form as before, and we can ¢
at waves of distortion are being propagated’ along the :c-am}-
Xi8

with the velocity
P

_ ’ 1 —2v
C: = C1 '2—z1—:-—v)‘ (270)

For v = 0.25, the above equation gives

or, by (269),

Cy = —=
V3

Any function

()

Fic. 243.

is i
Wif: hsc;lllllzlonlof Eq. (b) and represents a wave traveling in the z-direction
velocity ¢;. Take, for example, solution (c) in the form

_ . 2n
v = vo $in (x — cat) (d)

Th . . . .
. leavlslrgvte;l has in fchls case a sinusoidal form. The length of the wa
e amplitude vo. The velocity of transverse motion is Ve

4 - _ 2wes 27
= — Yo COS - (x — cat) (e)

It is zero when the di
isplacement (d) i i i
value when the displacement is zelgo.) e it st

the wave is The shearing strain produced by

_ 8 _ 2mv 2
ayw_%——l—gcos—ll(x—cﬂ) (N

It wil ' i
o 01l 1l1 E): :zian thfat 1:;he maximum distortion(f) and the maximum of the
ue of the velocity (e) oceur at a given point simultaneously

W 1.
(Fig e21a31; ;epres;elr.xt this kind of wave propagation as follows: Let
. e a thin thread of an elastic medium. When a si.nusoi:inaq

455
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wave (d) is being propagated along the z-axis, an element A of the
thread undergoes displacements and distortions, the consecutive values
of which are indicated by the shaded elements 1,2,3,4,5 . ... Atthe
instant ¢ = 0, the element A has a position as indicated by 1. At this
moment its distortion and its velocity are zero. Then it acquires a
positive velocity and after an interval of time equal to % l/c. its distor-
tion is as indicated by 2. At this instant the displacement of the
element is zero and its velocity is a maximum. After an interval of
time equal to 3l/c: the conditions are as indicated by 3, and so on.

Assuming that the cross-sectional area of the thread is equal to unity,
the kinetic energy of the element A is

P_(_if apz_pd:v-‘l’ll'z%z 2 22_” —_
2%9’7‘?””“1“ )

and its strain energy is

1 Q dz 4x?o? 2r
5 Orat de = T5 g 00" T (@ — o)

Remembering that ¢,* = G/p, it can be concluded that the kinetic and
the potential energies of the element at any instant are equal. This is
the same conclusion as we had before in discussing longitudinal waves
in prismatical bars (see page 442).

In the case of an earthquake both kinds of waves, those of dilatation
and those of distortion, are propagated through the earth with veloc-
ities ¢; and co. 'They can be recorded by a seismograph, and the inter-
val of time between the arrival of these two kinds of waves gives some
indication regarding the distance of the recording station from the
center of disturbance.!

146. Propagation of Waves over the Surface of an Elastic Solid
Body. In the previous article we discussed propagation of waves in
an elastic medium at a distance from the surface. On the surface of an
elastic body is it possible to have waves of a different type, which are
propagated over the surface and which penetrate but a little distance
into the interior of the body. They are similar to waves produced on
4 smooth surface of water when a stone is thrown into it. Lord
Rayleigh, who was the first to investigate these waves,® remarked:

1 The waves produced in the earth by reciprocating engines are discussed in the |

following papers: L. Mintrop, Dissertation, Gottingen, 1911; A. Heinrich, Disserta-
tion, Breslau, 1930; G. Bornitz, * Uber die Ausbreitung von Bodenschwingungen,”
Berlin, 1932. See also E. Reissner and H. F. Sagoci, J. Applied Phys., vol. 15,
p. 652, 1944; H. F. Sagoci, tbid., p. 655.

% See Proc. London Math. Soc., vol. 17, 1887.
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‘It is not improbable that the surface waves here i i
%I;Eg:tgnt part in (?arthquakes, and in the collisi:I:, e:: lgf::t(iicplzﬁ;sn
Diver %;I(fn 121htwo dlmensmns' only, they must acquire at a great dis;
e recoe dsoux;ce a cqntmually increasing preponderance.” The
iy of xee (Iist of seilsmic waves supports Rayleigh’s expectation
ya fves mals lf:nce frf)m the source, the deformation produced b3;
hose waves T y be coxés1dered as a two-dimensional one. We assume
that the bo {rals. .ounh ed.by '?he plane y = 0, and take the positive
e o e gi x1:. in the dlrectl(.)n.toward the interior of the body and
E : rection of the z-axis in the direction of wave propagation
xpressions for the displacements are obtained by combining dil tation
waves [Eqs. (265)] and distortion waves [Eqgs. (264)] AZSJL::;L:(;:

both cases that w = 0, the i
. ! = solution of E i
of dilatation can be tal’ien in the fofrZ . (200) xeprosenting waves

ur = s~ sin (pt — sz), 1 = —re " cos (pt — sx) (a)

in which p, r, and s are const
hop, 7, ants. The exponential factor i
expressions 1ndlf:a,t'es. that for real positive values of r the amlll)lli:;luf‘lhesi
zv:rta,ves ra,ptl‘djgr1 diminishes with increase of the depth y. The argumircl)t
— sz of the trigonometrical functions sh '
: ows th
propagated in the z-direction with the velocity  the waves are

=P
C3 = ‘; ) . (271)

Subs tl bu “Jlng ex essions (a lIlbO Eqs. 265 we ﬁnd thab bhese e(] ua-
pr
( ) ( )7

72 = g2 — -
or, by using the notation

p: _pt
x+m"?f“ - (b)

we have
r2 = g2 — p? (¢)

We take solution i
prot s of Egs. (264), representing waves of distortion in the

. ];ug = Abe™ sin (pt — sz), Vs = — Ase™™ cos (pt — sz)  (d)

ln 3 . . . »

- ;VV ;izllll ni isa con§tant and b a positive number. = It can be shown that
expansion corresponding to the di i

that Tap. (200 e COTTESPO g to the displacements (d) is zero and

bt = g2 — PP
G
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or, by using the notation

ot _ Ve

q et k (e
we obtain

bt =t — I 0

Combining solutions (e) and (d) and taking u = U1 + us, ¥ =01 + vy, We
now determine the constants A, b, p, 7, 8, 80 a8 to satisfy the boundary
conditions. The boundary of the body is free from external forces,
hence, fory =0, X =0and Y =0. Substituting this in Eqgs. (134)
on page 234 and takingl =n =0, m = —1, we obtain
dy dx
o @)
Ae+2G—=0
9y

The first of these equations indicates that the shearing stresses, and the
second that the normal stresses on the surface of the body, are zero.

Substituting the above expressions for u and v in these equations we

find that
s + A@B* + 8% =0
(—I}%: - ) (r2 — 8% + 2(* + Abs) =0 (h)
where
k2 A
w276

from (b) and (e).
Eliminating the constant

obtain
(2% — k%)? = 4brs® (k)

A from Eqs. (h) and using (c) and (f), we

or, by (¢) and (f),

k2 4 h? 12
(-8-5—2) =16(1’?)(1‘zf

and (271) all the quantities of this equation can

By using Eqgs. (b), (o),
¢s of waves of

be expressed by the velocities ¢y of waves of dilatation,
distortion, and ¢; of surface waves, and we obtain

s 4_ _032 ( _Qf
> 2) =16 (1 612) 1-55 0]
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Using the notation

and remembering that

e _ 1—2

> 201 —
Eq. (!) becomes 1 ( "

a6—8a4+8(3—1_2”)2 [ 1—2
=161 — = | =
' 1—w 2(1—11)]_0 (m)

Taking, for example, » = 0.25, we obtain

3a® — 240t + 56a2 — 32 =0

or
(e — 4)(Bat — 1202 + 8) =0
The three roots of this equation are
at =4, a2=2+i; az2=2-——i
) V3 V3
f
o ;Illlt(zi?e:l;ee r:i)otzs 01'11y the last one satisfies the conditions that th
and b% given by Eqgs. (c) and (f), are positive number:

Hence,
3 = ac; = 0.9194 \/g
P

Taking, as an extreme case, » = }, Eq. (m) becomes

a® — 8at + 2402 — 16 =

¢; = 0.9553 .\/jq
p

In bo i

Veloc;z? ;:.:::Vgsle fv(ei!omty. of surface waves is slightly less than the

oy of waves o ftortlon' propagated through the body. Havin

% e Tatio be thze:uif:c:zm?l&udes of the horizental and vertical dis%

b = 3 o s oTh e body can e.:asily be calculated. For
. e above velocity of propagation of sur-

face waves can als i
0 be obtained by a i ; N
a body bounded by two parallel pslrangsci?&demtlon of the vibrations of

and we find

! See H. Lamb, Proc. R
S T ’ . Roy. Soc. (Lond. :
8. Timoshenko. Phil. May., vol. 4(13, P01n2)é Sf;wms A, vol. 93, p. 114, 1917.  See also
» .

INSTITUTUL PGLITERMS
TIMISOARA -
BlBLlDTECA CENTRALA




APPENDIX

THE APPLICATION OF FINITE-DIFFERENCE EQUATIONS
IN ELASTICITY

1. Derivation of Finite-difference Equations. We have seen that
the problems of elasticity usually require solution of certain partial
differential equations with given boundary conditions. Only in the
case of simple boundaries can these equations be treated in a rigorous
manner.

Very often we cannot obtain a rigorous solution and must resort to
approximate methods. As one of such methods we will discuss here
the numerical method, based on the replacement of differential equa-
tions by the corresponding finite-difference equations.!

If a smooth function y(z) is given by a series of equidistant values

Yo Y, Yz - - .forx =0,z = 8,z = 25, . . . , we can, by subtraction,
calculate the first differences (Ary)s—o = y1 — Yo, (A1Y)ems = Y2 — Y1,
(AtY)z=2s = ¥3 — ¥z, . . . . Dividing them by the value § of the

interval, we obtain approximate values for the first derivatives of y(z)
at the corresponding points:

vy _wn—y () _v—w )
dz ) .—o ) dx ) oms 8

! It seems that the first application of finite-difference equations in elasticity
is due to C. Runge, who used this method in solving torsional problems. (Z. Math.
Phys., vol. 56, p. 225, 1908.) He reduces the problem to the solution of & system of
linear algebraic equations. Further progress was made by L. F. Richardson,
Trans. Roy. Soc. (London), series A, vol. 210, p. 307, 1910, who used for the solution
of such algebraic equations a certain iteration process, and so obtained approxi-
mate values of the stresses produced in dams by gravity forces and water pressure.
Another iteration process and the proof of its convergence was given by H.Lieb-
mann, Sitzber. Bayer. Akad. Wiss., 1918, p. 385. The convergence of this iteration
process in the case of harmonic and biharmonic equations was further discussed
by F. Wolf, Z. angew. Math. Mech. vol. 6, p. 118, 1926, and R. Courant, Z. angew.
Math. Mech., vol. 6, p. 322. _ The finite-differences method was applied successfully
in the theory of plates by H. Marcus, Armierter Beton, 1919, p. 107; H. Hencky,
Z. angew. Math. Mech., vol. 1, p. 81, 1921, and vol. 2, p. 58, 1922. In recent times
the finite-differences method has found very wide application in publications by
R. V. Southwell and his pupils. See R. V. Southwell, “Relaxation Methods,”
vols. I, I1, and III.

