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PREFACE

For many years, we have taught courses on micromechanics at our
respective institutions (JQ at the Georgia Institute of Technology and
MC at the University of Metz). We both felt the need for a textbook
that (1) provides an integrated approach to the various topics of mi-
cromechanics, (2) covers the basic ideas of homogenization, (3) is writ-
ten pedagogically for graduate and upper-level undergraduate students,
(4) contains exercises problems, and (5) can be taught in a semester
course. It was such a need that motivated us to start this project. We
hope the book in front of you fulfills these objectives.

Micromechanics had flourished over the past half-century. The lit-
erature is rich and diverse. Holding the book to a reasonable length
prevented us from including many of the elegant results published over
the years. Although we used our best judgment to cite and compile a
list of references that we believe are most relevant to the text, listing
such a limited number of references does not do justice to the breadth
and depth of the field. We sincerely apologize to those authors whose
works were not given proper credit or were not cited.

The book was developed primarily from our notes for the micro-
mechanics courses that we have taught over the years. Our students,
through their questions and comments, provided valuable input to the
book. We are very grateful for their contributions. We would like to
thank our colleagues at Georgia Tech for their encouragement and col-
laboration. It has been a great pleasure to be among such an intellec-
tually stimulating group of people.

The book was written mainly during evenings and on weekends. At
times, we had to neglect our duties as husbands and fathers. We want
to acknowledge that without the support of our wives and families, this
project would not have been completed. Their understanding and sac-
rifices are greatly appreciated. This book is dedicated to them.

JIANMIN QU

Atlanta, Georgia

MOHAMMED CHERKAOUI

Metz, France
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INTRODUCTION

Mechanics studies the theory of forces and their interactions. It is the
pillar of modern sciences. Many of the great scientists in history have
been mechanicians including, for example, Aristotle, Archimedes,
Leonardo da Vinci, Kepler, and Newton.

Continuum mechanics is a relatively young branch of mechanics. It
studies the deformation of bodies (solid or fluid) under forces or
stresses. Although the basic foundation of continuum mechanics was
laid by Galileo, it was during the late eighteenth and the early nine-
teenth centuries that modern theories of continuum mechanics were
gradually developed by Laplace, Fourier, Coriolis, Lagrange, Hamilton,
Navier, and Cauchy, among others. It was during this period and up
until the early 1900s that continuum mechanics enjoyed its most rapid
development into maturity. By the mid-1900s, theories of continuum
mechanics had been established upon vigorous mathematics.

One of the most successful stories of continuum mechanics is the
development and application of fracture mechanics. In 1913, C.E. Inglis
looked at a thin plate of glass with an elliptical hole in the middle in
a new and different way (Fig. 1.1). The plate was pulled at both ends
perpendicular to the ellipse. He found that the stress at point A is given
by

2a
� � � 1 � .� �A b

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8



2 INTRODUCTION

A
2a

2b

σ

x

y

(a) (b)

Figure 1.1 (a) Inglis’ work on stress concentration near an elliptical hole. (b) Grif-
fith’s work on stress concentration near a sharp crack tip.

In other words, the stress at the tip of the elliptical hole can be much
larger than the stress applied. In the 1920s, A.A. Griffith extended
Inglis’ work. He found that the stress at the ends of the crack ap-
proaches infinity:

K
� � .

�2�x

Griffith also introduced the notion of energy. He said that for a crack
to grow, it was necessary for there to be enough potential energy in
the system to create the new surface area of the crack. Although he
did not know that it takes more than this for a crack to grow, Griffith’s
idea of fracture criterion laid the foundation for a brand new theory
called fracture mechanics, which is one of the most celebrated branches
of continuum mechanics in modern history.

More importantly, fracture mechanics brought continuum mechanics
and material science together and opened up new opportunities for
studying not only deformation of solid bodies but also the failure be-
havior of solid materials under load. Thus a new field called mechanics
of materials emerged. In mechanics of material, we use the vigorous
continuum mechanics theories to investigate and study how materials
with certain microstructures deform and eventually fail under given
loads or stresses.

Micromechanics is a branch of mechanics of materials. It is the most
recent development in applying continuum mechanics theories to real
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materials. The beginning of micromechanics may be traced back to
Eshelby’s seminal study (Eshelby, 1957). But, the theory of micro-
mechanics was not fully developed into a subject area of its own until
the early 1980s. Even though it is still an actively researched area now,
the theory of micromechanics has matured enough that several books
have been published. Among them, the books by Mura (1986), Nemat-
Nasser and Hori (1993), and Krajcinovic (1996) are probably the most
comprehensive and influential ones.

The theory of micromechanics of solids describes the scientific con-
cepts, principles, and methodologies for the study of thermomechanical
behavior of heterogeneous materials. Although the fundamental equa-
tions of micromechanics are based on mechanics of continuum, its
applications cover a broad range of thermomechanical behavior of ma-
terials including plasticity, fracture, and fatigue, constitutive equations
of composites, and polycrystalline materials. For example, it applies
the theories of elasticity and plasticity to study imperfections in crys-
tals, inclusions, and inhomogeneities in alloys and composite materials.
The objective is to study the macroscopic mechanical behavior of ma-
terials from an understanding of their microstructure. This involves the
application of continuum mechanics to identifiable small-scale struc-
tures and the use of analytical and numerical methods to compute the
macroscopic responses. This science-based approach enables us to pre-
dict the behavior of new materials without the need for physical ex-
perimentation. It provides a powerful tool for engineering design,
fabrication, and analysis of a wide range of materials including poly-
crystalline, composite, geotechnical, biological, and electronic materi-
als. Optimum microstructures can be forecasted rather than found by
trial and error. Fracture and fatigue of solids and structures, martensitic
transformations, interphases in composites, and dispersion hardening
of alloys are examples of the phenomena that are being elucidated and
qualified by micromechanics.

1.1 BACKGROUND AND MOTIVATION

As the theory of micromechanics matures, many universities around
the world are offering courses on this subject. For the past 15 years,
the authors have taught micromechanics classes in their respective in-
stitutions. We have always been frustrated by not being able to find an
appropriate textbook for the course. Most existing books on this subject
are research monographs, primarily for experts and researchers. They
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can be excellent research tools but not convenient to use as textbooks.
Because the theory of micromechanics is still in its infancy, results
were obtained by individual researchers using, sometime, very different
approaches/methodologies. In order for the students (or first-time
learners) to understand the intrinsic connections among different con-
cepts and approaches, a unified approach (including the use of nota-
tions) is needed to develop the micromechanics theory. This will allow
both the instructor and the students to fully grasp the essence of the
theory. Furthermore, instead of collecting and compiling existing re-
sults from the literature, we should identify a set of topics that convey
the fundamental ideas of micromechanics and focus on these topics.
Related topics not covered in the text should be referenced for those
who wish to learn more. Exercise problems should be provided for the
convenience of the instructor, as well as for those who wish to study
the subject on their own. These are the major considerations that mo-
tivated us to write this textbook.

1.2 OBJECTIVES

The intent of this book is not to provide a comprehensive collection of
results of micromechanics in the literature, nor is it to be a research
reference book for relevant publications. Instead, it is intended to be a
textbook for graduate and possibly upper-level undergraduate students.
It is to provide a teaching tool for an instructor to teach and a learning
aid for a beginner to learn (what we believe) the most fundamental
ideas and approaches, the basic concepts, principles, and methodologies
of micromechanics. To this end, a unified mathematical framework is
introduced early on in the book. The rest of the theories will be de-
veloped based on this framework in a logical and easily understandable
approach. In addition to some new results from the authors’ own re-
search, many of the available results in the literature will be derived or
re-derived based on this unified mathematical framework. This ap-
proach enables the students to follow the various developments of the
micromechanics theories. It also helps the students to quickly compre-
hend and appreciate the wide range of applications of micromechanics.

1.3 ORGANIZATION OF BOOK

The book is organized into 13 chapters. References and/or Suggested
Readings are included at the end of each chapter. Some of these ref-
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erences contain certain results not derived but used in the text. Others
are listed because they present either alternative approaches for the
same problem or provide additional topics related to those discussed
in the chapter. We have made great effort to make the book somewhat
self-contained. The goal was that a reader with the basic knowledge of
continuum mechanics should be able to follow this book without con-
sulting other publications.

Each chapter also contains a set of problems. The students, as well
as the instructor, may find these exercises useful. The level of difficulty
varies significantly among the problems. The students should not feel
discouraged if they cannot solve some of the problems on their first
attempt.

The reminder of this chapter presents the most frequently used no-
tations and notation conventions used in this book. In the next chapter,
a brief summary of the basic theories of continuum mechanics is pre-
sented. The rest of the chapters are grouped into linear theories (Chap-
ters 3–10) and nonlinear theories (Chapter 11–13).

1.4 NOTATION CONVENTIONS

One of the difficulties many people encounter in studying microme-
chanics is the different kinds of notations used in the literature. For
consistency, we will use the following conventions throughout this
book, unless otherwise noted.

Index notation for vectors and tensors will be used extensively.
Whenever possible, the base letter for a vector (first-order tensor) will
be a lowercase italic letter, for a second-order tensor it will be a low-
ercase Greek letter, and for a fourth-order tensor it will be an upper-
case italic letter. For example, ui represents a vector, �ij represents a
second-order tensor, and Lijkl represents a fourth-order tensor. Excep-
tions to these rules are certain letters conventionally used for specific
physical entities. For example, Gij is for the Green function, which is
a second-order tensor.

The summary convention will be used:

3 3

L � � L � . (1.4.1)� �ijkl kl ijkl kl
l�1 k�1

Alternately, when it is convenient, the direct (or matrix) notation of
vectors and tensors will be used as well. Boldface letters will be used
for this purpose. For example, u represents a vector, � represents a
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second-order tensor, and L represents a fourth-order tensor. To distin-
guish tensors with the same base letter a subscript will be used. For
example, L1 and L2 are used to denote two different fourth-order ten-
sors. Note that these subscripts are entirely different from the subscripts
used to represent the components of a tensor. Subscripts on matrix
notations do not follow the summation convention, therefore, when a
tensor in the matrix notation with a subscript is written in index forms,
we will change the subscript to superscript with parenthesis, for ex-
ample,

(1) (2)L ⇔ L and L ⇔ L .1 ijkl 2 ijkl

Throughout the book, index and matrix notations will be used inter-
changeably based on whichever is convenient.

To avoid confusion, we use the following notations to represent the
tensor algebraic operations.

Dot product: � n ⇔ � � nij j

Double-dot product: L � ⇔ L��, L T ⇔ L�Tijkl kl ijkl klmn

Dyad: m n ⇔ m � n, n m ⇔ n � mi j i j

Since dot and double-dot operations will be used extensively, we will,
when there is no ambiguity, neglect the dot(s) and simply write, for
example, L�� ⇔ L� and � � n ⇔ �n.

A fourth-order tensor, A, is nonsingular if and only there exists a
fourth-order tensor, for example, B, such that

AB � BA � I. (1.4.2)

In this case, B is the inverse of A, or A is the inverse of B, that is,

�1 �1B � A or A � B . (1.4.3)

An equivalent definition can be given as follows: A is singular if and
only if there exists a second-order tensor � � 0, such that A� � 0.

A fourth-order isotropic tensor can be written as

2–A � a� � � b(� � � � � � � � ). (1.4.4)ijkl ij kl ik jl il jk 3 ij kl

For convenience, we introduce the following two fourth order tensors:
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h 1 d 1 2– – –I � � � , I � (� � � � � � � � ), (1.4.5)ijkl 3 ij kl ijkl 2 ik jl il jk 3 ij kl

so that the fourth-order isotropic tensor given in (1.4.4) can be written
as

h dA � 3aI � 2bI . (1.4.6)

It can be easily shown that, if � is a second-order tensor, then

A� � 3a�I � 2b��, (1.4.7)

where � � �kk is the spherical part of �, and

1–�� � � � � � (1.4.8)ij ij 3 kk ij

is the deviatoric part of �. Furthermore, the following statements can
be easily proven:

1. A � 3aIh � 2bId is positive definite if and only if a � 0, b � 0.

2. A�1 � Ih � Id.
1 1
3a 2b

3. I � Ih � Id is the identity tensor, that is, I � AA�1 � A�1A.
4. If B � 3cIh � 2dId, then A � B � 3(a � c)Ih � 2(b � d)Id.
5. AB � BA � 9acIh � 4bdId.