483
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Using the first differences we calculate the second differences as follows:
(Agy)aes = (ArY)ems — (AY)emo = Y2 — 2Y1 + yo

With second differences we obtain the approximate values of second
derivatives such as

h 4
| -~ (dzy _ (Ao _ vz = Wit Y0 (o
dx? 2= - 2 &2
2 If we have a smooth function.w(x,y) of two
variables, we can use for approximate calcula-
Y2 tions of partial derivatives equations similar to
'3 Egs. (1) and (2). Suppose, for example, that
x we are dealing with a rectangular boundary,
Fre. 1. Fig. 1, and that the numerical values of a funec-

tion w at the nodal points of a regular square net with mesh side 6 are
known to us. Then we can use as approximate values of the partial
derivatives of w at a point O the following expressions

Jw w; — Wo _("_1_0~w2'—w0

w8 oy 5 @)
w  w, — 2wo -+ Ws @~w2—2w0+w4

Fro 5 A o

In a similar manner we can derive also the approximate explressions
for partial derivatives of higher order. Having such expressions we
can transform partial differential equations into equations of finite
differences. _ .

Take as a first example the torsion of prismatical l.)ars. The prqb-
lem can be reduced, as we have seen,* to the integration of the partial

differential equation

¢ ¢ _ _ 4)
e

in which ¢ is the stress function, which must bt? constan‘? alonghth?
boundary of the cross section, 8 is the angle of_ twist per unit lengt 0n
the bar, and G is the modulus of shear. Usn}g formulas (3). we ca
transform the above equation into the finite-difference equation

= - 5
%Q(¢1+¢2+¢3+¢4—4¢0)— 2G4 (5)

1 See Eq. (142), p. 261.
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In this way every torsional problem reduces to the finding of a set of
numerical values for the stress function ¢ which satisfy equation (5)
at every nodal point within the boundary of the cross section and
become constant along the boundary.

As the simplest example, let us consider a bar of a square cross sec-
tion @ X a, Fig. 2, and use a square net with mesh side § = 1a. From
symmetry we conclude that in this y
case it is sufficient to consider only )
one-eighth of the cross section, —
shaded in the figure. If we determine L‘\
the values @, 8, v of the function ¢ @ '
at the three points shown in Fig. 2,
we shall know ¢ at all nodal points a 7 >x
of the net within the boundary.
Along the boundary we can assume
it equal to zero. Thus the problem Y
reduces to the calculation of three Fia. 2.
quantities @, 8, v, for which we can write three equations of the form
(5). Observing the conditions of symmetry we obtain

28 — 4a = —2G05%
2a + v — 48 = —2G64*
48 — 4y = —23G65*

Solving these equations, we find

a = 1.375G08%, B = 1.750G03%, v = 2.250G0

T'he required stress function is thus determined by the above numerical
values at all nodal points within the boundary and by zero values at the
boundary.

To calculate partial derivatives of the stress function we imagine a
smooth surface having as ordinates at the nodal points the calculated
numerical values. The slope of this surface at any point will then give
us the corresponding approximate value of the torsional stress. Maxi-
mum stress occurs at the middle of the sides of the boundary square.
To get some idea of the accuracy which can be obtained with the
assumed small number of nodal points of the net, let us calculate
torsional stress at point O, Fig. 2. To get the necessary slope we take
a smooth curve having at the nodal points of the z-axis the calculated
ordinates 8, v, 8. These values, divided by G986 are given in the
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second line of the table below. The remaining lines of th'e table gl:;
the values of the consecutive finite differences.! The required smoo
curve is then given by Newton’s interpolation formula:

z = 0 ] 25 38 43
¢ = 0 7 9 7 0
A = 7 21 -2 -7
Ap=| —5| —4| =5
A = 1| -1
Ay =| —2
b= 60 +atalm— 05yt - D& — 20) [ tams

Ay
+ 2z — 8)(x — 28)(x — 38) {5345

ituti their
i ivative of ¢ and substituting for A;, A, . . - th
Teking the derivaive i values from the table multiplied

{ [+ d— by G882/4 we obtain, for z = 0,
< : 90)  _ 12605 — 0.646-Gas
ox =0 48
oz /1
o % " Comparing this result with

the correct value given on page
277, we see that the error in
this case is about 4.3 per cent.
To get better accuracy we have
to use a finer net. Taking, for
Fie. 3. example, & = a/6, Fig. 3, we

have to solve six equations and we obtain

62
o= = 2G66* v = 1.539 X 2G6
0.952 X 2G68* g = 1.404 X ) 52
ay = 2.?25 >): 2G062: By = 2.348 X 2G6%%, 1 = 2.598 X 2G6

isti f quantities
i We consider here the differences as all existing at one end of the set of q

and use them in Newton’s formula,
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Using now seven ordinates along the z-axis and calculating! the slope
at point O, we obtain the maximum shearing stress

(a;ﬁ) = 0.661G0a
oz Z=0

The error of this result is about 2 per cent. Having the results for
8 = {a and § = {a a better approximation can be obtained by extra-
polation.! It can be shown? that the error of the derivative of the
stress function ¢, due to the use of finite difference rather than differ-
ential equations, is proportional to the square of the mesh side, when
this is small. If the error in maximum stress for § = ia is denoted by
A, then for § = %a it can be assumed equal to A($)2. Using the values
of maximum stress calculated above we obtain A from the equation

A — A(3)? = 0.015G6a
from which

A = 0.027Goa

The more accurate value of the stress is then
0.646G0a + 0.027Goq = 0.673G6a

which differs from the exact value 0.675G6q by less than % per cent.

2. Methods of Successive Approximation. From the simple
example of the preceding article it is seen that, to increase the accuracy
of the finite-difference method, we must go to finer and finer nets.
But then the number of equations which must be solved becomes
larger and larger and the time required for their solution will be so
great that the method becomes unpractical.? The solution of the
equations can be greatly simplified by using a method of successive
approximations. To illustrate this let us consider the equation*

9%¢ |, 9%¢

9z + W =0 (6)

! The caleulation of derivatives of an interpolation curve is greatly simplified by
using the tables calculated by W. G. Bickley. These tables are given in the book
““Relaxation Methods in Theoretical Physics,” by R. V. Southwell.

% 8ee L. F. Richardson, loc. cit.

#In the previously mentioned paper by C. Runge a system of 42 equations was
used and, due to the simplicity of these equations, the solution was obtained
without much difficulty.

* It was shown on p. 265 that torsional problems can be reduced to the solution
of this equation with prescribed values of ¢ at the boundary.
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The corresponding finite-difference equation, from Eq. (5), will be
b0 = 1(¢1 + ¢2 + &3 1+ S4) 40

It shows that the true value of the function ¢ at any nodal point O of
the square net is equal to the average value of the funection at the four
adjacent nodal points. This fact will now be utilized for calculation
of the values of ¢ by successive approximations. Let us take again,
as the simplest example, the case of a square boundary, Fig. 4, and
assume that the boundary values of ¢ are such as shown in the figure.
From the symmetry of these values with respect to the vertical central
axis we conclude that ¢ also will be symmetrical with respect to the

same axis. Thus we have to cal-

culate only six nodal values, a, b,
1099 | 1000 | "o%e as, by, @z, by, of . This can easily
899 | 962 | 899 |,y be done by writing and solving six

1000 1200 1000

800 a o c . . . .
so0 | 900 900 equations (7), which are simple in
s | %0 | 7 | this case and which give ¢, = 854,
600 o B a0 =914, ¢ =T00, b = 750,
20 | o8 7 Gay= 597, v, = 686.1 Instead of

400 622 | w1 | 622 lapp this we can proceed as follows:
az b2 C2

We assume some values of ¢, for

instance, those given by the top

600 600 600 numbers in each column written

Fia. 4. in Fig. 4. To get a better

approximation for ¢, we use for each nodal point Eq. (7). Considering
point a we take, as a first approximation, the value

éo = 1(800 + 1,000 + 1,000 + 900) = 925

In calculating a first approximation for point b we use the calculated
value ¢/ and also the condition of symmetry, which requires that
¢. = ¢.. Equation (7) then gives

& = (925 + 1,200 + 925 4 900) = 988
g for all inner nodal points, we obtain the

by the second (from the top) numbers in
e numbers we can calculate the second

Making similar calculation:
first approximations given
each column. Using thes
approximations such as ‘
o' = (800 -+ 1,000 + 988 -+ 806) = 899
&'’ = 3(899 + 1,200 + 899 + 850) = 962

I

I

1 We make the calculation with three figures only and neglect decimals.
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The second approximations are also written in Fig. 4 and we can se
how the' successive approximations gradually approach the correc:
valu(.es given above. After repeating such calculations 10 times
obtain in th.is case results differing from the true values by no mov:Z
than one unit in the last figure and we can accept this approximation
Gener'ally, the number of repetitions of the calculation necessar tc;
get a s?,i:,lsfa,ctory approximation depends very much on the selectio}lrl f
the initial values of the function ¢. The better the starting set 0f
valut?s the less will be the labor of subsequent corrections 8O
Itis ad'vantageous to begin with a coarse net having only ‘few internal
nf)dal points. The values of ¢ at these points can be obtained b
direct solution of Egs. (7) or by the Y

iteration process described above. N e I
After this we can advance to a finer '\ VAR 7]
net, as illustrated in Fig. 5, in which N // N ///
heavy lines represent the coarser net. A /)\
Having the values of ¢ for the nodal e RN
points, shown by small circles, and K X ><'
applying Eq. (7), we calculate the Nl AN yd
values for the points marked by crosses. K %‘(

Using now both sets of values marked // N 2N

by circles and by crosses and applying 4[*/ si{/ A

aggin Eq. (7) we obtain values for
pomt§ marked by small black circles.
tI)n ?}llls v;ay all values for the nodal points of the finer net, shown
y thin lines, will be determined, and we can begi it i
process on the finer net. , " begin the iteration
Instead of caleulating the values of ¢, we can calculate the correc-

tions ¢ to the initiall i
tion ¥ ially assumed values ¢° of the function ¢.! Insucha

Fia. 5.