Additionally, we introduce another symbolic notation for fourth-
order isotropic tensors:

A � (3a, 2b). (1.4.9)

The following statements can be easily proven:

1. A � (3a, 2b) is positive definite if and only if a � 0, b � 0.

2. A�1 �
1 1

, .� �3a 2b
3. I � (1,1) is the identity tensor, that is, I � AA�1 � A�1A �

(1,1).
4. If B � (3c, 2d), then A � B � (3a � 3c, 2b � 2d).
5. AB � BA � (9ac, 4bd).
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For tensor calculus, the most often used operations are the gradient
and divergence. The gradient of a scalar function results in a first-order
tensor:

�ƒ
b � �ƒ ⇔ b � � ƒ . (1.4.10)j , j�xj

The divergence of a vector is a scalar:

�b �b �b1 2 3a � div[b] � � � ⇔ a � b . (1.4.11)j, j�x �x �x1 2 3

In the above, the notation (•), j indicates the derivative with respect to
the independent variable of the function. If the function has more than
one independent variable, ambiguity may arise. In this case, instead of
using, for example, ƒ, j(x, y), we will use the standard notation to ex-
plicitly indicate partial derivatives, for example,

�ƒ(x, y)
. (1.4.12)

�x

The divergence of a second-order tensor becomes a vector:

��ijp � � � � ⇔ p � � � . (1.4.13)i ij, j�xj

For integrals, a single integral sign will be used. For line (one-
dimensional) integrals, the integration variable will be used for the
infinitesimal line element, for example,

y � � ƒ(x) dx,
L

where L is the line of integration. For surface (two-dimensional) inte-
grals, we will typically use dS for the infinitesimal area element, for
example,

y � � ƒ(x) dS,
S
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where S is the area of integration. Here, it is implied that x is the
integration variable since the integrand depends on x only. If the in-
tegrand depends on more than one independent variable, we will ex-
plicitly indicate which variable is being integrated, for example,

y(z) � � ƒ(x, z) dS(x).
S

Similarly, for volume (three-dimensional) integrals, we will use either
one of the following two forms:

y � � ƒ(x) dV, y(z) � � ƒ(x, z) dV(x).
V V

Finally, we introduce some special tensors. The Kronecker delta �ij

is defined by

1 for i � j
� � . (1.4.14)�ij 0 for i � j

And the permutation tensor �ijk is defined by

1 when i, j, k are an even permutation of 1, 2, 3
� � �1 when i, j, k are an odd permutation of 1, 2, 3 .ijk �0 when any two indices are equal

(1.4.15)

For example, �123 � �231 � �312 �1, �213 � �132 � �321 � �1, and
others are zero.

The permutation tensor and the Kronecker delta �ij are related
through the � � � relationship:

� � � � � � � � . (1.4.16)ijk mnk im jn in jm

REFERENCES
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376–396.
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2

BASIC EQUATIONS OF
CONTINUUM MECHANICS

In this chapter, we will introduce some basic equations of continuum
mechanics. It is assumed that the readers already have had some prior
knowledge of the subject. Therefore, lengthly derivations are omitted.
Only equations that are needed later for deriving the micromechanics
theories are outlined. For more detailed and in-depth knowledge of
continuum mechanics, we refer to the References and Suggested Read-
ings at the end of this chapter.

The fundamental equations governing the deformation of continuum
can be roughly classified into four categories: (1) kinematic equations
that deal with the description of motion and deformation, (2) kinetic
equations that deal with forces, stresses, and their equilibrium, (3) con-
stitutive equations that describe the material’s response under load, and
(4) boundary and initial conditions that are necessary to uniquely define
the boundary/initial value problems. We will discuss these classes of
equations separately.

2.1 DISPLACEMENT AND DEFORMATION

At any given instant of time t, a continuum having a volume V and
bounding surface S will occupy a certain region R of the physical space;
see Figure 2.1. When the continuum undergoes deformation, the par-
ticles (material points) within the continuum may be displaced from
one spatial position to another along various paths. The displacement
of a particle can be written as

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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X1
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u

Figure 2.1 Reference and current configurations.

u � x � X, (2.1.1)

where x is the position occupied at current time t by the particle that
occupied position X in the initial configuration (t � 0). In some liter-
ature, x is referred to as the spatial (Eulerian) coordinate, and X is
referred to as the material coordinate. This is because X can be viewed
as a label attached to a material particle while x indicates where the
particle is located at a give time.

The current position x of a particle originally located at X in the
initial configuration can be expressed by

x � x (X, t). (2.1.2)i i

Clearly, the above equation provides a way to find the new location of
each particle after the deformation. This way of describing the defor-
mation is called the Lagrangian description. On the other hand, the
Eulerian description uses the following equation:

X � X (x, t) (2.1.3)I I

to keep track of which particle happens to be at the location xi at the
current time t. For clarity, capital letters are used for the subscript of
a tensor component associated with the Lagrangian coordinate system
(the initial configuration), and the lowercase letters are used for the
subscript of a tensor component associated with the Eulerian coordinate
system (the current or deformed configuration). Such a distinction is
unnecessary if both the Lagrangian and Eulerian configurations use the
same coordinate system.

Equations (2.1.2)–(2.1.3) may be interpreted as a mapping between
the initial configuration and the current configuration. The continuum
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mechanics theory assumes that such mapping is sufficiently smooth
(differentiable) and one to one, that is, the Jacobian J � ��xi /�XJ� should
not become zero at any time.

Partial differentiation of (2.1.2) with respect to XJ and (2.1.3) with
respect to xj yield, respectively,

�1dx � F dX , dX � F dx , (2.1.4)i iJ J I Ij j

where

�x �Xi I�1F � and F � (2.1.5)iJ Ij�X �xJ j

are called the material deformation gradient tensor and the spatial de-
formation gradient tensor, respectively.

Through the polar decomposition (Malvern, 1969), the material de-
formation gradient tensor can be written as

F � R U � V R (2.1.6)iJ iK KJ ik kJ

where Rij is the (orthogonal) rotation tensor, and Uij and Vij are sym-
metric, positive definite tensors known as the right- and left-stretch
tensors, respectively.

Based on their definitions, a length segment dXI connecting two
neighboring particles in the undeformed configuration becomes a
length segment dxi connecting the same two particles now in the de-
formed configuration. The difference between the lengths (square) of
these two segments, dxi dxi � dXI dXI, can be used as a measure of
deformation occurring in the neighborhood of these particles when the
continuum is deformed from the initial configuration to the current
configuration, that is,

dx dx � dX dX � 2E dX dX � 2E* dx dx , (2.1.7)i i I I IJ I J ij i j

where

�u1 �x �x 1 �u �u �ujk k i k kE � � � � � � (2.1.8)� � � �IJ IJ2 �X �X 2 �X �X �X �XI J J I I J

1 �X �X 1 �u �u �u �uK K I J K KE* � � � � � � (2.1.9)� � � �ij ij2 �x �x 2 �x �x �x �xi j j i i j
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are called the Lagrangian (Green) finite strain tensor and the Eulerian
(or Cauchy) finite strain tensor, respectively.

When the same coordinate system is used for both the initial refer-
ence configuration and the current configurations, the strain tensors can
be further written as

�u �u1 �u �u �u 1 �u �u �uj ji k k i k kE � � � , E* � � � .� � � �ij ij2 �X �X �X �X 2 �x �x �x �xi i i j i i i j

(2.1.10)

When the displacement gradients are small, that is, ��ui/�Xj� �� 1 and
��ui /�xj� �� 1, neglecting the higher order terms leads to

�u �u �X �u �X �ui i k i k i� � � � � . (2.1.11)� �kj�x �X �x �X �x �Xj k j k j j

Thus one has, from (2.1.8) and (2.1.9), that

�u �u1 �u 1 �uj ji iE � � � E* � � � � , (2.1.12)� � � �ij ij ij2 �X �X 2 �x �xi i i i

where �ij is called the infinitesimal strain tensor.
Other kinematic tensors often used in viscoelastic and plastic theo-

ries are the rate of deformation tensor and the spin tensor:

�v �v1 �v 1 �vj ji iD � � , W � � , (2.1.13)� � � �ij ij2 �x �x 2 �x �xj i j i

where vi(x1, x2, x3, t) is the velocity field

du dxi iv � � (2.1.14)i dt dt

expressed in terms of the Eulerian (spatial) coordinates xi.
For small strain deformation,
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d� �u �(du /dt)d 1 �u 1 �(du /dt)ij j ji i� � � �� � �� � �dt dt 2 �x �x 2 �x �xj i i i

�v1 �v ji� � ,� �2 �x �xj i

that is,

d�ij
� D . (2.1.15)ijdt

This is no longer true for finite deformation. Instead, we have (Malvern,
1969)

dEIJ � F D F . (2.1.16)mI mn nJdt

2.2 STRESSES AND EQUILIBRIUM

The state of stress at a point in a continuum can be represented by the
Cauchy stress tensor �ij in the current (or deformed) configuration.
Note that the components of the Cauchy stress tensor are defined as
force per unit area in the deformed configuration. Balance of the mo-
ment of momentum (Cauchy’s second law of motion) dictates the sym-
metry of the Cauchy stress tensor, that is, �ij � �ji. Furthermore, in the
deformed configuration, Cauchy’s first law of motion yields the equi-
librium equation

��ji
� ƒ � 0 or � � � � f � 0, (2.2.1)i�xj

where ƒi is the body force per unit volume in the deformed configu-
ration.

Equation (2.2.1) is valid for any material point within a continuum
body. For a material point on the surface (boundary) of the a continuum
(see Fig. 2.2), the following Cauchy formula applies:
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Figure 2.2 Cauchy formula on the deformed (current) surface.

� n � � p or � � n� � p, (2.2.2)ij j S i S

where, as shown in Figure 2.2, ni is the unit outward normal vector of
the surface S and pi is the traction vector applied on S. Note that pi is
measured as force per unit deformed area.

Note that (2.2.1) describes the equilibrium of an infinitesimal ma-
terial element in the deformed configuration. The Cauchy stress tensor
is typically written as a function of the Eulerian spatial coordinates xi.
To describe the equilibrium in the initial (undeformed) configuration,
the Piola–Kirchhoff stress tensors may be introduced.

The first Piola–Kirchhoff stress tensor, is defined as the actual0� ,Ij

force in the deformed configuration per unit undeformed area in the
undeformed configuration, while the second Piola–Kirchhoff stress ten-
sor, is defined as a fictitious force in the undeformed configuration�̃ ,IJ

per unit undeformed area in the undeformed configuration. The ficti-
tious force here is obtained by transforming the actual force in the
deformed configuration back to the undeformed configuration, which
is equivalent to premultiplying the actual force in the deformed con-
figuration by the spatial deformation gradient tensor, Hence, the�1F .Ij

two Piola–Kirchhoff stresses are related by the deformation gradient
tensors:

�1 0 0�̃ � F � or � � �̃ F . (2.2.3)IJ Jk Ik Ij IK jK

The Piola–Kirchhoff stresses are typically written as functions of the
Lagrangian material coordinates Xi. They can be related to the Cauchy
stress tensor by

0 �1 �1 �1� � JF � , �̃ � JF F � (2.2.4)Ij Ik kj IJ Ik Jm km

or
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1 1 0� � F F � �̃ � F � , (2.2.5)ij iK jM KM iK KjJ J

where J is the Jacobian given by J � ��xi /�Xj� � �0/�, and �0 and �
are the mass density measured in the initial reference state and the
current deformed state, respectively. It is seen from (2.2.4) that is�̃IJ

symmetric while is generally nonsymmetric. It is important to keep0� Ij

in mind that the Piola–Kirchhoff stress tensors are not actual stresses,
that is, they do not exist in the continuum under consideration. They
are introduced to simplify the equilibrium equation in the initial con-
figuration, namely,

0�� �(�̃ F )Ji JK iK� ƒ � 0 or � ƒ � 0, (2.2.6)0 0�X �XJ J

where ƒ0 is the body force per unit volume in the initial configuration.
The Cauchy formula given by (2.2.2) can also be expressed in the

initial configuration,

0 �1 0� N � F p̃ , �̃ N � F p , (2.2.7)Ji J iJ J JI j Ij j

where

dS dS0 �1p � p , p̃ � F p , (2.2.8)j j J Jk kdS dS0 0

and dS0 is an area element in the initial configuration, and dS is the
same area element in the deformed configuration. Note that pj is the
force acting on the deformed surface per unit deformed area. Therefore,

is the force acting on the deformed surface per unit undeformed0pj

area, while is a fictitious force acting on the deformed surface perp̃J

unit undeformed area. This fictitious force is the actual force acting on
the deformed surface transformed by Neither of and is a real�1 0F . p p̃Jk j J

traction vector. They are called pseudotraction vectors introduced to
accommodate the pseudostress tensors.

For small deformation, that is, ��ui /�XJ� �� 1 and ��ui/�xj� �� 1,
one can show from (2.1.5) that when the same coordinate system is
used for both the Lagrangian and Eulerian configurations,
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D

S
n

Figure 2.3 Region D bounded by the surface S.

�u �x �ui i iF � � � and J � � 1 � . (2.2.9)� �ij ij �X �X �Xj j j

Thus, it follows from (2.2.4) that Piola–Kirchhoff stresses reduce to
the Cauchy stress,

0� � �̃ � � (2.2.10)ij ij ij

for small deformation. Furthermore, the distinction between ni and Ni

and between dS and dS0 can also be neglected. Thus, the pseudotraction
vectors reduce to the Cauchy traction vector as well.

2.3 ENERGY, WORK, AND THERMODYNAMIC POTENTIALS

We first review some of the integral identities from mathematical phys-
ics. Consider region D bounded by the surface S. The outward unit
normal vector of S is denoted by ni; see Figure 2.3.

Let ƒ(x1, x2, x3) be a continuously differentiable scalar function de-
fined in D. The Green’s theorem states that

�ƒ� dV � � ƒn dS. (2.3.1)i
D S�xi

Let ui(x1, x2, x3) be a continuously differentiable vector function de-
fined in D. The divergence theorem states that

�ui� dV � � u n dS or � �u dV � � u • n dS (2.3.2)i i
D S D S�xi

Next consider a simple, closed, and smooth curve L. Let S be any
smooth surface spanned across the closed curve. The tangential direc-
tion of the curve and the normal direction of the surface are denoted
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Figure 2.4 Stokes’ theorem.

by ti and ni, respectively. To get the positive orientation of L think of
yourself as walking along the curve. While you are walking along the
curve if your head is pointing in the same direction as the unit normal
vectors of the surface while the surface is on the left, then you are
walking in the positive direction on L; see Figure 2.4. Now, let ui(x1,
x2, x3) be a continuously differentiable scalar function defined on the
surface S. The Stokes’ theorem states that

� � u n dS � � u t dL or � (� � u) • n dS � � u • t dL,ijk k, j i i i
S L S L

(2.3.3)

where �ijk is the permutation symbol.
Note that (2.3.1)–(2.3.3) are mathematical identities. They are true

regardless of the physical interpretation of the functions involved. Nev-
ertheless, when properly interpreted, these integral identifies may be
used to state the conservation of certain physical entities.

Now, let us consider the energy of a continuum. Generally speaking,
the total energy of a continuum is comprised of two parts, the kinetic
energy and the internal energy. The kinetic energy is associated with
the macroscopically observable motion of the continuum. Usually, the
kinetic energy of the random thermal agitation of the atoms is consid-
ered part of the internal energy associated with the temperature of the
continuum. The other part of the internal energy may include stored
strain energy and possibly other forms of energy, such as chemical,
electrical, and optical energies.

Let � be the mass density and � be the internal energy per unit mass
or specific internal energy for a continuum in the current (deformed)
configuration. The first law of thermodynamics in conjunction with the
divergence theorem leads to the following energy equation (Malvern,
1969):
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d� �qi� � � D � �r � , (2.3.4)ij ijdt �xi

where �ij is the Cauchy stress tensor, Dij is the rate of deformation
tensor, r is the distributed internal heat source per unit mass, and qi is
the (outward) heat flux vector. The first term on the right-hand side of
(2.3.4) is called stress power. It represents the power input per unit
deformed volume provided by the stress field. The last two terms of
the right-hand side represent the total heat input from internal heat
source and external heat flux. Together, the right-hand side of (2.3.4)
gives the total energy input, while the left-hand side shows the time
rate of change of internal energy. Therefore, (2.3.4) is a mathematical
statement of conservation of energy.

The quantity of particular interest to us is the stress power, �ijDij. In
a volume V of the deformed configuration, the stress power is given
by

� � D dV. (2.3.5)ij ij
V

This can be converted to the initial reference configuration in terms of
the Piola–Kirchhoff stress tensors:

dF dEjI IJ0� � D dV � � � dV � � �̃ dV . (2.3.6)ij ij Ij 0 IJ 0
V V Vdt dt0 0

For this reason, we call (�ij, Dij) a conjugate pair in the current de-
formed configuration, and dFjI /dt) and dEIJ/dt) conjugate0(� , (�̃ ,Ij IJ

pairs in the initial reference configuration. In computing the energy, we
must use variables that form a conjugate pair in the same configuration.

We are now ready to introduce the thermodynamic potentials. The
fundamental assumption here is that the internal energy per unit mass
of a continuum can be uniquely determined by the specific entropy s,
and some state variables �i, that is,

� � �(s, � , � , . . . , � ). (2.3.7)1 2 n

This is called the caloric equation of state, and � is, therefore, a ther-
modynamic potential. From here, one can define the thermodynamic
temperature and thermodynamic forces, respectively:
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�� ��
T � and 	 � . (2.3.8)� � � �i�s ��i� si

These yield

�� ��
d� � d� � ds � 	 d� � T ds. (2.3.9)� � � �i i i�� �si s �i

For adiabatic (�r � qi,i � 0) and isentropic (ds � 0) deformation,
and for isothermal (dT � 0) deformation with reversible heat transfer
(�r � qi,i � �T ds /dt), the work of the thermodynamic forces is re-
coverable, and the rate of work of the thermodynamic forces equals
the stress power:

d�i�	 � � D . (2.3.10)i ij ijdt

Thus, in these cases, the rate of change of the internal energy is given
by

d� ds
� � � D � �T . (2.3.11)ij ijdt dt

In the reference configuration, this takes the form

d� 1 dE dsIJ� �̃ � T . (2.3.12)IJdt � dt dt0

Other thermodynamic potentials used often in continuum mechanics
are:

Enthalpy: 
 � � � 	i�i. (2.3.13)

Helmholtz free energy: h � � � sT. (2.3.14)

Gibbs free energy: g � � � sT � 	i�i. (2.3.15)
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2.4 CONSTITUTIVE LAWS

Constitutive laws are used to describe material behavior when subjected
to applied thermomechanical loads. One of the major areas of micro-
mechanics is to develop constitutive laws for heterogeneous materials
under various thermomechanical loading conditions. For real materials,
their thermomechanical behavior can be rather complex. It is usually
not feasible to write down one or a set of equations to describe the
entire range of material behavior. Instead, we formulate separately con-
stitutive equations describing various kinds of idealized material re-
sponse, each of which is a mathematical formulation designed to
approximate physical observations of a real material’s response over a
suitably restricted range. Specifically, constitutive laws for ideal ma-
terials are prescribed by equations that establish the relationship be-
tween deformation and the internal stresses in the material. For
example,

G(� , D ) � 0 (2.4.1)ij ij

describes a relationship between the Cauchy stress tensor and the rate
of deformation tensor. In what follows, we will describe some com-
monly used constitutive laws governing certain idealized material be-
havior.

Elasticity

If there exists a potential function W of strain for a given material such
that the stress in the material is related to the strain by

�W
�̃ � , (2.4.2)IJ �EIJ

then the material is called an elastic (or hyperelastic) material, and such
material behavior is called elasticity. Equation (2.4.2) is the constitutive
equation for elastic materials. For elastic material under isothermal and
isentropic conditions, the Helmholtz free energy can be taken as the
elastic potential W � �0h, that is,

�W �h ��
�̃ � � � � � . (2.4.3)IJ 0 0�E �E �EIJ IJ IJ

Thus, /�0 is the thermodynamic force conjugate to EIJ.�̃IJ
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Another consequence of the elastic potential is that the state of de-
formation is uniquely determined by the state variables. In the isother-
mal case, the state variables are the strain components. The stress field
corresponding to a strain field is unique regardless how that state of
strain is arrived. In other words, the deformation is history independent.
Consequently, upon unloading, an elastic material recovers its original
state or shape and size.

Since W is assumed to be a function of strain only, it can also be
interpreted as the strain energy per unit undeformed volume. In the
initial reference configuration, the Taylor expansion of W can be written
as

1 1– –W � W � c E � L E E � c E E E � � � � ,0 IJ IJ 2 IJKL IJ KL 6 IJKLMN IJ KL MN

(2.4.4)

where, traditionally, LIJKL are called the second-order elastic constants
and cIJKLMN are called the third-order elastic constants. The constants
W0 and cIJ are typically zero unless, for example, when residual stress
exists in the initial reference configuration.

A material is said to behave linear elastically if the higher order
terms in (2.4.4) can be neglected and the stresses are linearly related
to the strains. In the undeformed configuration, the constitutive equa-
tion for linear elastic materials can be written in terms of the second
Piola–Kirchhoff stress tensor and the Lagrangian finite strain tensor,

�̃ � L E or E � M �̃ , (2.4.5)IJ IJKL KL IJ IJKL KL

where the fourth-order tensor LIJKL is called the elasticity (or stiffness)
tensor, and MIJKL is the compliance tensor, which is the inverse of the
stiffness tensor, that is,

1–M L � I � (� � � � � ), (2.4.6)IJMN MNKL IJKL 2 IK JL IL JK

where �IJ is the Kronecker delta:

1 for I � J
� � . (2.4.7)	IJ 0 for I � J

Most engineering materials show linear elastic behavior only when
the deformation is very small. In this case, the small-strain constitutive
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Table 2.1 Relationship between Lijkl and Cij

Lijkl kl

ij 11 22 33 23 31 12

11 C11 C12 C13 C14 C15 C16

22 C21 C22 C23 C24 C25 C26

33 C31 C32 C33 C34 C35 C36

23 C41 C42 C43 C44 C45 C46

31 C51 C52 C53 C54 C55 C56

12 C61 C62 C63 C64 C65 C66

law for linear elastic materials can be written in terms of the Cauchy
stress tensor and the infinitesimal strain tensor:

� � L � or � � M � . (2.4.8)ij ijkl kl ij ijkl kl

The above equation is often referred to as the generalized Hooke law.
For linear elastic materials, it is sometime convenient to write the

Hooke law in terms of the Voigt elastic constants:

� � C�, (2.4.9)

where

� �11 11

� �22 22

� �33 33� � , � � , (2.4.10)
� 2�23 23

� 2�
 � 
 �31 31

� 2�12 12

and the elements of the 6 � 6 stiffness matrix C are called the (Voigt)
elastic constants. They are related to the components of stiffness tensor
L through the relationship shown in Table 2.1.