¢ ="+ ¢

Since the function ¢ satisfies Eq. (6) th ¢ i
e et q. (6) the sum ¢° 4 ¢ also must satisfy
ﬂ _af_‘k _ (32¢o a2¢u)

ox® | 9y az® ' ay?

@®

ﬁf the boundarx the values of ¢ are given to us, which means that
: ere‘the corrt.actlc.)ns ¥ are zero. Thus the problem is now to find a
unction y satisfying Eq. (8) at each internal point and vanishing at

! This method simplifies the calculati i i
perattrely coaalt np ulations since we will have to deal with com-
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the boundary. Replacing Eq. (8) by the corresponding ﬁ.nite-differ-
ence equation we obtain for any point O of a square net (Fig. 1)
Y1+t ¥s Y — Ho = —(¢1° + ¢2° + ¢3° + ¢4° — 4¢0% (8)

The right-hand side of this equation can be evaluated for .each internal
nodal point by using the assumed values ¢° of the function d;.- Thus
the problem of calculating the corrections ¥ reduces to the solution of a

system of equations similar to Egs. (5) of the preceding article, and

ed by the iteration method.
thzs.eliilllag:t::)‘iatMetgod. A useful method f9r treating difference
equations, such as Eqs. (8") in the preceding artlch.e, was developed by
R. V. Southwell and was called by him the relaxatzqn m.ethod. South-
well begins with Prandtl’s membrane ana,logy,f which is based on the
fact that the differential equation (4) for torsional problems has the
same form as the equation

Pw w9 (9)
axz = 9yt S
for the deflection of a uniformly stretched and laterally .lo.ac.led mer-
brane. In this equation w denotes deﬂect.ion fro.m the. initially hOf'l—
zontal plane surface of the membrane, ¢ is the 1ntens;ty of the dis-
tributed load, and 8 is the constant tensile f(?rce per unit length (?f the
boundary of the membrane. The problem is to find the deflectlon w
as a function of z and y which satisfies Eq. (9) at every point of the

and which vanishes at the boundary.
membrane Let us derive now the corre-

I— g sponding finite-difference equa-

Ws W W tion. For this purpose we replace
J\ 1 the membrane by the square net
0 of uniformly stretched strings,

qu'? Fig. 1. Considering point O and

Fre. 6. denoting by S5 the tensile force in

the strings, we see that the strings O-1 and O-3 exert on the node O,
Fig. 6, a force in the upward direction, egual to?

Wo — W Wy — W3 10)
Sa("{s + 5) (

A similar expression can be written for the forc.e exerted by th.e two
other strings, 0-2 and O—4. Replacing the continuous load acting on

1 See p. 268.
2 We consider the deflections as very small.
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the membrane by concentrated forces ¢3? applied at nodal points, we
can now write the equation of equilibrium of a nodal point O as
follows:

g8%* + S(wy + w2 + ws + wa — 4wy) =0 (11)

This is the finite-difference equation, corresponding to the differential
equation (9). To solve the problem, we have to find such a set of
values of the deflections w that equation (11) will be satisfied at every
nodal point.

We begin with some starting values wo?, w1% w.?, w3, ws°, . . . of
the deflection. Substituting them into Eqgs. (11) we shall usually find
that the conditions of equilibrium are not satisfied and that, to main-
tain the assumed deflections of the net, we need to introduce supports
at the nodal points. The quantities such as

Ro = g8 + S(w1® + w2® + ws® + ws® — 4% 12)

will then represent the portions of the load transmitted to the supports.
We call these forces residual forces, or residuals. Imagine now that
the supports are of the screw-jack type, so that a controlied displace-
ment may be imposed at any desired nodal point. Then by proper
displacements of the supports we can ultimately make all residual
forces (12) vanish. Such displacements will then represent the correc-
tions which must be added to the initially assumed deflections w,°, w,°,
wy% . . . to get the true values of w.

The procedure which Southwell follows in manipulating the displace-
ments of the supports is similar to that developed by Calisev! in
bhandling highly statically indeterminate frames. We first displace
one of the supports, say support O, Fig. 6, keeping the other supports
fixed. From such equations as (11) we can see that to a downward
displacement w,’ will correspond a vertical force —4.Sw,’ acting on the
nodal point O. The minus sign indicates that the force acts upward.
Adjusting the displacement so that

Ry, — 4S’LU()’ = 0, that iS, wo’ = :112_80 (13)

we make the residual force (12) vanish and there will no longer be a
pressure transmitted to the support O, but at the same time pressures
Swy’ will be transferred to the adjacent supports and their residual
forces will be increased by this amount. Proceeding in the same way

1 K. A. Calisev, Tehnicki List, 1922 and 1923, Zagreb. German translation in
Pubs, Intern. Assoc. Bridge and Structural Engineering, vol. 4, p. 199, 1936. A
similar method was developed in this country by Hardy Cross.
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with all the other supports and repeating the procedure several times,
we can reduce all residual forces to small quantities, which can be
neglected. The total displacements of the supports, accumulated in
this procedure, represent then the corrections which must be added
with the proper signs to the starting values wo®, wi®, w2’ - . - in order
to obtain the true deflections of the stretched square net.

To simplify the calculations required by the procedure described, we
first put Eq. (11) in nondimensional form by substituting

w="12y (14

In this way we obtain
1+(¢1+‘I/2+II/3+¢4—41P0)=0 (15)

where Yo, Y1, - . . are pure numbers.

The problem then reduces to finding such a set of values of ¢ that
Eq. (15) will be satisfied at all inner points of the net. At the bound-
ary ¢ is zero. To get the solution we proceed in the manner described
above and take some starting values Vol ¥1f ¥l . . They will
not satisfy the equilibrium equations (15) and we shall have residuals

ro = 1 4 (P20 + ¥20 + ¥ + ¥u* — Ho°) (16)

which in this case are pure numbers.

Our problem now is to add to the assumed values ¥o°, ¥1% ¥2° - - -
such corrections as to annul all residuals. Adding to ¥o° a correction
Yo’ we add to the residual 7o the quantity —4d, and to the residuals of
the adjacent nodal points the quantities ¥o'. Taking o = ro/4 we
shall annul the residual at the nodal point O and shall somewhat change
the residuals at the adjacent nodal points. Proceeding in the same
way with all nodal points and repeating the procedure many times we
shall in due course reduce the residual forces to negligible values and so
obtain the values of ¢ with sufficient accuracy. The corresponding
values of w will then be obtained from Eq. (14).

To illustrate the procedure let us consider the problem of torsion of a
square bar, already discussed in Art. 1. In this case we have the
differential equation (4). To bring it to nondimensional form let us
put 2G68*

)
¢ = 1,000 14 an

The finite-difference equation (5) then becomes

1,000 + W + Y1 + s + ¥ — 4o) =0 (18)
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The .denominator 1,000 is introduced into Eq. (17) for the purpose of
making the ¢’s such large numbers that half a unit of the last figure
can be neglected. Thus we have to deal with integer numbers only

To make.: our example as simple as possible we will start with the coarsé
net.; of Fig. 2. Then we have to find values of ¥ only for three internal
points for which we already have the correct answers (see page 463)

We make our square net to a large scale to have enough space to put or;
the sketch the results of all intermediate calculations (Fig. 7). The
calculation starts with assumed initial values of ¥, which vs;e V\;I‘ite to
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.the lef't above each nodal point. The values 700, 900, and 1,100 are
intentionally taken somewhat different from the preVio,usly caiculated
correct values. Substituting these values together with the zero values
at .the boundary into the left-hand side of Eq. (18) we calculate the
residual forces for all nodal points. These forces are written above
each nodal point to the right. The largest residual force, equal to 200

oceurs .at the center of the net, and we start our relaxatioil process fron;
T}hlS 1.)omt.. Adding to the assumed value 1,100 a correction 50, which
is ertt:en in the sketch above the number 1,100, we eliminate (;ntirely
the residual force at the center. Thus we cross out the number 200 in
johe sketcp and put zero instead. Now we have to change the residuals
in the adjacent nodes. We add 50 to each of those residuals and write
jche new values —50 of the residuals above the original values as shown
in the figure. This finishes the operation with the central point of the
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aet. We have now four symmetrically located nodal points with
residuals —50 and it is of advantage to make corrections to all of them
simultaneously. Let us take for all these points the same correction,
equal to —12.! These corrections are written in the sketch above the
initial values, 900. With these corrections the values 12 X 4 = 48
must be added to the previous residuals, equal to —50, and we will
obtain residuals equal to —2, as shown in the sketch. At the same
time the forces —12 will be added to the residuals in the adjacent
points. Thus, as it is easy to see, —12 X 4 = —48 must be added to
the residual at the center and —12 X 2 = —24 must be added at the
points closest to the corners of the figure. This finishes the first round
of our calculations. The second round we again begin with the point
at the center and make the correction —12, which eliminates the
residual at this point and adds —12 to the residuals of the adjacent
points. Taking now the points near the corners and introducing cor-
rections —6, we eliminate the residuals at these points and make the
residuals equal to —26 at the four symmetrically located points. To
finish the second round we introduce corrections —6 at these points.
The sketch shows three more rounds of calculations which result in
further reduction of the residuals. = The required values of ¢ will be
obtained by adding to the starting values all the corrections introduced.
Thus we obtain

700 — 6 — 3 — 4 = 688.5, 900 — 12 -6 —3 — 2 — 1 = 876,
1,100 +50 — 12 — 6 —3 — 2 = 1,127
Equation (17) then gives for ¢ the values

9883 oot = 1.377G65* = 0.0861G0a?
500

S0 608 = 1.752609% = 0.10056%a?

1,127 2 _ . _ .
which are in very good agreement with the results previously obtained

(see page 463).

It is seen that Southwell’s method gives us a physical picture of the
iteration process of solving Egs. (15) which may be helpful in selecting

the proper order in which the nodes of the net should be manipulated.

* We take the correction —12, instead of —32 = —12.5, since it is preferable to
work with integer numbers, '
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To get a better approximation we must advance to a finer net
Using the method illustrated in Fig. 5, we get starting values of y for a:
Square net with mesh side § = §a. Applying to these values the
standard relaxation process the values of ¢ for the finer net can be
obtained and a more accurate value of the maximum stress can be cal-
culated. With the two values of maximum stress found for § = g and
d = %a a better approximation can be found by extrapolation, as
explained in Art. 1 (see page 465). ’

4. Triangular and Hexagonal Nets. In our previous discussion a
Square net was used, but sometimes it is preferable to use a triangular
or hexagonal net, Figs. 8a and 8b. Considering the triangular net,

(a) &)
Fie. 8.

Fig. 8a, we see that the distributed load within the hexagon shown by
dotted lines will be transferred to the nodal point 0. If § denotes the
mesh side, the side of the above hexagon will be equal to 5/ V'3 and the
area of the hexagon is /3 82/2, so that the load transferred to each
nodal point will be v/3 62¢/2. This load will be balanced by forces in
the strings 0-1, 0-2, . ..,0-6. To make the string net correspond
to the uniformly stretched membrane, the tensile force in each string
must be equal to the tensile force in the membrane transmitted through
one side of the hexagon, i.c., equal to S5/4/38. Proceeding now as in

the preceding article, we obtain for the nodal point O the following
equation of equilibrium:

w4+ wy + - - - + ws — 6w, 8§ .\/§q52
6 ._':+E‘=O
Vit
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or

wy 4 ws + - -+ we — Gwe + %3=0 (19)

[ IR

We introduce a nondimensional function ¢ defined by the equation

_3¢®

and the finite-difference equation becomes
¢1+¢2+“'+¢e—6\00+1=0 (21)

Such an equation can be written for each internal nodal point, and for
the solution of these equations we can, as before, use iteration orrelaxa-
tion methods.
In the case of a hexagonal net, Fig. 8, the load distributed over the
A equilateral triangle, shown in the figure by
dotted lines, will be transferred to the
nodal point 0. Denoting by & the length of
the mesh side, we see that the side of the
triangle will be & /3 and its area 3 /3 8%/4.
The corresponding load is 3 /3 ¢8%/4.
This load will be balanced by the tensile
forces in the three strings, 0-1, 0-2, 0-3.
R To make the string net correspond to the
e @ = stretched membrane we take the tensile
Fra. 9. forces in the strings equal to S8 V3.

The equation of equilibrium will then be

w + wy + wy — 3Wo | 343q8 _
5 SB\/§+~———4 =0

or

w1+w2+w3—3w0+%§52=0 (22)

To get the finite-difference equations for torsional problems we have to
substitute in Eqs. (19) and (22) 2G¢ instead of ¢/8S.

As an example let us consider torsion of a bar the cross section of
which is an equilateral triangle,* Fig. 9. The rigorous solution for this
case is given on page 266.

Using the relaxation method it is natural to select for this case a
triangular net. Starting with a coarse net we take the mesh side &
equal to one-third of the length a of the side of the triangle. Then

This example is discussed in detail in Southwell’s book, referred to above.
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thert? will be only one internal point O of the net, and the values of the
required str(?ss function ¢ are zero at all adjacent nodal points 1
2, .., 6 since these points are on the boundary. The ﬁnite-diﬂ"er:
ence equation for point O is then obtained from Eq. (19) by substitutin,
¢o for wo and 2G0 for ¢/8, which gives :

640 = 3G05? = G_g«f
and
_ {0a?
® =g (23)

Let us now advance to a finer net. To get some starting values for
such a net let us consider point a — the centroid of the triangle 1-2-0
Assume that this point is connected to the nodal points 0, 1, and 2 b :
the three strings a—0, a—1, a-2 of length §/4/3. Consideri,ng’ the poin);
:sz/as\/a:§ nfodal point of a hexagonal net, Fig. 8b, substituting into Eq. (22)
o obta(i); 3, 2G9 for ¢/8, and taking wy = ws = 0, w3 = ¢o, wo = ¢,

2 ) T 21 (24)

The same values' of the stress function may be taken also for the points
b, ¢, d, ¢, and f in Fig. 9. To get the values of the stress function at
points k, I, m, we use again Eq. (22) and,
observing that in this case w; = w, =
ws = 0, we find

b =3 (qso + GW) _ G

Goa?
¢k=¢m=¢l=_5¥‘ (25)
In this way we find the values of ¢ at all
n(')dal points marked by small circles in
Fig. 10. It is seen that at each of the
nodal points a, ¢, and e there are six strings L @ '!
as required in a triangular net, Fig. 8a. Fra. 10.

But at. the remaining nodes the number of strings is smaller than six

To satls.fy the conditions of a triangular net at all internal points we pro:
ceed as indicated by dotted lines in the upper portion of Fig. 10. In this
way the cross section will be divided into equilateral triangles with sides
é = a/9. .From symmetry we conclude that it is sufficient to consider
only one-sixth of the cross section, which is shown in Fig. 11a. The
values of ¢ at the nodal points O, a, b, and k are already deter;niﬁed

The values at the points 1, 2, and 3 will now be determined, as before;
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by using Eq. (22) and the values of ¢ at three adjacent points. For
point 1, for example, we will get

2.
3 a\" _
¢o+¢b+¢a—3¢1+z'200(§> =0

and substituting for ¢., ¢», ¢o the previously calculated values, we

e ¢1 = ¢ - Gha® (26)
In a similar way ¢ and ¢; are calculated. All .thes?, va%ues arelwrrll’?;olzn
down to the left of the corresponding nodal points in Fig. 11a. v
will now be taken as starting values in the relaxation process.

(a)
Fi1a. 11.

In the case of torsion, Eq. (19) will be replaced by the equation

a®
o1+ P2+ - - - +¢s—6<bo+3G0§1——0

To bring it into purely numerical form we introduce the notation

Goay* _ 4864 27)
¢= 7%*2# o ~ Goa? (
btai
s ot Yr+yat o A — 6+ 18 =0 (28)

The starting values of ¢, calculated from Eq..(27), are Writter'l 1;0 ?ﬁz
left of the nodal points in Fig. 11b. Substituting these values into

1 The constant factor GgaZ is omitted in the figure.

. ith
*The number 486 is introduced in this formula so that we may work wi

integers only.
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left-hand side of Eq. (28), we find the corresponding residuals
Ro=¢1%+ gt + - - . + ¥’ — 6y + 18 (29)

The residuals, calculated in this way, are written to the right of each
nodal point in Fig. 115. The liquidation of these residuals is begun
with point q. Giving to this point a displacement ¥,/ = —2 we add
[see Eq. (29)] +12 to the residual at g and —2 to the residuals at all
adjacent points. Thus the residual at a is liquidated and a residual
—2 appears at point b. We are not concerned with residuals at the
boundary, since there we have permanent supports. Considering now
the point ¢ and introducing there a displacement 42 we bring to zero
the residual there and add 42 to the residuals at b, d, and e.  All the
remaining residuals will now be brought to zero by imposition of a dis-

Wl L pr
+, -2 | '/ ) -l 7 2 m
+1 _,/ ;/ A+/
+7 7, _, Iy ‘
+/ -2 ) N ,/ 2 |

NI TV *y ey ¢}

Fre. 12,
placement —2 at point f. Adding to the starting values of y all
recorded corrections, we obtain the required values of ¥, and from Eq.
(27) we obtain the values of é. These values, divided by Goa?, are
shown in Fig. 11c. They coincide with the values which can be
obtained from the rigorous solution (g) on page 266,

6. Block and Group Relaxation. The operation used up to now in
liquidating the residuals consisted in manipulation of single nodal
points, considering the rest of the points as fixed. Sometimes it is
better to move a group of nodal points simultaneously. Assume, for
example, that Fig. 12 represents a portion of a square net and that we
give to all points within the shaded ares 3 displacement equal to unity
while the rest of the nodal points remain fixed. We can imagine that
all nodal points of the shaded area are attached to an absolutely rigid
weightless plate and that this plate is given a unit displacement, per-
pendicular to the plate. From considerations of equilibrium (Fig. 6),
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we conclude that the displacement described will produce changes of
residuals at the end points of the strings attaching the shaded plate to
the remaining portion of the net. If O and 1 denote the node§ at the
ends of one string, the contributions to the residuals due to displace-
ment w, and w; are
—_w Wo — W1

Ro = —S&u—)o—a——l and R1 = S& ——6‘—‘
If now we keep point 1 fixed and give to point O an additional displace-
ment Aw,, we get the increments of the residual forces

ARo = —S A’LU(), AR1 = SAwo

Introducing dimensionless quantities according to our previous
notation, -
R _ L
'q_az' =T, w = S \0
we find
Aro = '—A\llo, A’I‘l = Alﬁo

We see that unit increment in ¥, produces changes in the residuals

equal to
Ary = —1, Ary = +1

These changes are shown in the figure. The residuals of the rest of the
nodal points of the net remain unchanged. If n denotes the m%mb.er
of strings attaching the shaded plate to the rest of the net, the unit dis-
placement of the plate results in diminishing by n the resultant ?f the
residual forces of the shaded portion of

the net. Choosing the displacement

so that the resultant vanishes we get
residual forces which are self-equilibrat-

2/ ing and as such lend themselves more
T2 8 a readily to liquidation by subsequent
Fre. 13 point relaxation of the normal kind. In

practical applications it is advantageous to alterl}ate sequences of
block displacement with sequences of point relaxation. Assume, for

2./ 722

N

example, that the shaded area in Fig. 13 represents a portion of the

triangular net. The number 7 of strings attaching this portion .to the
rest of the net is 16 and the resultant of the res1c]:ua1s shown in th'e
figure is 8.8. Consequently an appropriate ‘t')lock displacement in this
case will be 8.8/16 = 0.55. After such a displacement the resul.tant
of the residual forces, acting on the shaded portion of the net, vanishes
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and the liquidation of the residuals by subsequent point relaxation will
proceed more rapidly.

Instead of giving the fictitious plate a displacement perpendicular to
the plate and constant for all the nodal points attached to the plate, we
can rotate the plate about an axis lying in its plane. The correspond-
ing displacements of nodal points and changes of residuals can be
readily calculated. So we can liquidate not only the resultant residual
force sustained by the fictitious plate but also the resultant moment
about any axis chosen in the plane of the plate.

We can also discard the notion of the fictitious plate and assign to a
group of points arbitrary selected displacements. If we have some
idea of the shape of the deflection surface of the net we can select group
displacements which may result in acceleration of the liquidation
process.