Both the stiffness and compliance tensors are fourth-order tensors.
They obey the tensor transformation law,

ˆ ˆL � � � � � L , M � � � � � M , (2.4.11)ijkl im jn kp lq mnpq ijkl im jn kp lq mnpq

where and are the components of the stiffness and complianceˆ ˆL Mijkl ijkl

tensors, respectively, in the coordinate system, which is related tox̂i

the original xi coordinate system by the rotation tensor �ij through
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x̂ � � x . (2.4.12)i ij j

For the Voigt elasticity matrix, if the coordinate transformation is a
rotation about the x3 axis by an angle �, one can show that (Ting, 1996),

T �1 T �1ˆ ˆC � �C� , S � (� ) S� , (2.4.13)

where

2 2m n 0 0 0 2mn
2 2n m 0 0 0 �2mn

0 0 1 0 0 0
� � (2.4.14)0 0 0 m �n 0

0 0 0 n m 0
 �
2 2�mn mn 0 0 0 m � n

in which m � cos �, n � sin �.
The stiffness tensor of a linear elastic material is positive definite

and possesses the following symmetries:

L � L � L . (2.4.15)ijkl klij jikl

Because of these symmetries, there are 81 independent components
called elastic constants in the most general case. The number of in-
dependent components of the stiffness tensor is much less when the
material possesses certain symmetries. For example, for materials with
cubic symmetry, such as face-center-cubic (FCC) and body-center-
cubic (BCC) crystals, the stiffness tensor has only three independent
components:

L � 
� � � �(� � � � � ) � �d , (2.4.16)ijkl ij kl ik jl il jk ijkl

where 
, �, and � are related to the Voigt constants by


 � C , � � C , � � C � C � 2C . (2.4.17)12 44 11 12 44

The symbol dijkl is defined by the following:

d � d � d � 1, others � zero. (2.4.18)1111 2222 3333

For isotropic materials, there are only two independent components
in the stiffness tensor, that is,
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L � 
� � � �(� � � � � ), (2.4.19)ijkl ij kl ik jl il jk

where the Lame constants 
 and � are related to the Voigt constants
by


 � C , � � C . (2.4.20)12 44

In some cases, it is more convenient to rewrite (2.4.19) as

2–L � K� � � �(� � � � � � � � ), (2.4.21)ijkl ij kl ik jl il jk 3 ij kl

where K and � are the bulk and shear moduli, respectively. The cor-
responding compliance tensor is given by

1 1 2–M � � � � (� � � � � � � � ). (2.4.22)ijkl ij kl ik jl il jk 3 ij kl9K 4�

Using the symbolic notation (1.4.2), the isotropic stiffness tensor and
compliance tensor can be written as

1 1
L � (3K, 2�), M � , . (2.4.23)� �3K 2�

Other elastic constants such as Young’s modulus, Poisson’s ratio, the
shear modulus, and so forth, are also commonly used for isotropic
materials. The relationships among the various elastic constants for
isotropic materials are given in Appendix 2.A. The Voigt elastic con-
stants for materials with other types of symmetries are listed in Ap-
pendix 2.B.

Thermoelasticity

In addition to mechanical stresses, temperature change may also cause
deformation in a continuum. Vice versa, deformation of a continuum
may cause the temperature in the continuum to change. Such temper-
ature effects in elastic materials are described by thermoelastic consti-
tutive laws. Some commonly used thermoelastic constitutive laws are
presented here.

We assume that, at the temperature T0, the continuum is stress free
in the initial reference state. In the deformed (current) state, let the
temperature be T. The Helmholtz free energy is given by (2.3.14)
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h(E , T) � �(E , T) � Ts(E , T), (2.4.24)IJ IJ IJ

or

dh �h dE �h dT d� dT dsIJ� � � � s � T . (2.4.25)
dt �E dt �T dt dt dt dtIJ

Making use of (2.3.12) and (2.3.11) in the above, we have

�h dT 1 �h dEIJs � � �̃ � � 0. (2.4.26)� � � �IJ�T dt � �E dt0 IJ

Since EIJ and T are independent state variables, satisfaction of the above
equation means

�h �h
s � � , �̃ � � . (2.4.27)IJ 0�T �EIJ

The difference between the second of (2.4.27) and (2.4.3) is that the
Helmholtz free energy in (2.4.27) is a function of both strain and tem-
perature.

The Taylor expansion of the Helmholtz free energy in terms of
strains and temperature can be written as

1 1 2– –� h � h � c E � L E E � � �T � � �T0 0 IJ IJ 2 IJKL IJ KL 2

� � L E �T � � � . (2.4.28)KL IJKL IJ

For convenience, we have used

�T � T � T . (2.4.29)0

It thus follows that

�h 1
s � � � � (� � � �T � � E � � �), (2.4.30)IJ IJ�T �0

�h
�̃ � � � c � L E � L � �T � � � . (2.4.31)IJ 0 IJ IJKL KL IJKL KL�EIJ
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Equation (2.4.31) is the stress–strain relationship in thermoelasticity.
The constant term cIJ is usually zero unless initial stresses are present.
The fourth-order tensor LIJKL is the second-order elasticity tensor intro-
duced in (2.4.4). The second-order tensor �IJ is called the linear co-
efficient of thermal expansion. The quantity

E* � � �T (2.4.32)KL KL

corresponds to the deformation due to temperature change. We will call
it thermal strain.

Note that although (2.4.31) provides the stress–strain relationship, it
is not a complete description of the constitutive law for thermoelastic-
ity. In thermoelasticity, in addition to stresses and strains, temperature
is also an unknown field quantity that needs to be solved simultane-
ously with the deformation. Therefore, the complete constitutive law
of thermoelasticity should also include (2.4.30), which will provide the
constitutive relation for heat conduction in the continuum. Such cou-
pled deformation and temperature problems are rather difficult to solve.
Fortunately, in most engineering applications, the effect of deformation
on the temperature field is negligible. Therefore, one can solve for the
temperature field first by solving the heat conduction problem inde-
pendent of the deformation. Once the temperature field is known, the
only constitutive relation needed for solving the deformation problem
in thermoelastic materials is (2.4.31). Such approach that decouples the
heat conduction and thermoelasticity into two separate problems is of-
ten used in engineering applications.

In case of small strain deformation, the linear thermoelastic stress–
strain relationship can be written as

� � L (� � �*), (2.4.33)ij ijkl kl kl

where the thermal strain is given by�*kl

�* � � �T. (2.4.34)kl kl

If the material is isotropic (both elastically and thermally), the elastic
stiffness tensor Lijkl is given by (2.4.21), and the coefficient of thermal
expansion is given by

� � �� , (2.4.35)ij ij
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where � is the isotropic coefficient of thermal expansion. Thus, the
small-strain constitutive law for isotropic thermoelastic material can be
written as

2–� � (K � �)(� � 3� �T)� � 2�� . (2.4.36)ij 3 kk ij ij

Viscoelasticity

Viscoelastic constitutive laws are used to describe the time-dependent
characteristics of material deformation. In this section, we will limit
ourselves to small-strain deformation and linear viscoelasticity theories.
In this case, a commonly used stress–strain relationship is given by

t d� (s)kl� (t) � G (t)� (0) � � G (t � s) ds, (2.4.37)ij ijkl kl ijkl
0 ds

where �ij(t) is the time-dependent strain tensor and Gijkl(t) is called the
relaxation function. It has been assumed that for t � 0, both �ij(t) and
Gijkl(t) are zero, that is, �ij(t) � 0 and Gijkl(t) � 0 for t � 0. Further,
the symmetry of the stress and strain tensors implies

G (t) � G (t) � G (t). (2.4.38)ijkl jikl ijlk

Under constant strain �kj(t) � �kj(0), we have d�kl(t)/dt � 0. Thus,
(2.4.37) reduces to

� (t) � G (t)� (0). (2.4.39)ij ijkl kj

This is the reason that Gijkl(t) is termed a relaxation function, for it
represents the stress relaxation under constant strain.

Alternative to (2.4.37), the viscoelastic stress–strain law can also be
written as

t d� (s)kl� (t) � J (t)� (0) � � J (t � s) ds, (2.4.40)ij ijkl kl ijkl
0 ds

where it has been assumed that for t � 0, both �ij(t) and Jijkl(t) are
zero, that is, �ij(t) � 0 and Jijkl(t) � 0 for t � 0. The fourth-order tensor
function Jijkl(t) is called the creep function because under constant stress
�kj(t) � �kj(0), we have d�kl(t)/dt � 0. Thus, it follows from (2.4.40)
that



30 BASIC EQUATIONS OF CONTINUUM MECHANICS

� (t) � J (t)� (0). (2.4.41)ij ijkl kj

Now, consider the Laplace transform

�
� �stƒ(s) � � ƒ(t)e dt. (2.4.42)

0

Note that

� t
� ��st� � ƒ(t � s)g(s) ds e dt � ƒ(s)g(s), (2.4.43)� �

0 0

� dg(s) ��st� e dt � sg(s) � g(0). (2.4.44)
0 ds

Applying the Laplace transform to both sides of (2.4.37)–(2.4.40) and
making use of the above equations, we obtain

� � � � � �
� (t) � sG (s)� (s) and � (t) � sJ (s)� (s). (2.4.45)ij ijkl kl ij ijkl kl

It thus follows that

� � �1sG (s) � [sJ (s)] . (2.4.46)ijkl ijkl

We see that, in the Laplace transform space, (2.4.45) is very similar
to the linear elastic constitutive law (Hooke’s law). The function

(s) can be viewed as the ‘‘stiffness tensor’’ of the viscoelastic�sGijkl

material in the Laplace transform space, while (s) is the ‘‘com-�sJ ijkl

pliance tensor.’’ Note that it is generally not true that Gijkl(t) �
[Jijkl(t)]�1, although one can show that (Christensen, 1982)

�1 �1lim G (t) � lim [J (t)] and lim G (t) � lim [J (t)] .ijkl ijkl ijkl ijkl
t→0 t→0 t→� t→�

(2.4.47)

When the material is isotropic, the relaxation and creep functions
can be written as
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1 1– –G (t) � [G (t) � G (t)] � G (t)(� � � � � ), (2.4.48)ijkl 3 b s 2 s ik jl il jk

1 1– –J (t) � [J (t) � J (t)] � J (t)(� � � � � ), (2.4.49)ijkl 3 b s 2 s ik jl il jk

where Gs(t) and Gb(t) are, respectively, the shear and bulk relaxation
functions, while Js(t) and Jb(t) are the shear and bulk creep functions,
respectively. Making use of the above in (2.4.37) and (2.4.40), respec-
tively, leads to

t d��(s)ij
��(t) � G (t)��(0) � � G (t � s) ds, (2.4.50)ij s ij s

0 ds

t d� (s)kk� (t) � G (t)� (0) � � G (t � s) ds, (2.4.51)kk b kk b
0 ds

and

t d��(s)ij
��(t) � J (t)� (0) � � J (t � s) ds, (2.4.52)ij s ij s

0 ds

t d� (s)kk� (t) � J (t)� (0) � � J (t � s) ds. (2.4.53)kk b kk b
0 ds

In the Laplace transform space, these stress–strain relationships can be
written as

� � � � � �
��(s) � sG (s)�� (s), � (s) � sG (s)� (s) (2.4.54)ij s kl kk b kk

and

� � � � � �
��(s) � sJ (s)��(s), �� (s) � sJ (s)�� (s), (2.4.55)ij s ij kk b kk

where (s) and (s) are the deviatoric strain and deviatoric stress� �
�� ��ij ij

tensors in the Laplace transform space, respectively,

Plasticity

For many engineering materials, particularly, metallic materials, defor-
mation becomes permanent once the strain goes beyond the elastic
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limit. Although the mechanisms causing such permanent deformation
are rather complex, the macroscopic behavior can be approximately
represented by certain functions called elastic-plastic constitutive laws.
More detailed and in-depth discussions of elastic-plastic constitutive
laws will be given in Chapters 11–13. Here, we will only outline the
basic ideas of some commonly used constitutive laws for idealized
elastic-plastic materials.

For a material to be plastically deformed, certain combinations of
the stress components, called the effective stress, must be larger than
a threshold value, which is typically called the yield strength of the
material. When the effective stress is below the yield strength, the ma-
terial behaves linear elastically, and the linear elastic constitutive law
can be used. When the effective stress is above the yield strength, the
material behaves plastically, and elastic-plastic constitutive laws are
needed to describe the postyield behavior. Thus, elastic-plastic consti-
tutive laws typically consist of a yield criterion and a function to de-
scribe the postyield stress–strain relationship. The latter is called the
flow rule; for plastic deformation it is called historically plastic flow.