6. Torsion of Bars with Multiply-connected Cross Sections. It was
shown! that in the case of bars with multiply-connected cross sections

the stress function ¢ must not only satisfy Eq. (4), but along the bound-
ary of each hole we must have

a6 ,
- / I ds = 2G04 (30)

where A denotes the area of the hole.
In using the membrane analogy the corresponding equation is

dw
-8 /% ds = g4 (31)

which means that the load uniformly distributed over the area of the
hole? is balanced by the tensile forces in the membrane. Now applying
finite-difference equations and considering a square net, we put S for
the tension in the strings, wo for the deflection of the boundary of the
hole, and w; for the deflection of a nodal point ¢ adjacent to the hole.
Instead of Eq. (31) we then have

862("’—"_6—“—"9 +q4 =0

S (2 Wy — nwo> +gd =0 (32)

i=1

or

1 See p. 296.

? The hole is represented by a weightless absolutely rigid plate which can move
perpendicularly to the initial plane of the stretched membrane.
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where n is the number of strings attaching the.area of the I}ole to the
rest of the net. The equilibrium equation (11) is only a particular case
of Eq. (32) in which n = 4. .

W(é can write as many equations (32) as there are l.mles in the cross sec-
tion. These equations together with Egs. (11) .W_rltten for each- noda}
point of the square net are sufficient for determining the deflections o

i les.
i f the net, and of all the boundaries of the ho
all nodal points o Consider as an example the case

of a square tube, the cross section
of which is represented in Fig. 14.
Taking the coarse square net, shown
in the figure, and considering the
conditions of symmetry, we observe
that it is necessary in this case to
calculate only five values, qa, b, ¢, d,
and e, of the stress function. The
necessary equations will be obtained
6/ by using Eq. (32) and the four
a B [c |d | Eqgs. (11) written for the. nodal
points a, b, ¢, d. Substituting 2Go
Fie. 14. for ¢/8 and observing that n = 20

and A = 1682 we write these equations as follows:

20e — 8b — 8¢ — 4d = 16 - 2G/96*

26 — 40 = —2G98*
a—4b + ¢+ e = —2G0%
b—4c+d+e= —2G08"

2 — 4d + e = —2G68*

These equations can be readily solved and in this way we obtain

1,170

. 97962
488 26

and also the values @, b, ¢, and d. ’
These values, obtained with a coarse net, do not give us the stresses

with sufficient accuracy and an advance to a finer net i§ necess;jrg.

The results of such finer calculations, made by the relaxation method,
be found in Southwell’s book.? .

car'; Points Near the Boundary. In our previous examples the n&)d?:;

points of the net fall exactly on the boundary and the same standar

1 R. V. Southwell, ‘‘Relaxation Methods in Theoretical Physies,” p. 60, Oxford
University Press, New York, 1946.
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relaxation procedure is used for all the points. Very often the points
close to the boundary are connected with it by shorter strings. Due to
difference in lengths of strings some changes in equilibrium equations
(11) and (19) should be introduced. The necessary changes will now
be discussed in connection with the example shown in Fig. 15. A flat
specimen with semicircular grooves is submitted to the action of tensile
forces uniformly distributed over the ends. Suppose that the differ-
ence of principal stresses at each point
has been determined by the photo-
elastic method, as explained in
Chap. 5, and that we have to deter-
mine the sum of the principal
stresses, which, as we have seen
(page 465), must satisfy the differ- Fra. 15.

ential equation (6). For the points

at the boundary one of the two principal stresses is known, and using
the results of the photoelastic tests, the second principal stress can be
calculated, so that the sum of these two stresses along the boundary is
known. Thus we have to solve the differential equation (6), the values
of ¢ along the boundary being known. In using the finite-difference
method and taking a square net we conclude, from symmetry, that
only one-quarter of the specimen should be considered. This portion

2/00 00 4300 4600 5400 6700 8500 0500 11400

%

T

gﬁf”“

2100 9100, 4200, 4400, Slo0|  6400| saw 1100\ /2300

13600

%300
2100 4 2000, 3900|3900\ <4200| Swo! o0lB. 200
300

2/00 3800| 3500, 3500, 2600 200

2200
700

4/00

J800 3200 2/00 000
Fi1c. 16.

with the boundary values of ¢ is shown in Fig.16. Considering point 4
of this figure, we see that three strings at that point have standard length
& while the fourth is shorter, say of length mé (m = 0.4 in this case).
This must be taken into consideration in the derivation of the equation
of equilibrium of point A. This equation must be written as follows:

¢a_¢l ¢a—¢2 ¢a—¢3 ¢a—¢4__
S“(a + e By P +m6)—0
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or 1 1
¢1+¢2+4,3+_,”_L¢4—(3+E)¢a=0

i i laxation process and giving t0 ¢.
lying to point A the standard re . ‘
f:rlx ?E(Iz)rgrlnegnt e(p;ua.l to unity, we will introduce the cha,.xtiges in res%uai:
in Fi i t be used in liquidating resiaua
shown in Fig. 17a. This pattern mus g residun
i ideri int B we see that there are two
at point A. In considering poin i s bvo shorte?
i i ir lengths by mé and né we
strings. Denoting their T A ld b
iquidati i B the pattern shown in 1ig.
liquidation of residuals at : Ll
i he points near the boundary
. Introducing these changes at i :
‘111:§r(11g the standard relaxation process at all other points the values of
&, shown in Fig. 16, will be obtained.!
b

4/ +/
7
—(3+21) '(2+mL+z_i)
m
7
+, P — g"/'[ 4‘] +ﬁ
7
+L *n
@) (6)
Fic. 17.

In a more general case, when we are dealing with Eq. (9) a;ld ’ghsﬁz
is external load at the nodal points, we denotoe b¥ m$d, zz,r ;‘ 1,1 est the
i i int O of a sq
ths of the strings at an 1rregu}ar point O squa
1v(::::gassume that the load transmitted to this point 18 equal to

Ll (m +n+r+s) The equation of equilibrium then will be
4

g%z(m+n+r+3)
1, 1.1 _1.)]_—_0 33)
L ARl Che AR AT

i i incides with our previous
m =n =r = s =1 this equation comnt N
1};‘;1‘ (11) derived for a regular point. Using Eq. (33) 1.3he pr}(l)pel;vlG I;:u_
ter;l similar to those shown in Fig. 17, can be developed in each pa
)

lar case. An equation, similar to Eq. (33), can be derived also for a

triangular net.

. Shortley; see J. Applied
1 This example was treated by R. Weller and G. H. Shortley;

i hoto-
Mechanics, 1939, p. A-71. Since the boundary values of ¢, obtaln:}c‘lef:z‘rlr‘ll g; (())f -
l:stic test’as a.re’ known only with a comparatively low accu.rac'?l,c e e,
:,t internal éoints are given with no more than two or three signt

APPENDIX 483

With the changes discussed in this article the relaxation process is
extended to cases in which we have irregular points near the boundary.

8. Biharmonic Equation. We have seen (page 26) that in the case
of two-dimensional problems of elasticity, in the absence of volume
forces and with given forces at the boundary, the stresses are defined
by a stress function ¢, which satisfies the biharmonic equation

9%
ozt

e 3¢ .
+2 a0 T gyi = O (34)

and the boundary conditions (20) on p. 23, which, in this case, become

o2¢ 3 o
3yt maz dy X 35) 7
ax? dx dy 8 2 6

-

Knowing the forces distributed along
the boundary we may calculate ¢ at
the boundary by integration! of Egs.

(35). Then the problem is reduced o ¢ 2
to that of finding a function ¢ which

satisfies Eq. (34) at every point 11
within the boundary and at the Fic. 18.

boundary has, together with its first derivatives, the prescribed values.
Using the finite difference method, let us take a square net (Fig. 18)

and transform Eq. (34) to a finite-difference equation. Knowing the
second derivatives,

9? 1
(%%)0 = 5 (01 — 2¢0 + ¢3)

¢
dx?
9%¢

1

. z§(<15.'>“2<i)1-|-<f>0)
1

(sz)s ~ 5 (¢0 — 2¢5 + ¢9)

we conclude that

dzt/, éx2\oz2) & ax?), 8—1:20_*—5;23

1
~ 5 (6o — 461 — 4¢3 + ¢5 + )

! We consider here only simply connected regions.
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Similarly we find

9yt &
’ﬂ_z z%;[‘ld’o — 21 + P2+ ¢z t 60 + ¢o + ¢s + S0 t+ ¢12]
oz oy
Substituting into Eq. (34) we obtain the re
equation

+ 2(¢s + s + b0 + $12)
20¢0—8(¢1+¢2+¢3+¢4) -:¢5+d>7+¢9+¢11=0 (36)
fied at every nodal point of the net within
To find the boundary values of the stress
Observing (Fig. 20, p. 23) that

3¢ L (64 — Ags — 464 + &7 + é11)

quired finite-difference

This equation must be satis

the boundary of the plate.

function ¢ we integrate Eqs. (35).
l=cosa= % and m = sina = —dz/ds

we write Eqs. (35) in the following form:

dy ¢ , dzv 8¢ _ i(ﬁ?) 2

ds9y® ' dsdxdy ds\9y 37)

de 8¢ _dy 0% _ _ 4 (%) _y

T ds 9z2  ds 9z 9y ds \9z
and by integration we obtain

ox (38)
% _ f Xds
9y

To find ¢ we use the equation

20 _seds  36dy
3s oxds ' dyds

which, after integration by parts, gives

9%¢
00 3 _ [ (2 1y 0% )a (39
¢=x6_:5+y—§ f(”asax+yasay :
Substituting in this equation the values of the derivatives gflven 1)13;
Egs. (37) and (38), we can calculate the boun.dary values (l ¢.con-
should be noted that in calculating the first derivatives ('38), vs:gon >
stants of integration, say 4 and B, will appear and the integra
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Eq. (39) will introduce a third constant, say C, so that the final expres-
sion for ¢ will contain a linear function Ax 4 By 4 C. Since the
stress components are represented by the second derivatives of ¢, this
linear function will not affect the stress dis-

tribution and the constants 4, B, C can be —Z
- ~ND
taken arbitrarily.

From the boundary values of ¢ and its ' J
first derivatives we can calculate the A c
approximate values of ¢ at the nodal points ~—6’~—]\ ]
of the net adjacent to the boundary, such
as points 4, C, E in Fig. 19. Having, Fa. 19.

for example, at point B the values ¢ and (9¢/9x)s, we obtain

= 9¢ _ (¢
$o = ¢s + (ax b ba= 4 (@)Bﬁ

Similar formulas can be written also for point E. A better approxi-
mation for these quantities can be obtained later when, by further cal-
culation, the shape of the surface representing the stress function ¢
becomes approximately known.

Having found the approximate values of ¢ at the nodal points
adjacent to the boundary, and writing for the remaining nodal point
within the boundary the equations of the form (36), we shall have a
system of linear equations sufficient for calculating all the nodal values
of ¢. The second differences of ¢ can then be used for approximate
calculation of stresses.

The system of Eqgs. (36) may be solved directly, or we can find an
approximate solution by one of the processes already described. The
various methods of solution will now be illustrated by the simple exam-
ple of a square plate loaded as shown! in Fig. 20.

Taking coordinate axes as shown in the figure,2 we calculate the
boundary values of ¢ starting from the origin. Fromz = Otoz = 0.4a
we have no forces applied to the boundary, hence

¢ o 0
dx*  dxdy

! This is one of many cases discussed by P. M. Varvak, ““Collection of Papers on
Structural Mechanics,” Kiev Structural Institute, vol. 3, p. 143, 1936 (Russian).
A solution, also numerical, of a similar problem is given in the book by K. Beyer,
“Die Statik im Eisenbetonbau,” 2d ed., vol. 2, p. 733, Berlin, 1934.

?The system is obtained by rotating clockwise by = the axes used in Fig. 20,
p. 23,
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and integration gives

% _ o

9 _ 4 F

ox ’

¢ = Az + B,

Here A, B, C are constants along the z-axis, which, asB menélonei()i
’ 1 1 = = = -

before, can be chosen arbitrarily. Wg assume A =

Then :ﬁ vanishes along the unloaded portion of the bottom side o

3 2 yl T

08a
TN Iiriglie
-0.72B \t.6B |*3/B 6B

-48PB |-072B |3 2 /
@3¢

~-48B |-072B |6 5 4

&

-48B \-072B |9 8 7

@9

-48B -072B /2 7 0

9z

-4.8B |-072B |/5 /4 /3

-072B |0 g g

g

1 -
SiR
Yy
SN
¥

Fia. 20.

i - ith respect to the y-axis.
h ensures the symmetry of ¢ wi ect
g‘lragg ;V 1—1-100 4a to z = 0.5a there acts a uniformly distributed load of

intensity 4p and Eqgs. (38) give

9% _ —f4pdx= —4pzx + Cy
ox

The second integration gives
¢ = —2px? + Ciz + C;
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The constants of integration will be calculated from the conditions
that for the point z = 0.4a, the common point of the two parts of the

boundary, the values of ¢ and d¢/9x must have the same values for
both parts. Hence

(—4pr + C1)pmpuse = 0, (—2p2? + Ciz + C)omota = 0
and we find
Ci =16pa, C,= —0.32pa?

The stress function ¢, from z = 0.4g to ¢ = 0.5a, will be represented
by the parabols

¢ = —2pz® + 1.6paz — 0.32pa? (a)
At the corner of the plate we obtain
3
(¢)emo.5a = —0.02pa?, ((Td’) = —0.4pa ®)
L ) z=0.50

Along the vertical side of the plate there are no forces applied and,
from Eqs. (38), we conclude that along this side the values of d¢/dx
and of 9¢/dy must be the same as those at the lower corner, i.e.,
7 = —0.4paq, g—; = (¢)
From this it follows that ¢ remains constant along the vertical side of
the plate. This constant must be equal to —0.02pa?, as calculated
above for the lower corner.

Along the unloaded portion of the upper side of the plate the first
derivatives of ¢ remain constant and will have the same values (c) as
calculated for the upper corner. Thus the stress function will be

¢ = —04pax 4 C

Since at the upper corner to the left ¢ must have the previously cal-
culated value, equal to —0.02pa?, we conclude that ¢ = 0.18pa? and
the stress function is

¢ = —0.4paz + 0.18pa? (d)

Taking now the loaded portion of the upper side of the plate and
observing that for this portion ds = —dz and ¥ = -p, X =0, we
obtain, from Eqs. (38),

%=—px+01

9¢

e

WNSTITUTUL POLITENING
" TIMISOARA
RIBLIGTELA CENTDAL &
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For'z = 0.4a these values must coincide with the values (c). Hence,
¢, = C: = 0, and the stress function must have the form

2
o=-2+c

For z = 0.4a it must have a value equal to that obtained from Eq. (d).
We conclude that ¢ = 0.1pa® and

I + 0.1pa® (e)

The stress function is represented by a parabol.a symmetrical with
respect to the y-axis. This finishes the calculatlpn of the bour.ldary
values of ¢ and its first derivatives, since for the right-hand portion of
the boundary all these values are obtained from symmetry.
With the notation )
pa” _
36 = B

we can now write all the calculated boundary values of ¢ as shown in

Fig. 20.
%\Iext, by extrapolation, we calculate the values of ¢ for the nodal

points taken outside the boundary. Starting .aga.in with th.e b.ottom
side of the plate and observing that d¢/dy vanishes along this side we
can take for the outside points the same values ¢13, ¢14,. ¢>1'5 as for the
inside points adjacent to the boundary.! We.a proc.eed similarly along
the upper side of the plate. Along the vertical side of the plate we

have the slope

(9-"3 — —0.4pa

ax z=0.5a

and we can, as an approximation, obtain the values for the outside points
by subtracting the quantity

= 4.8B

Apal
0.4pa - 26 = 0 gq

from the inside points adjacent to the boundary, as ShOWI.l il} Fig. 20.
Now we can start the calculation of ¢ values f?r the 1ns1d.e nodal
points of the net. Using the method of direct solution of the difference

1 This manner of extrapolation, used in Varvak’s paper, is different from that
described on p. 485.
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equations, we have to write in this symmetrical case the Eqgs. (36) for
the 15 points shown in Fig. 20. The solution of these equations gives
for ¢ the values shown in the table below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

¢/B 13.356|2.885|1.482{2.906(2.512({1.311|2.306(2.024(1.097|1.531|1.381|0.800|0.634/0.608{0.396

Let us calculate the normal stress o, along the y-axis. The values of
this stress are given by the second derivative d2¢/0y% Using finite
differences we obtain for the upper point (y = a)

_ (3.356 — 2-3.600 + 3.356)B _ _ 0.488pa®

(01)y=a = =

82 3642
For the lower point (y = 0) we find

(0)ymo = (0.634 (;;l— 0.634)B — 1.268p
If we consider the plate as a beam on two supports and assume a
linear distribution of ¢, over the middle cross section (x = 0) we find
(62)max. = 0.60p. We can see that
for a plate of such proportions the
usual beam formula gives a very
unsatisfactory result.

To solve the finite-difference equa-
tions (36) by iteration, we assume
some starting values ¢1, ¢z, . . .,
¢15 for the stress function. Substi-
tuting these into Egs. (36) we obtain
residual forces for all internal nodal
points which can be liquidated by
a relaxation process. The proper :
pattern, as obtained from Eq. (36), @
is shown in Fig. 21, in which the Fra. 21.
changes in residuals due to unit change of ¢, are given. In applying
this method to the square plate discussed above it must be observed
that the ¢ values along the boundary are restricted by the boundary
conditions, which means that the residual forces at points on the
boundary need not be liquidated.

We can next advance to a finer net, obtaining starting values of ¢
from the results of the ealculation on the coarse net.

= —0.488p
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In the case of a nonsymmetrical loading such as shown in Fig. 22a,
we can split the load as shown in Figs. 22b and 22¢ into symmetrical
and antisymmetrical loadings. In both latter cases we have to con-
sider one-half of the plate, since o(z,y) = o(—x,y) for the symmetrical
case and ¢(z,y) = —o(—x,y) for the antisymmetrical loading.

P y

EH[H EERRNRREL Tpi11

T(a)ixT(b)TxT(c)&

Fia. 22.

The work can be further reduced by considering also the horizontal
axis of symmetry of the rectangular plate. The load shown in Fig. 20
can be resolved into symmetrical and antisymmetrical cases as shown
in Fig. 23. For each of these cases only one-quarter of the plate
should be considered in calculating numerical values of the stress

H_HNHI ‘I!IIH[[ fazayYERELX]

(a) m (6) U.U.

F1a. 23.

9. Torsion of Circular Shafts of Variable Diameter. In this case,

as we have seen (page 307), it is nece
which satisfies the differential equation

Po 396, 3 _ (40)

ot ror 922

at every point of the axial section of t

along the boundary of that section. Only in a few simple cases have

ssary to find a stress function

he shaft, Fig. 24, and is constant

APPENDIX 491

we a rigorous solution of the problem, and i i
nd in pract
usually resort to approximate ethoés, practical cases we must

'dUs.ing the ﬁnite—d‘ifference method, we shall take a square net. Con
si ]egrmg:, nodal point O, Fig. 24, we can treat the second derivatives
in Eq. (40) as before. For the first derivative we can take

99 _1fd1— o | b0 — —
(37')r=ro ~§< > + 2o - ¢3> _H - b3

_/\r——\ — A
z |\
J |0 /’\ e—a —~
BR
| -
o~
—&
z z
Fic. 24. Fre. 25.

Then the finite-difference equation, corresponding to Eq. (40), is
. b

o1 + — 440~ 30
1+ o2+ @3+ ¢ 4¢0—‘270(¢1—¢3)=0 (41)

ghe To;l)lgm then is to find such a set of values of ¢ that Eq. (41) will
a:msl?n 1sde at‘; evterylnodal point of the net and ¢ will be equal to the
ed constant value at the boundary. This
. ‘ . . problem can be treated
eltllier by direct solution of Egs. (41) or by one of the iteration metho§s
\s an exan}ple, let us consider the case shown in Fig. 25. In thé
Z:f;g:ld?:tr%plg chal,;lge in the diameter there will be a complicated
ribution, but at sufficient distances from the fill i
. ) i ets a simpl
Coulomb solution will hold with sufficient accuracy, and the stre;;n dI;s(f

tribution will be ind ) .
becomes ependent of z. Equation (40) for such points

The general solution of this equation is

¢ =Ar*+ B (43)
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and the corresponding stresses are (see page 306)

1d =
Tao = ;éf;; = 4Ar, 0 =0

Comparing this result with the Coulomb solution, we find

M.
4A = T,
where M, is the applied torque and I, is the polar moment (?f inez;)la. of
the shaft. Omitting the constant B in the general solution ( f) as
having no effect on the stress distribution, we find fc3r the stress func-
tion at sufficient distances from the fillet the expressions

M
¢a=.__Mi-'r4, ¢b=ﬂé;'r4 (44)

These expressions vanish at the axis of the shg,ft andt’}a,ssturarllle0 If,gt :illz
i s constan
ndary a common value M/2r. Since ¢ 1 :
E(())?mdarg; the value M;/2r holds also for the fillets. . Thus. se%ect:c;n
of the cox’lstant at the boundary in solving Egs. (41) is equivalent 1o
ssuming a definite value for the .torque.