It is assumed that, for a given state of a material, there exists a
function ƒ(�ij) called the yield function such that the material behaves
elastically if

d��ƒ ijƒ(� ) � 0, or ƒ(� ) � 0 and � 0, (2.4.56)ij ij �� dtij

and the material behaves plastically if

d��ƒ ijƒ(� ) � 0 and � 0. (2.4.57)ij �� dtij

The above yield criterion can be understood as follows. The equation
ƒ(�ij) � 0 defines a yield surface in the stress space. It is one of the
basic assumptions in plasticity that the yield surface is a closed concave
surface enclosing the origin of the stress space. Therefore, we can speak
of its inside and outside. For a stress state inside the yield surface, we
have ƒ(�ij) � 0. The stress is not high enough to yield the material yet,
and the deformation is elastic. When the stress state reaches the yield
surface, that is, ƒ(�ij) � 0, the situation is not unique. It depends on
whether, at the next moment, the stress state is moving out of or mov-
ing back inside the yield surface. Note that �ƒ/��ij is an outward (not
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necessarily unit) vector of the yield surface, and d�ij /dt is the direction
of stress increment. Therefore, (�ƒ/��ij)(d�ij /dt) � 0 means that the
direction of stress increment at the next moment is moving out of the
yield surface, thus plastic yielding occurs. On the other hand, (�ƒ/
��ij)(d�ij /dt) � 0 means that the stress state is moving back inside the
yield surface; thus the deformation is elastic.

The most commonly used yield functions are the von Mises yield
function

2ƒ(� ) � J � k , (2.4.58)ij 2

and the Tresca yield function

3 2 2 4 6ƒ(� ) � 4J � 27J � 36J � 96k J � 64k , (2.4.59)ij 2 3 2 2

where k is a material constant (yield strength in pure shear), and

1 1– –J � ����, J � ���� �� , (2.4.60)2 2 ij ij 3 3 ij jk ki

are called, respectively, the second and third invariants of the deviatoric
stress tensor

1–�� � � � � � . (2.4.61)ij ij 3 kk ij

For other types of yield functions, the readers are referred to the Ref-
erences and Suggested Reading at the end of this chapter.

Among the many flow rules for postyield behavior, the simplest one
is the Levy–Mises perfectly plastic constitutive law. It assumes that
postyield deformation is incompressible and fully characterized by the
rate of deformation tensor, which is related to the deviatoric Cauchy
stress tensor through

k�2
�� � D , D � 0. (2.4.62)ij ij kk�D Dmn mn

Together, the yield conditions (2.4.56) and (2.4.57) and the postyield
stress–strain relationship (2.4.62) form a constitutive law to describe
mechanical behavior of an elastic–perfectly plastic material. Note that
such simple constitutive law is rather limited in its application to real
engineering materials because (1) it assumes that plastic deformation
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n
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Su

Sσ

Figure 2.5 An elastic body V in the undeformed configuration.

does not produce any volume change (incompressibility), and (2) it
assumes no work hardening. More realistic constitutive laws for elastic-
plastic materials will be discussed in Chapters 10–13.

2.5 BOUNDARY VALUE PROBLEMS FOR SMALL-STRAIN
LINEAR ELASTICITY

For the remaining part of this chapter, we will focus on linear elastic
material under small-strain deformation. As discussed in previous sec-
tions, the distinction between the reference and current configurations
can be neglected when the deformation is small. Therefore, for such
small deformation, we will not distinguish the different types of stress
and strain measures, nor do we need to distinguish the spatial coordi-
nate from the material coordinate. Instead, for convenience, we will
simply use �ij for stress and �ij for strain, and xi for coordinates.

Now, consider a continuum of volume V and surface S (see Fig. 2.5).
The total surface S may be divided into S � Su � S� , where it is
assumed that the displacements are prescribed on Su and the traction
is prescribed on S� , that is,

(0)u � � u (2.5.1)i S iu

(0)� n � � p , (2.5.2)ij j S i�

where and are given values of displacement and traction on Su
(0) (0)u pi i

and S� , respectively.
Within the domain V, the stress must satisfy the equilibrium equation

(2.2.1),
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� � ƒ � 0 in V (2.5.3)ji, j i

where ƒi is the body force per unit volume. Combining (2.5.1), (2.5.2),
and (2.5.3) in conjunction with Hooke’s law, we arrive at the following
boundary value problem:

� � ƒ � 0 in V, (2.5.4)ji, j i

� � L u in V, (2.5.5)ij ijkl k,l

(0)u � � u , (2.5.6)i S iu

(0)� n � � p . (2.5.7)ij j S i�

This is a well-posed boundary value problem with nine unknowns (six
stress components plus three displacement components) and nine equa-
tions. Theoretically speaking, for a given set of functions and(0) (0)u pi i

on S, and a given function ƒi in V, the stresses and displacements in V
can be uniquely determined by solving the above boundary value prob-
lem. In most cases, numerical methods by computers are needed to
obtain the solutions.

Making use of Hooke’s law, the stress tensor can be eliminated from
the above boundary value problem. Thus we have alternatively,

L u � ƒ � 0 in V, (2.5.8)ijkl k,lj i

(0)u � � u , (2.5.9)i S iu

(0)L u n � � p . (2.5.10)ijkl k,l j S i�

2.6 INTEGRAL REPRESENTATIONS OF
ELASTICITY SOLUTIONS

Let us first consider a boundary value problem in an unbounded domain
V comprised of a homogeneous linear elastic material with elasticity
tensor Lijkl. We assume that the body force ƒi is localized, that is,

2 2 2ƒ → 0 as x � x � x → �. (2.6.1)i 1 2 3

and the entire boundary (at infinity) is traction free, that is,
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(0) 2 2 2L u n � � p → 0 as x � x � x → �. (2.6.2)ijkl k,l j S i 1 2 3

Under these conditions, the displacement ui should satisfy the following
boundary value problem:

L u � ƒ � 0 in V, (2.6.3)ijkl k,lj i

2 2 2u → 0 as x � x � x → �. (2.6.4)i 1 2 3

Several approaches can be used to solve this problem. We will use
the Fourier transform method. The one-dimensional Fourier transform
is defined by the following integrals:

�1 �i�xĝ(�) � � g(x)e dx, (2.6.5)
��2�

�
i�xg(x) � � ĝ(�)e d�, (2.6.6)

��

where i � and is used to denote the Fourier transform of��1 ĝ(�)
g(x). In three-dimensional space, the Fourier transform may be defined
by the following pair of integrals:

�1 �i��xĝ(�) � � g(x)e dx (2.67)3
��(2�)

�
i��xg(x) � � ĝ(�)e d� (2.6.8)

��

where

x � (x , x , x ), � � (� , � , � ), (2.6.9)1 2 3 1 2 3

and the integrals in (2.6.7) and (2.6.8) are over the entire three-
dimensional space, while dx and d� are volume elements in the x space
and the � space, respectively. If g(x) → 0 as �x� → �, then by integration
by parts, we have
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�1 �g(x) �i��x� e dx � i� ĝ(�). (2.6.10)j3
��(2�) �xj

Next, multiply both sides of (2.5.8) by e�i��x /(2�)3 and integrate:

� �1 1�i��x �i��xL � u (x)e dx � � ƒ (x)e dx � 0.	 
ijkl k,lj i3 3
�� ��(2�) (2�)

(2.6.11)

Since ui vanishes at infinity, (2.6.10) can be used in (2.6.11) to yield

ˆL (i� )(i� )û (�) � ƒ (�) � 0, (2.6.12)ijkl l j k i

where and are the Fourier transforms of and uk and ƒi, respectively.ˆû ƒk i

Equation (2.6.12) can also be written as

ˆK û � ƒ , (2.6.13)ik k i

where the dependence of and on � is implied without writing itˆû ƒk i

out explicitly as an argument, and

K � K (�) � L � � . (2.6.14)ik ik ijkl l j

It then follows from (2.6.13) that

ˆû � ƒ N (�)/D(�), (2.6.15)i j ij

where

1–N (�) � � � K (�)K (�), (2.6.16)ij 2 ikl jmn km ln

D(�) � � K (�)K (�)K (�), (2.6.17)mnl m1 n2 l3

and �ijk is the permutation tensor introduced in (1.4.15). Note that Nij

is the cofactor of Kij and D is the determinant of Kij. Therefore, Nij/D
is the inverse of Kij. Expressions of Nij and D for isotropic, cubic, and
transversely isotropic materials are given in Appendix 2.C.

Equation (2.6.15) means that is known explicitly as a function ofûi

� once the stiffness tensor L and the body force f are known. The
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displacement in the physical space (the x space) can be obtained by
taking the inverse transform of (2.6.15),

�
�1 i��xˆu (x) � � ƒ (�)N (�)D (�)e d�, (2.6.18)i j ij

��

�1 �i��xƒ̂ (�) � � ƒ (x)e dx. (2.6.19)i i3
��(2�)

The corresponding stresses can then be obtained by substituting
(2.6.18) into (2.4.8):

�
�1 i��xˆ� (x) � i � ƒ (�)L N (�)� D (�)e d�. (2.6.20)ij m ijkl km l

��

Equations (2.6.18) and (2.6.20) are integral representations of the dis-
placements and stresses on V.

An alternative form of (2.6.18) can be obtained by substituting
(2.6.19) into (2.6.18):

�
�u (x) � � ƒ (y)G (x, y) dy, (2.6.21)i j ij

��

where

�1� �1 i��(x�y)G (x, y) � � N (�)D (�)e d�. (2.6.22)ij ij3
��(2�)

The second-order tensor function given in (2.6.22) is called the�Gij

Green’s function in an unbounded elastic domain. One can easily show
that is a solution to the following problem:�Gij

2 �� G (x, y)kmL � � �(x � y) � 0 (2.6.23)ijkl im�x �xl j

�G (x, y) → 0 as �x� → �, (2.6.24)ij

where �(x) is the three-dimensional Dirac delta function. Physically,
the Green’s function is the displacement field generated by a unit force.
Since the domain is homogeneous and unbounded, only the difference
between the x point (where the displacement is measured) and the y
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point (where the unit force is applied) determines the Green function,
that is,

� �G (x, y) � G (x � y). (2.6.25)ij ij

Additionally, by using the reciprocal theorem, it can be easily shown
that

� � � �G (x, y) � G (x � y) � G (y � x) � G (y, x). (2.6.26)ij ij ji ji

It then follows that

� ��G (x, y) �G (x, y)ij ij
� � . (2.6.27)

�x �yi i

Recall that Nij(�) and D�1(�) are homogeneous polynomials of de-
gree 4 and 6, respectively, with respect to �, we have Nij(��)D�1(��)
� Nij(�)D�1(�). Therefore, by changing � to ��, we can write (2.6.22)
in a slightly different form:

�1� �1 �i��(x�y)G (x, y) � � N (�)D (�)e d�. (2.6.28)ij ij3
��(2�)

Furthermore, the volume element in the � space can be written as

2 ˆ ˆd� � d� d� d� � � d� dS(�), (2.6.29)1 2 3

where

�2 2 2 ˆ� � ��� � �� � � � � , � � , (2.6.30)1 2 3 ���

and is a surface element on the unit sphere in the � space. Thus,ˆ ˆdS(�)
the integral in (2.6.22) can be converted to

�1� 2 �1 i��(x�y) ˆ ˆG (x, y) � � � � N (�)D (�)e dS(�) d�. (2.6.31)� �ij ij3 ˆ0 S(2�)

The homogeneity of degree zero of �2Nij(�)D�1(�) with respect to �
leads to
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2 �1 �1ˆ ˆ ˆ ˆ� N (��)D (��) � N (�)D (�). (2.6.32)ij ij

It thus follows from (2.6.31) that

�1 ˆ� �1 i���(x�y)ˆ ˆ ˆ ˆG (x, y) � � � N (�)D (�)e dS(�) d�. (2.6.33)� �ij ij3 ˆ0 S(2�)

Following the same procedure, we can rewrite (2.6.28) into

01 ˆ� �1 i���(x�y)ˆ ˆ ˆ ˆG (x, y) � � � N (�)D (�)e dS(�) d�. (2.6.34)� �ij ij3 ˆ�� S(2�)

Adding these two expressions together gives

�1 ˆ� �1 i���(x�y)ˆ ˆ ˆ ˆG (x, y) � � � N (�)D (�)e dS(�) d�� �ij ij3 ˆ�� S2(2�)
�1 ˆi���(x�y) �1ˆ ˆ ˆ ˆ� � � e d� N (�)D (�) dS(�). (2.6.35)� � ij3

Ŝ ��2(2�)

Making use of the following identity in the above expression,

�
ˆi���(x�y) ˆ� e d� � 2��[� � (x � y)], (2.6.36)

��

we have

1� �1ˆ ˆ ˆ ˆ ˆG (x, y) � � �[� � (x � y)]N (�)D (�) dS(�). (2.6.37)ij ij2
Ŝ8�

The integral representations (2.6.18) and (2.6.37) will be used in the
following chapters to derive the Eshelby solution.