" In solxg;ing Eqgs. (41) we can again apply the membrane anal.ogy.ﬁ :VtVe
begin with points where Eq. (42) holds. The corresponding finite-
differences equation is

34 _ _ 45)
é1+ ¢3 — 240 — o (1 — ¢2) =0 (
This equation is of the same form as that for deflections to a cylindrical

I f a membrane with tension
i d— form' o 3. To show this
r varying inversely as r°.

Wo 7 let us consider three consecutive
& , points of the net, Fig. 26. The

9 corresponding deflections we denote
s Fia. 26. by w3, W, W1.

The tension at the middle of the strings 3-0 and 0-1 will be
Sé S5 35
8 m(l + 2r¢

0
7‘0—'2
Ss S8 (, 38
53z‘7? 27‘0
(To+§>

and
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The equation of equilibrium for the point O is then

Sé 36\ws — wo , 83 36wz — wy _
ros(l—z—ro)*TJfros(“"z—m)“T—o
]
w1—2wo+w3——23—(w1—w3)=0
To

This is the same as Eq. (45).
Similarly, in the general case, observing that the tension in the mem-
brane does not depend on 2, we obtain the equation

w1+w2+w3+w4—4wo—%§(w1—w3)=0 (46)

which agrees with Eq. (41). It is seen that we can calculate the stress
function as the deflection of a membrane with nonuniform tension
having constant deflection M,/2x along the boundary and deflections
(44) at the points at large distances from the fillets. We assume some
starting values for w at the nodal points, substitute them into the left-
hand sides of Eqs. (46), and calculate the residuals. Now the problem
is to liquidate all these residuals by the relaxation process. From Fig.

26 we see that by giving to point O a displacement unity we add to the
residuals at points 1 and 3 the quantities

S 38 S 36

which indicates that the pattern for the relaxation process is as shown

in Fig. 27. It varies from point to point with variation of the radial
+1
3 | (3 _Jd
,+2 o j@a 7 To
+7
Fi1a. 27.

distance 7. Calculations of this kind were carried out by R. V.
Southwell and D. N. de G. Allen.!

! Proc. Roy. Soc. (London), series A, vol. 183, pp. 125-134. See also South-
well’s book ‘‘Relaxation Methods in Theoretical Physics,” p. 152,
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Analytic functions, 181
Analyzer, 132
Angle of twist per unit length, 249, 259,
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Anisotropy, 1
Annealing, removal of stresses by, 427
Anticlastic surface, 254
Axes, principal, of strain, 224
of stress, 14, 215

Axially symmetrical stress distribution,
343

in cylinder, 384
B

Balls, compression of, 372
Beams, bending of (see Bending, of
beams)
concentrated force acting on, 99
continuously distributed load on, 39,
44, 49, 342
curvature of, 43, 106, 340
additional, 106
(See also Curvature of beams)
deflection of, 38, 42, 43, 340
distortion of cross sections of, 38, 341
shearing stressin, 36, 41, 44, 104, 320,
322, 326, 329, 330, 332

Bending, of beams, of narrow rectangu~

lar cross section, by concen-
trated force, 99

by distributed load, 44, 46

by own weight, 42, 53, 342

by terminal load, 35

by uniform load, 39

of particular forms of section, cir-

cular, 319

Bending, of beams, of particular forms
of section, elliptic, 321
other forms, 329, 331, 332
rectangular, 323
solution of problem of, by soap-
film method, 336
‘boundary conditions in, 317
of circular cylinder, 319
of circular plate, 349
of curved bar, by force at end, 73
cylindrical bar of any cross section in,
250, 316
of prismatical bars, 316
determination of displacements in,
340
pure (see Pure bending)
ring section in, 395
semi-inverse method in, 316
triangular prism in, 331
Bending moment, relation of, to curva-
ture, 340
Body forces, 3
Boundary conditions, in bending, 317
in terms of displacements, 234
in three-dimensional problems, 229
in torsion, 260
in two-dimensional problems, 22

C

Cantilever, deflection of, 38, 340
distortion of cross section of, 38,
341
of particular forms of cross section,
circular, 319
elliptic, 321
other forms, 329
rectangular, 323
narrow, 35
stresses in, 35, 316
Castigliano’s theorem, 162
Cauchy-Riemann equations, 181
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Cavity, ellipsoidal, 235
spherical, 359
Center, of compression, 358
flexural, 334
shear, 334
of twist, 271, 336
Central line, extension of, 43, 342
of prismatie bar, 316
Circular cylinder, bending of, 319
strained symmetrically, 384
Circular disk, under forces in its plane,
107
rotating, 69, 8352
thermal stresses in, 406 )
Circular hole, effect of, on stresses, 1n
plates, 78
in rotating disk, 71
in shaft, 293
Circular plate, bending of, 349
Circular ring, compressed by two oppo-
site forces, 121
general solution for, 116
initial stresses in, 120
Circular shaft, in torsion, 249
of variable cross section, 304, 490
Coefficient of thermal expansion, 399
Cold-drawn tubes, residual stresses in,
427 o
Compatibility conditions, in cylindrical
coordinates, 344 -
in three-dimensional problems, 230
in two-dimensional problems, 23
Complex potentials, 187
Complex variable, functions of, 179
Components, of strain, 5, 6
of stress, 4
in curvilinear coordinates, 195
Compression, of balls, 372
by coneentrated force, of disk, 107
of rectangular plate, 49, 51
of wedge, 96
of rollers, 381
of solid bodies, 377
Concentrated force (see Transmission)
Concentration of stress at hole (see
Hole)
Conditions of compatibility (see Com-
patibility conditions)

Conduction of heat, stresses due to, 402,
410, 412, 420, 427, 436
Cone in torsion, 309
Constants, elastic, 6, 7
(See also Hooke’s law)
Contact, surface of, 373
Contact stresses between bodies in com-~
pression, 372, 377
Continuously distributed load on beam,
39, 44, 49, 342
Cooling, ponuniform, stresses due to,
in plates, 402
in shafts, 411
Coordinates, bipolar, 206
curvilinear orthogonal, 192
cylindrieal, 305, 306, 343
elliptic, 193
polar, 55
spherical, 346
Cracks, reduction of strength dueto, 161
in tension member, 184
in torsion member, 294
Curvature of beams, 43, 340, 342
additional, 106
effect of shearing force on, 43
relation of, to bending moment, 340,
342
Curved bar, bending of, by force at end,
73
pure, 61, 395
deflections of, 66, 76
stresses in, 63, 75
Curvilinear orthogonal coordinates, 192
components of stress in terms of, 195
Cylinder, band of pressure omn, 388
circular, with eccentric bore, 60, 208
symmetrical deformation in, 384
thermal stresses in, 408, 427, 436
thick, under pressure, 59
Cylindrical body of any cross section, in
bending, 250, 316
in tension, 245, 246
in torsion, 258
Cylindrical coordinates, 305, 306, 343

D

Dams, stresses in, 45 .
Deflection, additional, due to shearing
force, 39, 106
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Deflections of foundations, 371
(See also Beams)
Deformation, homogeneous, 219
irrotational, 453
plastic (see Plastic deformation)
Differential equations of equilibrium,
in terms of displacements, 233
in three dimensions, 229, 306, 343
in two dimensions, 21, 55
Dilatation, waves of, 452
Disk, rotating, 69, 352
thermal stresses in, 406
of variable thickness, 72
Displacements, determination of, in
bending of prismatical bars, 340
in semi-infinite body, 365
in semi-infinite plates, 89, 95
in three-dimensional problems, 232
in torsion of prismatical bars, 259
in two-dimensional problems, 34,
36, 42, 66, 76
Distortion, of cross sections, of bent
beam, 38, 341
of twisted bar (warping), 259, 265
strain energy of, 149
waves of, 452
Double force, acting on infinite body,
356
acting on plate, 114

E

Earthquake, waves of, 456
Effect, of circular hole on stress dis-
tribution, 78
of shearing force on deflection, 39,
43, 102
Effective width of wide beam flanges,
171
Elasticity, 1
Electric current, analogy with twisted
shaft of variable diameter, 310
Electric-resistance strain gauge, 19
Ellipsoid, stress, 215
Elliptic coordinates, 193
two-dimensional problems in, 197
Elliptic cylinders, under bending, 321
under torsion, 263
Elliptic hole, in plate, 84, 197, 201
in twisted shaft, 294

Energy, of elastic waves, 442, 456
of strain, 146
Equilibrium, general equations of, 228
in case of nonuniform heating, 421,
423
in cylindrical eoordinates, 306, 343
in polar coordinates, 55
in terms of displacements, 233
Expansion, thermal, 399
volume, 9
Extensional vibrations of rods, 438
Eyebar, stress in, 122

F

Failure, stress at, 149
Fatigue cracks, 81
Fillets, stress concentration at, in bend-
ing and tension of plates, 140,
142
in shafts of variable diameter, 310
in torsion of prismatical bars, 288,
299
Film (see Soap-film method)
Finite-difference equations, 461
boundary conditions, 485, 488
points near boundary, 480, 485
Flanges, effective width of, 171
Flexural center, 334
(See also Center)
Flexural rigidity of plates, 256
Foundations, deflection of, 371
pressure distribution on, 371
Fourier series, application of, in bend-
ing problems, 324
deflection curve represented by,
155
in torsional problems, 275, 284
in two-dimensional problems, 46,
53, 117
Fringe value, 134

G

General equations of equilibrium, in
case of varying temperature, 421,
423

in cylindrical coordinates, 306, 343
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General solution, for displacements, 235
of two-dimensional problems, in polar
coordinates, 116
for a wedge, 123
Groove, hyperbolic, 235
semicircular, in shaft, 268, 293

H

Harmonic function, 182
Heat flow (see Conduction of heat)
Heating, stresses due to nonuniform
(see Thermal stress)
Helical springs, stresses in, 391
Hertz’ problem, 372, 377
Holes, circular, in plate, 78
eccentric, 60, 208, 211
elliptic, 84, 197, 201
stress concentration at, 80, 81, 84
in twisted shaft, 293, 294
of various shapes in plate, 212
Hollow shaft, torsion of, 294
Homogeneous deformation, 219
Homogeneous material, 1
Hooke's law, 6
Hydrodynamical analogies, 191, 292
Hyperbolic groove, 235
Hyperbolic notches, 204

1

Identical relations between strain com-
ponents (see Compatibility condi-
tions)

Tmpact, duration of, 384, 450

longitudinal, of bars, 444
with rounded ends, 452

of spheres, 383

stresses produced by, 442, 449

transverse, of bars, 384

Inclusions, 84

Influence line, 91

Initial stress, 68, 120, 238

general equations for determination
of, 425
in glass plates, 427
in rings, 68, 120
Invariants of stress, 217
Trrotational deformation, 453

Isochromatic lines, 134
Isoclinic lines, 134
Isotropic materials, 1

L

Lamé’s problems, 59, 359
Laplace’s equation, 181, 182
Layer, elastic, on rigid smooth base, 51
Teast work, application of, 167
principle of, 166
Tight, polarized, measurement  of
stresses by means of, 131
Lines, isochromatic, 134
isoclinie, 134
of shearing stress in torsion, 270
Local stresses, at circular hole, 80, 81
at fillets, in bending and tension, 140,
142
in torsion, 238, 299
at spherical cavity, 359
Tocalized character of stress distribu~
tion at hole, 81, 359
Longitudinal vibrations of prisms, 438
Longitudinal waves, 438, 454

M

Membrane analogy, application of, in
photoelasticity, 143
with bent beam, 319
determination of stresses, in beams
by, 336
of rectangular cross section, 329
with twisted shaft, 268
measurement of torsion stresses by,
290
solution of stresses, in thin twisted
tubes by, 298
in various forms of cross gection
by, narrow rectangular, 272
rolled profile, 287
use of, in calculation of torque, 271
Mesh side, 462
Middle plane of plate, 351
Modulus, of rigidity, 9
in shear, 9
in tension, 6
of volume expansion, 10
Young’s, 10
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Mohr’s circle, 14
Multiply-connected bodies, 120, 238,
301, 479

N

Net, hexagonal, 473
square, 462
triangular, 473
Neutral surface, 42
Newton’s interpolation formula, 464
Nicol prism, use of, in photoelastic
work, 132
Notches, hyperbolic, 204
semicircular, 89, 212, 481

0
Orthogonal curvilinear coordinates, 192
P

Photoelasticity, method of stress meas-
urement by, 131 '
three-dimensional, 143
Plane harmonic functions, 182
Plane strain, 11
compatibility equations for, 23
Plane stress, 11, 216, 241
equations of equilibrium for, 21
stress at point in case of, 13
stress function for, 26
Plane waves, 454
Planes, principal, of stress, 14, 215
Plastic deformation, initial stresses due
to, 425
in twisted shafts, 272
Plates, bent by couples, 255
circular, symmetrically loaded, 349
quarter-wave, 136
Poisson’s ratio, 7
determination of, 254
Polar coordinates, in three-dimensional
problems, 346
in two-dimensional problems, 55
Polariscope, circular, 135
plane, 132
Polarized light, use of, in stress meas-
urements, 131

Polarizer, 132
Polynomials, solution by, of axially sym-
metrical stress-distribution prob-
lems, 347
of torsional problems, 265, 286
of two-dimensional problems, 29
Potential energy, 153
minimum of, 153
Pressure, distributed over surface of
contact, 374, 375, 379
hydrostatic, 10
in spherical container, 356
stresses produced by, 246
in thick cylinder, 59
produced by rigid die, 96, 371
Principal axes, of strain, 224
of stress, 14, 215
Principal directions, 14
Principal planes, 215, 224
Principal strain, 19, 224
Principal stress, 14, 214
determination of, 142, 217
Principle, of least work, 166
of Saint-Venant, 33, 150
of superposition, 203
of virtual work, 151
Prism, bending of, 316
torsion of, 258
vibrations of, longitudinal, 438
Propagation of waves, in bars, 438
in solids, 452
over surface of body, 456
Pure bending, of curved bars, 61, 395
of plates, 255
of prismatical bars, 250
Pure shear, 8

R

Radial displacement, 65
Radial strain, 65
Radial stress, 55
distribution of, 85
Rayleigh waves, 456
Reciprocal theorem, 239
Rf:ctangular bar, in bending, 323
in torsion, 272, 275, 303
Reentrant corner, stress concentration
at, in I-beams, 339
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Reentrant corner, in plates, 140
in shafts, 288, 294
in tubes, 299
Relaxation, block and group, 477
Relaxation method, 468
Residual stresses, in cold-drawn tubes,
427
(See also Initial stress)
Residuals, 469
Rigid-body displacement, superposable
upon displacement determined by
strain, 233
Rigidity, modulus of, 9
torsional, 264
Ring (see Circular ring)
Ring sector, in bending, 395
in twist, 391
Rolled profile sections, in torsion, 287
Rollers, compression of, 107, 381
Rotating disk (see Disk)
Rotation, components of, 225
Rupture, hypothesis concerning condi-
tions of, 149

8

Saint-Venant, principle of, 33, 150
problem of, 259, 316
Sector of circle, torsional problem for,
278
Seismograph, 456
Semicircular notches, 89, 212, 481
Semi-infinite body, boundary of, con-
centrated force on, 362
distributed load on, 366
Semi-infinite plate, 85, 91
Semi-inverse method, in bending, 316
in torsion, 259
of shafts of variable diameter, 306
Shaft, torsion of (see Torsion)
of variable diameter, 304
Shear, pure, 8
Shear center, 334, 336
Shear lag, 177
Shearing strain, 5, 223
Shearing stress, 3
components of, 4
distribution of, in beams of narrow
rectangular cross section, 51

Shearing stress, distribution of, in beams
of particular forms of sections,
circular, 320

elliptic, 322
I-beams, 339
rectangular, 326
effect of, on deflection of beams, 39,
106
lines of, 270
maximum, 15, 218
Single-valued displacements, 68, 119
Soap-film method, solution by, of bend-
ing problems, 336
of torsional problems, 289

Solution, uniqueness of, 236

Spherical bodies under compression, 372

Spherical cavity in infinite solid, 359

Spherical container, under external or

internal pressure, 356
thermal stresses in, 419
Spherical coordinates, 346
Strain, plane, 11, 23
at point, 17, 221
compatibility of, 23, 230, 344
components of, 5, 223
identical relations between compo-
nents of (see compatibility of,
above)
Mohr circle of, 19, 20
in polar coordinates, 65
principal axes of, 224
principal planes of, 224
surface, measurement of, 19
radial, 65
Strain energy, 146
of volume change and distortion, 149
Strain-energy methods, 146
applications of, 157, 167, 280
Strain gauge, electric-resistance, 19
Strain rosette, 20
Stream function, 292
Strength theory for brittle materials,
161
potential energy as basis of, 149
Stress, axially symmetrical distribution
of, 343
components of, 4, 55
in terms of curvilinear orthogonal
coordinates, 192

)

Pl )
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Stress, due to temperature change,
399
in eyebar, 122
at failure, 149
invariants of, 217
measurement of, by photoelasticity
method, 131
normal and tangential, 3
plane (see Plane stress)
at point, 13, 213
principal, 14, 214
determination of, 142, 217
radial, 55
distribution of, 85
shearing (see Shearing stress)
Stress concentration, at circular hole,
80, 81
at elliptic hole, 84
at fillet of shaft of variable diameter,
310
at fillets in tension member, 140
at reentrant corner in torsion, 288,
299
(See also Reentrant corner)
at spherical cavity, 359
use of hydrodynamical analogy in de-
termination of, 292
Stress-director surface, 215
Stress ellipsoid, 215
Stress functions, 26, 56, 86, 89, 116, 183,
261, 318, 343, 483
Stress-optical coeflicient, 133
Stress-strain relation (see Hooke’s law)
String, deflection of, 153
Superposition, principle of, 235
Surface of contact, 373
Surface energy, 161
Surface forces, 3
Symmetrical and antisymmetrical load-
ings, 490
Symmetrical stress distribution about
axis, in ecircular cylinder, 384
in three dimensions, 343
in two dimensions, 58

T

Temperature, stresses due to nonuni-

form distribution of, 399

Temperature fluctuation, stresses pro-

Ziwed by, in cylindrical shells,
4

in plates, 399
Tension of prismatical bars, by concen-
trated forces, 51
by distributed forces, 167
by gravity force, 246
uniform, 245
Thermal expansion, coefficient of, 399
Thermal stress, 399
in cylinders, 408, 427
in disks, 406
general equations for, 421
solutions of, 433
in infinite solid, 434
in long strips, 399, 404
in plates, 399, 435
in spheres, 403, 416
in steady heat flow, 412, 427
Thin tubes, torsion of, 298
Tore, incomplete, bending of, 395
torsion of, 391
Torque, 262
caleulation of, by use of membrane
analogy, 271
Torsion, boundary conditions in, 260
circular shaft in, 249
cone in, 309
cylindrical body of cross section in,
258
elliptic cylinders in, 263
of hollow shaft, 294
lines of shearing stress in, 270
local stresses at fillets in, 238, 299
of prismatical bars, 258, 462
approximate method in investi-
gating, 280
displacements in, 259
fillets in, 288, 299
stress function for, 261
of various forms of cross section,
circular, 249
elliptical, 263
other forms, 266, 278, 280, 286
rectangular, 272, 275
rolled profile, 287
semi-inverse method in, 259




Velocity, of waves, of dilatation, 453
of distortion, 453
Virtual displacement, 151
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Torsion, of shafts of variable diameter,
304, 490
of thin tubes, 298
of tore, 391

Torsional rigidity, 264
Trajectories of principal stresses, 134
Transmission of concentrated force act-
ing, on beam, 99
on disk, 107
on infinite body, 354, 362
on infinite plate, 112
on semi-infinite plate, 85
on strip, 115
on wedge, 96
Transverse waves, 454
Triangular prism, in bending, 331
in torsion, 266, 280, 474
Tubes, submitted to internal and exter-
nal pressure, 59
torsion of, 298, 480
Twist, center of, 271, 336
of circular ring sector, 391
of shafts (see Torsion)

U

‘Uniqueness of solution, 236
Unit elongation, 5

v

Variable diameter, shaft of, 304
Velocity, of surface waves, 459
of wave propagation in prismatical
bars, 440

Virtual work, application of, in tor-
gional problems, 281
principle of, 151
Vorticity, 292

w

Warping of cross sections of prisms in
torsion, 259, 265
Waves, of dilatation, 453, 454
of distortion, 452, 454
Jongitudinal, 454
in prismatical bars, 438
plane, 454
propagation of (see Propagation of
waves)
Rayleigh, 456
reflection of, 443
superposition of, 442
surface, 456
transverse, 454
velocity of (see Velocity)
Wedge, loaded, at end, 96, 98
along faces, 123
Weight, bending of beam by own, 42,
53, 342
tension of bars by own, 246
Work, virtual, principle of, 151

Y

Young’s modulus, 10