For isotropic materials,

2 6D(�) � � (
 � 2�)� , (2.6.38)

2 2N (�) � �� {(
 � 2�)� � � (
 � �)� � }. (2.6.39)ij ij i j

The integral in (2.6.37) can be evaluated to yield the Green’s function
for isotropic material:



2.6 INTEGRAL REPRESENTATIONS OF ELASTICITY SOLUTIONS 41

2�1 1 � �x � y�ij�G (x, y) � �	 
ij 4�� �x � y� 4(1 � v) �x �xi j

(x � y )(x � y )1 i i j j
� (3 � 4v)� � .	 
ij 216��(1 � v)�x � y� �x � y�

(2.6.40)

The integral representations discussed above are the general solu-
tions to problems defined in an unbounded domain. When the problem
domain is finite, the integral representations will need to include the
boundary contributions. In this case, the Green’s function approach is
often used. Let us consider the boundary value problem stated by
(2.5.8)–(2.5.10). To account for the boundary conditions, we define the
Green’s function by the following equations:

2� G (x, y)kmL � � �(x � y) � 0 in V. (2.6.41)ijkl im�x �xl j

G (x, y)� � 0, (2.6.42)ij x�Su

�G (x, y)kmL n � � 0. (2.6.43)ijkl j x�S��xl

Again, by using the reciprocal theorem, it can be easily shown that

G (x, y) � G (y, x). (2.6.44)ij ji

Multiplying (2.6.41) by ui(x) and integrating the results over the vol-
ume V lead to

2� G (x, y)km� u (x)L dV(x) � u (y) � 0. (2.6.45)i ijkl m
V �x �xl j

By using the divergence theorem, we can write the volume integral in
(2.6.45) as
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2� G (x, y)km� u (x)L dV(x)i ijkl
V �x �xl j

�G (x, y) �G (x, y)km km� � u (x)L n dS(x) � � u (x)L dV(x).i ijkl j i, j ijkl
S V�x �xl l

(2.6.46)

Analogously, multiplying (2.5.8) by Gim(x, y) and integrating the result
over the volume V lead to

� G (x, y)L u (x) dV(x) � � G (x, y)ƒ (x) dV(x) � 0. (2.6.47)im ijkl k,lj im i
V V

Following the procedures that led to (2.6.46), the first volume integral
in the above equation can be written as

� G (x, y)L u (x) dV(x)im ijkl k,lj
V

�G (x, y)im� � G (x, y)L u (x)n dS(x) � � L u (x) dV(x).im ijkl k,l j ijkl k,l
S V �xj

(2.6.48)

Note that the last volume integral on the right-hand side of (2.6.46) is
the same as that of (2.6.48). Therefore, by subtracting (2.6.45) from
(2.6.47), we arrive at

u (y) � � G (x, y)L u (x)n dS(x) � � G (x, y)ƒ (x) dV(x)m im ijkl k,l j im i
S V

�G (x, y)km� � u (x)L n dS(x).i ijkl j
S �xl

(2.6.49)

Enforcing the boundary conditions (2.6.42) and (2.6.43) and (2.5.9)
and (2.5.10) in the above, we finally arrive at the solution to the bound-
ary value problem (2.5.8)–(2.5.10) in terms of the Green’s function
Gij(x, y),
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0u (y) � � G (x, y)ƒ (x) dV(x) � � G (x, y)p (x) dS(x)m im i im i
V S�

�G (x, y)km0� � u (x)L n dS(x).i ijkl j
S �xu l

(2.6.50)

By making use of (2.6.44), the above can be written equivalently as

0u (x) � � G (x, y)ƒ (y) dV(y) � � G (x, y)p (y) dS(y)i im m im m
V S�

�G (x, y)ik0� � u (y)L n dS(y). (2.6.51)m mjkl j
S �yu l

PROBLEMS

2.1 If for any function ƒ(x) that is continuous at x � 0

�� ƒ(x)�(x) dx � ƒ(0),
��

then �(x) is called the Dirac delta function. Prove the following
properties:

1
x�(x) � 0, �(ax) � �(x), �(�x) � �(x).

a

2.2 Show that the Green’s function

�1� �1 i��(x�y)G (x, y) � � N (�)D (�)e d�ij ij3
��(2�)

satisfies the following boundary value problem:

�L G (x, y) � � �(x � y) � 0,ijkl lm,ik jm

�G (x, y) → 0 as �x� → �,ij
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where �(x) is the three-dimensional Dirac delta function defined
by

� �(x) dV � 1,
Vr

where Vr is any spherical volume � � � r2.2 2 2x x x1 2 3

2.3 Show (2.6.26) and (2.6.27).

APPENDIX 2.A RELATIONSHIP AMONG ELASTIC CONSTANTS
OF ISOTROPIC MATERIALS

E, v E, G K, v K, G 
, �

E E E 3(1 � 2 v)K
9K

1 � 3K /G
�(3 � 2� /
)

1 � � /


v v
E

�1 �
2G

v
1 � 2G /3K
2 � 2G /3K

1
2(1 � � /
)

G
E

2(1 � v)
G

3(1 � 2 v)K
2(1 � v)

G �

K
E

3(1 � 2 v)
E

9 � 3E /G
K K

2�

 �

3



Ev

(1 � v)(1 � 2v)
E(1 � 2G /E)

3 � E /G
3Kv

1 � v
2G

K �
3




�
E

2(1 � v)
G

3(1 � 2v)K
2(1 � v)

G �

APPENDIX 2.B VOIGT ELASTIC CONSTANTS FOR MATERIALS
WITH VARIOUS SYMMETRIES

Orthotropic Materials (nine indepenent constants)

C C C 0 0 011 12 13

C C C 0 0 012 22 23

C C C 0 0 013 23 33C � 0 0 0 C 0 044

0 0 0 0 C 0
 �55

0 0 0 0 0 C66
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Transversely Isotropic Materials (five independent constants)

C C C 0 0 011 12 13

C C C 0 0 012 11 13

C C C 0 0 013 13 33C � 0 0 0 C 0 044

0 0 0 0 C 0
 �44

0 0 0 0 0 0.5(C � C )11 12

for axis of symmetry in the x3 direction, and

C C C 0 0 011 12 12

C C C 0 0 012 22 23

C C C 0 0 012 23 22C � 0 0 0 0.5(C � C ) 0 022 23

0 0 0 0 C 0
 �44

0 0 0 0 0 C44

for axis of symmetry in the x1 direction.

Cubic Materials (three independent constants)

C C C 0 0 011 12 12

C C C 0 0 012 11 12

C C C 0 0 012 12 11C � 0 0 0 C 0 044

0 0 0 0 C 0
 �44

0 0 0 0 0 C44

Isotropic Materials (two independent constants)

C �

C C C 0 0 011 12 12

C C C 0 0 012 11 12

C C C 0 0 012 12 11

0 0 0 0.5(C � C ) 0 011 12

0 0 0 0 0.5(C � C ) 0
 �11 12

0 0 0 0 0 0.5(C � C )11 12
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APPENDIX 2.C EXPRESSIONS OF Nij(�) AND D(�)

Transversly Isotropic Materials

2 2 4 2 2 2 2 4D(�) � (��
 � �� ){��
 � (�� � � � �� )
 � � ��� }3 3 3

2 2 2 2 2 2 2 2 2� (��
 � �� ){(�
 � �� )(�
 � �� ) � �� 
 � },3 3 3 3

2 2 2 2 2 2 2 2N (�) � (��� � �� � �� )(�
 � �� ) � �� � � ,11 1 2 3 3 2 3

2 2 2 2N (�) � �� � � � � (� � ��)� � (�
 � �� ),12 1 2 3 1 2 3

2 2 2 2N (�) � (� � ��)��� � � � ��� � (��� � �� � �� ),13 1 2 3 1 3 1 2 3

2 2 2 2 2 2 2 2N (�) � (�� � ��� � �� )(�
 � �� ) � �� � � ,22 1 2 3 3 1 3

2 2 2 2N (�) � (� � ��)��� � � � ��� � (�� � ��� � �� ),23 1 2 3 2 3 1 2 3

2 2 2 2 2 2 2 2 2N (�) � (�� � ��� � �� )(��� � �� � �� ) � (� � ��) � � ,33 1 2 3 1 2 3 1 2

where

1–� � C � C , �� � C � (C � C ),11 22 66 2 11 12

� � C , �� � � � C � C ,33 13 23

2 2 2� � C � C , 
 � � � � .44 55 1 2

Cubic Materials

2 6D(�) � � (
 � 2� � ��)�
2 2 2 2 2 2 2� ���(2
 � 2� � ��)� (� � � � � � � � )1 2 2 3 3 1

2 2 2 2� �� (3
 � 3� � ��)� � � ,1 2 3

2 4 2 2 2 2 2N (�) � � � � �� (� � � ) � �� � ,11 2 3 2 3

2 2N (�) � �(
 � �)� � (�� � ��� ),12 1 2 3
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and the other components are obtained by the cyclic permutation of 1,
2, 3, where

2� � � � ,i i

� � �(
 � � � ��),

� � ��(2
 � 2� � ��),


 � C ,12

� � C ,44

�� � C � C � 2C .11 12 44

Isotropic Materials

2 6D(�) � � (
 � 2�)� ,

2 2N (�) � �� {(
 � 2�)� � � (
 � �)� � },ij ij i j

where �2 � �k�k. Also

�1 �1 �4 2 2L � N (�)D (�) � (
 � 2�) � {
� � � � (
 � 2�)� � �jlmn l ij mn i im n
2� (
 � 2�)� � � � 2(
 � �)� � � },in m m n i

�1 �1 �4 2 4 2L L � � N (�)D (�) � (
 � 2�) � {
 � � � � 2
�� � � �ijkl pqmn q l kp ij mn mn i j
2 2� 2
�� � � � � �(
 � 2�)(� � � � � � � � � � � � � � � )�ij m n im j n jm i n in j m jn i m

� 4�(
 � �)� � � � }.i j m n
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3

EIGENSTRAINS

In this chapter, we will first define what eigenstrain is and give some
examples of it. Then, we will derive the general solutions to the dis-
placements, stresses, and strains when an eigenstrain field is present in
a linear elastic solid.

3.1 DEFINITION OF EIGENSTRAINS

Eigenstrain is a generic name introduced in micromechanics to repre-
sent inelastic strains such as thermal strains, phase transformation
strains, initial strains, plastic strains, misfit strains, and the like. In the
literature, other names have been used for eigenstrains by various au-
thors, such as stress-free transformation strains by Eshelby and elastic
polarization strains by Kröner. In this book, we will use the term ei-
genstrain to represent any inelastic strains. For small-strain deforma-
tion, we will use the following notation convention:

� � total strain,ij

e � elastic strain,ij

�* � eigenstrain (inelastic).ij

When both elastic strain and eigenstrain coexist in a continuum, the
total strain is given by the sum

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8



50 EIGENSTRAINS

� � e � �*. (3.1.1)ij ij ij

The above equation implies that both the elastic strain and eigenstrain
act together to cause a material point in the continuum to displace from
its initial location to its final location in the deformed configuration.
The final position of the material particle after the deformation deter-
mines the total strain, that is, the total strain is related to the displace-
ment through [see (2.1.12)]

1–� � (u � u ), (3.1.2)ij 2 i, j j,i

where ui is the total displacement field cause by both the elastic strain
and the eigenstrain. Although the total strain can be separated into
elastic and inelastic parts, it is not always possible to separate the
displacement into elastic and inelastic parts. So, we will not introduce
the concepts of elastic displacement and eigen displacement. Therefore,
it is unnecessary to use ‘‘total’’ for the displacement. It will be under-
stood that displacement ui is always the total displacement caused by
both strains.

For sufficiently smooth displacement fields, the total strain tensor
satisfies Saint Venant’s compatibility conditions:

R � � � � � 0, (3.1.3)ij ikp jlq pq,kl

where �ijk is the permutation symbol defined by (1.4.15). Note that it
is only the total strain, or the sum of the elastic strain and eigenstrain,
that must be compatible, that is, satisfying the compatibility condition
(3.1.3). The elastic strain and the eigenstrain by themselves alone do
not have to be compatible. In fact, we will see in later examples that
they often are not compatible by themselves. Another way of saying,
for example, that the eigenstrain field is not compatible is that there is
no differentiable function such thatu*i

1–�* � (u* � u*). (3.1.4)ij 2 i, j j,i

Or, equivalently, one can say that � �ikp�jlq � 0.R* �*ij pq,kl

Let us now consider Hooke’s law when eigenstrains are present. As
discussed in Chapter 2, Hoooke’s law describes the stress–strain rela-
tionship for linear elastic materials. In other words, it relates the stress
to the elastic strain in a linear elastic material. When eigenstrain is
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εeεp

Figure 3.1 Uniaxial stress–strain curve.

present in a linear elastic material, the total strain is given by (3.1.1).
Thus the elastic strain is the difference between the total strain and
eigenstrain:

e � � � �*.ij ij ij

Consequently, Hooke’s law should be written as

� � L e � L (� � �*), (3.1.5)ij ijkl kl ijkl kl kl

or

e � � � �* � M � . (3.1.6)ij ij ij ijkl kl

The interpretation of (3.1.5) is that the stress in a linear elastic material
is caused only by elastic strain. If there is no elastic strain, there would
be no stress. For this reason, we do not introduce the concept of ei-
genstress in this book.

As a simple example to understand (3.1.5), let us consider the uni-
axial tension of a metal bar. A typical uniaxial stress–strain curve is
shown in Figure 3.1. The eigenstrain in this case is the plastic strain
�p while the elastic strain is �e. Clearly, we have the total strain � �
�p � �e. It is clearly seen from this figure that � � E�e � E(� � �p).
In other words, the stress is the elastic constant (Young’s modulus)
times the elastic strain, which is the difference between the total strain
and the eigenstrain.
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3.2 SOME EXAMPLES OF EIGENSTRAINS

First, consider an aluminum ball of radius a at temperature T0. When
the temperature is raised to T, the ball expands. It follows from (2.4.34)
that the thermal strain is given by

�* � � �T � , (3.2.1)ij A ij

where �A is the coefficient of thermal expansion for aluminum, �ij is
the Kronecker delta, and �T � T � T0 is the temperature change. Since
there is no constraint to the ball, no stress is induced by the temperature
rise. Thus, it follows from (3.1.6) that the elastic strain is zero, that is,

e � � � �* � M � � 0. (3.2.2)ij ij ij ijkl kl

Consequently, the eigenstrain in this case is equal to the total strain:

� � e � �* � �* � � �T � . (3.2.3)ij ij ij ij A ij

We see that thermal strain is an eigenstrain.
Next, let the aluminum ball be embedded in a rigid matrix at tem-

perature T0. Then, raise the temperature to T. In this case, the total
strain of the aluminum ball is zero because of the rigid constraint. This
means that

� � e � �* � e � � �T � � 0, (3.2.4)ij ij ij ij A ij

or

e � ��* � �a �T � . (3.2.5)ij ij A ij

It is seen that the elastic strain is no longer zero due to the constraint.
Because of the nonzero elastic strain, the stress in the aluminum ball
is also nonzero. It is given by Hooke’s law:

� � L e � �� L �T. (3.2.6)ij ijkl kl A nnij

This stress could be very large. For example, for polycrystalline alu-
minum (isotropic), (3.2.6) can be simplified to



3.3 GENERAL SOLUTIONS OF EIGENSTRAIN PROBLEMS 53

E�A� � � �T � , (3.2.7)ij ij1 � 2�

where for aluminum

9 �6E � 71 � 10 Pa, � � 24 � 10 /�C, v � 0.3.A

Therefore, the thermally induced stress is

�T
� � 4.3 MPa � . (3.2.8)ij ij�C

So, a temperature change of 10� Celsius would cause 43 MPa stress!
Finally, let us assume that the aluminum ball is embedded in a cop-

per matrix at temperature T0. Again, let the temperature be raised to T.
In this case, the total strain is given by

Ae � � �T � in the Al ballij A ij� � (3.2.9)� Cij e � � �T � in the Cu matrixij C ij

where �C is the coefficient of thermal expansion of copper. Since the
shell is deformable, the total strain is not zero in the aluminum ball,
nor is it zero in the copper matrix. The thermally induced stresses
cannot be obtained easily in this case; see Problem 3.2. Nevertheless,
we know that stresses are induced due to the mismatch between the
thermal expansion coefficients.

The above examples show that thermal strain is a type of eigenstrain.
Other types of eigenstrains include plastic strain, phase transformation
strain, and the like.

3.3 GENERAL SOLUTIONS OF EIGENSTRAIN PROBLEMS

Consider an unbounded elastic body, V, on which an eigenstrain field
is prescribed. Without the body force, the equations of equilibrium�*ij

is given by

� � 0 in V (3.3.1)ij, j

Because of the eigenstrains, Hooke’s law takes the form of (3.1.5), that
is,
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� � L e � L (� � �*), (3.3.2)ij ijkl kl ijkl kl kl

where �ij is the total strain. Since the total strain must be compatible,
we have

1–� � (u � u ), (3.3.3)ij 2 i, j j,i

where ui is the total displacement.
Next, making use of (3.3.3) in (3.3.2) and the symmetry of the stiff-

ness tensor, we obtain

� � L u � L �*. (3.3.4)ij ijkl k,l ijkl kl

Substitution of (3.3.4) into (3.3.1) yields

L u � L �* � 0 in V. (3.3.5)ijkl k,lj ijkl kl, j

This is the governing equation for the total displacement field in V. We
further assume that the radiation condition is also satisfied, that is,

u → 0 as �x� → �. (3.3.6)i

This condition implies that the nonzero eigenstrain can only be dis-
tributed over a finite domain within V.

Comparing (3.3.5) and (3.3.6) to (2.6.3) and (2.6.4), we conclude
that the solution to the eigenstrain problem can be obtained from the
elasticity solution if the body force ƒi in the elasticity solution is re-
placed by �Lijkl�* .kl, j

To this end, consider the boundary value problem stated by (2.6.3)
and (2.6.4). Assuming that the body force is given by the eigenstrain

ƒ � �L �* , (3.3.7)i ijkl kl, j

then, through integration by parts, the Fourier transform of ƒi can be
written as

��1 �i��xƒ̂ (�) � � L �* (x)e dx � �i� L �̂*, (3.3.8)i ijkl kl, j j ijkl kl3
��(2	)

where is the Fourier transform of the eigenstrain�̂* �*(x):kl kl
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�1 �i��x�̂*(�) � � �*(x)e dx. (3.3.9)kl kl3
��(2	)

Substituting (3.3.8) into (2.6.18), we obtain the solution to the bound-
ary value problem stated by (3.3.5) and (3.3.6):

�
�1 i��xu (x) � �i � L �̂* (�)� N (�)D (�)e d�. (3.3.10)i jlmn mn l ij

��

The corresponding strain tensor is

�1 �1 i��x� (x) � � L �̂* (�)� [� N (�) � � N (�)]D (�)e d�. (3.3.11)ij klmn mn l l ik i jk
��2

The stress tensor thus follows from (3.3.4):

�
�1 i��x� (x) � L � L �̂* (�)� � N (�)D (�)e d� � �*(x) .� �ij ijkl pqmn mn l q kp ij

��

(3.3.12)

An alternative approach is to use Green’s function. By substituting
(3.3.7) into (2.6.21), we obtain

�
�u (x) � �� L �* (y)G (x, y) dy, (3.3.13)i mjkl kl, j mi

��

where (x, y) is the infinite domain Green’s function given in�Gmi

(2.6.22). Applying divergence theorem to (3.3.13) yields

� �
G (x, y)miu (x) � � L �*(y) dy. (3.3.14)i mjkl kl
�� 
yj

The corresponding strain and stress fields are
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1x2x

3x

Figure 3.2 Straight-screw dislocation.

�
�� (x) � � L � (x � y)�* (y) dy, (3.3.15)ij klmn ijkl mn

��

�
�� (x) � L � L �* (y)� (x � y) dV(y) � �*(x) , (3.3.16)� �ij ijkl pqmn mn klpq kl

��

where the fourth-order tensor (x, y) is given by��ijkl

2 � 2 �2 � 2 �
 G (x, y) 
 G (x, y)1 
 G (x, y) 
 G (x, y)kj ljki li�� (x, y) � � � � .� �ijkl 4 
x 
y 
x 
y 
x 
y 
x 
yj l i l j k i k

(3.3.17)

For future reference, we define

V �P (x) � � � (x, y) dV(y), (3.3.18)ijkl ijkl
V

where the superscript V indicates that the integral is over the volume
V.

3.4 EXAMPLES

Straight-Screw Dislocation

Consider the straight-screw dislocation in a cubic crystal shown in Fig-
ure 3.2. The eigenstrain corresponding to this screw dislocation is given
by
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1–�* � b�(x )H(�x ), (3.4.1)23 2 2 1

where b is the Burgers vector of the dislocation. The Fourier transform
of is easily calculated from (3.3.9):�*23

�1 1 �i��x�* (�) � � b�(x )H(�x )e dx23 2 13
��(2	) 2

� �b �i� x �i� x1 1 3 3� � H(�x )e dx � e dx . (3.4.2)1 1 33
�� ��2(2	)

Note that

� �1�i� x1 1� H(�x )e dx � , (3.4.3)1 1
�� i�1

�
�i� x3 3� e dx � 2	�(� ). (3.4.4)3 3

��

We have

b �(� )3�̂* (�) � � . (3.4.5)23 22(2	) i�1

Substitution of (3.4.5) into (3.3.10) and use of the properties of delta
function yield

�b �(� )3 �1 i��xu (x) � � L � N (�)D (�)e d�i jl23 l ij2
��(2	) �1

� �b �1 �1 i��x� � � (L � � N (�)D (�)e )� d� d� . (3.4.6)jl23 1 l ij � �0 1 232
�� ��(2	)

For materials with cubic symmetry, the integrand in (3.4.6) is simplified
to

�1 �1 i��x(L � � N (�)D (�)e )� � 0, (3.4.7)jl23 1 l 1j � �03

�1 �1 i��x(L � � N (�)D (�)e )� � 0, (3.4.8)jl23 1 l 2j � �03
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�2�1 �1 i��x i(� x �� x )1 1 2 2(L � � N (�)D (�)e )� � e . (3.4.9)jl23 1 l 3j � �03 2 2� (� � � )1 1 2

Therefore, we have

u (x) � u (x) � 0, (3.4.10)1 2

and

�b � b x2 2i(� x �� x ) �11 1 2 2u (x) � � e d� d� � tan .� 	3 1 22 2 2
��(2	) � (� � � ) 2	 x1 1 2 1

(3.4.11)

The only nonzero strain component is the shear strain:

1 
u b x3 1� � � . (3.4.12)23 2 32 
x 4	 x � x2 1 2

It follows from Hooke’s law for cubic materials (2.4.12) that the only
nonzero stress component is the shear stress:

C b x44 1� � 2C � � . (3.4.13)23 44 23 2 32	 x � x1 2

These results are identical to those obtained by Burgers in 1939 for
isotropic materials.

Straight-Edge Dislocation

Consider a straight-edge dislocation in a cubic material as shown in
Figure 3.3. The eigenstrain corresponding to this dislocation is given
by

1–�* � b�(x )H(�x ), (3.4.14)12 2 2 1

where again, b is the Burgers vector of the dislocation. We are to find
the corresponding displacements and stresses.

Following the procedures used in deriving (3.4.5), the Fourier trans-
form of is easily calculated from (3.3.9):�*12
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1x2x

3x

Figure 3.3 Straight-edge dislocation.

�1 1 b �(� )3i��x�* (�) � � b�(x )H(�x )e dx � � . (3.4.15)12 2 13 2
��(2	) 2 2(2	) i�1

Substitution of (3.4.15) into (3.3.10) and use of the properties of the
delta function yield

�b �(� )3 �1 i��xu (x) � � L � N (�)D (�)e d�i jl12 l ij2
��(2	) �1

� �b �1 �1 i��x� � � (L � � N (�)D (�)e )� d� d� .jl12 1 l ij � �0 1 232
�� ��(2	)

(3.4.16)

For materials with cubic symmetry, the integrand in (3.4.16) is simpli-
fied to

i(� x �� x ) 2 2 21 1 2 2e � (� � � � �� )2 1 2 1�1 �1 i��x(L � � N (�)D (�)e )� � ,jl12 1 l 1j � �03 2 2 2 2 2� [(� � � ) � �� � ]1 1 2 1 2

(3.4.17)

i(� x �� x ) 2 2 21 1 2 2e (� � � � �� )1 2 2�1 �1 i��x(L � � N (�)D (�)e )� � , (3.4.18)jl23 1 l 2j � �03 2 2 2 2 2(� � � ) � �� �1 2 1 2

�1 �1 i��x(L � � N (�)D (�)e )� � 0, (3.4.19)jl23 1 l 3j � �03

where
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2
 � 2� � � ��
� � , � � . (3.4.20)


 � 2� � � �

Therefore, we have

u (x) � 0 (3.4.21)3

and

� � i(� x �� x ) 2 2 21 1 2 2b e � (� � � � �� )2 1 2 1u (x) � � � d� d� , (3.4.22)1 1 22 2 2 2 2 2
�� ��(2	) � [(� � � ) � �� � ]1 1 2 1 2

� � i(� x �� x ) 2 2 21 1 2 2b e (� � � � �� )1 2 2u (x) � � � d� d� . (3.4.23)2 1 22 2 2 2 2 2
�� ��(2	) (� � � ) � �� �1 2 1 2

The nonzero strain components are

� � i(� x �� x ) 2 2 21 1 2 2
u ib e � (� � � � �� )1 2 1 2 1� � � � � d� d� ,11 1 22 2 2 2 2 2
�� ��
x (2	) [(� � � ) � �� � ]1 1 2 1 2

(3.4.24)

� � i(� x �� x ) 2 2 21 1 2 2
u ib e � (� � � � �� )2 2 1 2 2� � � � � d� d� ,22 1 22 2 2 2 2 2
�� ��
x (2	) (� � � ) � �� � ]2 1 2 1 2

(3.4.25)

1 
u 
u1 2� � �� 	12 2 
x 
x2 1

� � i(� x �� x ) 2 2 2 2 21 1 2 2ib e [(� � � ) � 2�� � ])1 2 1 2� � � d� d� .1 22 2 2 2 2 2
�� ��2(2	) � [(� � � ) � �� � ]1 1 2 1 2

(3.4.26)

In terms of the integrals defined in Appendix 3.A, these strains can be
written as
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ib
� � [(1 � �)I � I ], (3.4.27)11 1 22(2	)

ib
� � � [I � (1 � �)I ], (3.4.28)22 1 22(2	)

ib
� � � [I � (2� � �)I ], (3.4.29)12 3 122(2	)

where I1, I2, and I3 are given in Appendix 3.A.
For isotropic materials, � � 0, 
 � 2�v /(1 � 2v). Thus,

1
� � , � � 0. (3.4.30)

1 � v

The nonzero displacement components in this case are simplified to

� �b � �� �2 2 1i(� x �� x )1 1 2 2u (x) � � � e � d� d� ,� �1 1 22 2 2 2 2 2
�� ��(2	) � (� � � ) (� � � )1 1 2 1 2

(3.4.31)

� � 2b 1 ��2i(� x �� x )1 1 2 2u (x) � � � e � d� d� .� �2 1 22 2 2 2 2 2
�� ��(2	) � � � (� � � )1 2 1 2

(3.4.32)

Making use of the integrals given in Appendix 3.B, we arrive at the
displacement components for isotropic materials:

b x 1 x x2 1 2�1u (x) � 2 tan � , (3.4.33)� � 	 �1 2 24	 x 1 � v x � x1 1 2

2b x 1 � 2v2 2 2u (x) � � log(x � x ) . (3.4.34)� �2 1 22 24	(1 � v) x � x 21 2

The corresponding strain components are obtained by taking the deriv-
atives of the displacements:
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b
n

S −
S +

L

Figure 3.4 Dislocation of general nature.

2 2
u �bx [x (3 � 2v) � x (1 � 2v)]1 2 1 2� � � , (3.4.35)11 2 2 2
x 4	(1 � v)(x � x )1 1 2

2 2
u �bx [x (1 � 2v) � x (1 � 2v)]2 2 1 2� � � , (3.4.36)22 2 2 2
x 4	(1 � v)(x � x )2 1 2

2 21 
u 
u bx (x � x )1 2 1 1 2� � � � . (3.4.37)� 	12 2 2 22 
x 
x 4	(1 � v)(x � x )2 1 1 2

The corresponding stresses are obtained by using Hooke’s law for
isotropic materials:

2 2�b�x (3x � x )2 1 2� � , (3.4.38)11 2 2 22	(1 � v)(x � x )1 2

2 2b�x (x � x )2 1 2� � , (3.4.39)22 2 2 22	(1 � v)(x � x )1 2

2 2b�x (x � x )1 1 2� � . (3.4.40)12 2 2 22	(1 � v)(x � x )1 2

These are the classic solutions for a straight-edge dislocation.

Dislocation of General Nature

Consider a dislocation loop L inside a crystalline material as shown in
Figure 3.4. Let the area of the slip plane be denoted by S. To describe
the slip caused by the dislocation, one side of the slip plane is labeled
S� and the other side is labeled S�. The slip is a result of S� moving
relative to S� by a Burgers vector b. The unit normal vector of S�
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pointing to S� is denoted by n. The eigenstrain corresponding to such
a dislocation loop can then be written as

1–�*(x) � � (b n � b n )�(S � x), (3.4.41)ij 2 i j j i

where (S � x) is called the surface Dirac delta function defined by�

�(S � x) � � �(x � z) dS(z). (3.4.42)
S

It can be easily shown that for any continuous function defined in the
volume V that contains the surface S, the surface Dirac delta function
satisfies the following:

� ƒ(x)�(S � x) dV(x) � � ƒ(x) dS(x). (3.4.43)
V S

Substituting (3.4.41) into (3.3.14) and making use of (3.4.43), we
obtain the displacement field due to the dislocation loop L,

� �1 
G (x, y)miu (x) � � � L (b n � b n )�(S � y) dyi mjkl k l l k
��2 
yj

�
G (x, y)mi� �� L b n dS(y). (3.4.44)mjkl k l
S 
yj

Upon using the properties of Green’s function (2.6.27), the above equa-
tion can be written as

�
G (x, y)miu (x) � � L b n dS(y). (3.4.45)i mjkl k l
S 
xj

This is the well-known Volterra formula.
The displacement gradient thus follows from the Volterra formula:

�
G (x, y)miu (x) � � L b n dS(y). (3.4.46)i, j mnkl k l
S 
x 
xn j

The stress caused by the dislocation loop L is thus given by
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� � L (� � �*) � L u � L �*. (3.4.47)ij ijkl kl kl ijkl k,l ijkl kl

Note that

1–L �* � � L (b n � b n )�(S � x) � �L b n �(S � x). (3.4.48)ijkl kl 2 ijkl k l l k ijkl k l

Introducing (3.4.48) into (3.4.47) yields

� � L [u � b n �(S � x)] � L � , (3.4.49)ij ijkl k,l k l ijkl kl

where

2 �
 G (x, y)mi� � � L b n dS(y) � b n �(S � x) (3.4.50)ij mnkl k l i j
S 
x 
xn j

is called the elastic distortion. We next show that the surface integral
in (3.4.50) can be converted to a line integral along the dislocation
loop. To this end, consider the following line integral along the dislo-
cation loop:

�
G (x, y)ip� � L b t dL(y), (3.4.51)jnh pqmn m h
L 
xq

where th is the tangential unit vector along the dislocation loop. Making
use of the Stokes’ theorem (2.3.3),

�
G (x, y)ip� � L b t dL(y)jnh pqmn m h
L 
xq

�
G (x, y)ip
� �� � � L b n dS(y), (3.4.52)klh jnh pqmn m k

S 
x 
xq l

where the negative sign is due to the properties of Green’s function
(2.6.27). Using the � � � relationship (1.4.16), the right-hand side of
(3.4.52) can be written as
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�
G (x, y)ip
�� � � L b n dS(y)klh jnh pqmn m k

S 
x 
xq l

� �
G (x, y) 
G (x, y)ip ip
� �� L b n � L b n dS(y).� 	pqmn m j pqmn m n

S 
x 
x 
x 
xq n q j

(3.4.53)

Since

�
G (x, y)ipL � � �(x � y) � 0, (3.4.54)pqmn mi
x 
xq n

we can simplify (3.4.53) to

�
G (x, y)ip
�� � � L b n dS(y)klh jnh pqmn m k

S 
x 
xq l

�
G (x, y)ip
� b n �(S � x) � � L b n dS(y). (3.4.55)i j pqmn m n

S 
x 
xq j

Comparison of (3.4.55) and (3.4.50) leads to

�
G (x, y)ip
� � �� � � L b n dS(y). (3.4.56)ij klh jnh pqmn m k

S 
x 
xq l

It then follows from (3.4.52) that

2 �
 G (x, y)mi� � � L b n dS(y) � b n �(S � x)ij mnkl k l i j
S 
x 
xn j

�
G (x, y)ip
� � � L b t dL(y). (3.4.57)jnh pqmn m h

L 
xq

This is known as the Mura formula (Mura, 1987). The stress field thus
follows from (3.4.49):
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Al Cu

L /2 L /2

x

Figure 3.5

�
G (x, y)kp
� � L � � L b t dL(y). (3.4.58)ij ijkl lnh pqmn m h

L 
xq

The fact that the stress field is represented as a line integral along the
dislocation loop indicates that the stress depends only on the loop, not
the slip plane area S.

PROBLEMS

3.1 Consider a composite bar (one dimensional) whose ends are fixed
on rigid walls as shown in Figure 3.5. When the temperature is T0,
the interface between Al and Cu is at the middle x � L /2. Please
find the position of the interface when the temperature is raised to
T � T0. Assume the Young’s moduli and the thermal expansion
coefficients of Al and Cu are, respectively, Ea, Ec, �a, and �c.

3.2 Consider a spherical aluminum ball embedded in a copper matrix
of infinite extent at temperature T. When the temperature rises by
�T, find the stress fields in both the ball and the matrix.

3.3 Consider a Cu water pipe in your house. Assuming the pipe has
an outer diameter of 2.54 cm with wall thickness of 1 mm. Is it
safe to expose this pipe to �20�C with water in it? If the required
factor of safety is 3, what is the lowest temperature this water pipe
can stand? The properties of Cu and ice are given below.

Young’s
Modulus

Poisson’s
Ratio CTE

Tensile
Strength

Cu 125 GPa 0.33 17 � 10�6 / �C 70 MPa
Ice 9.5 GPa 0.33 �50 � 10�6 / �C N/A
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APPENDIX 3.A

We introduce the following integrals:

� � i(� x �� x ) 21 1 2 2e � �2 1I � � � d� d�1 1 22 2 2 2 2
�� �� [(� � � ) � �� � ]1 2 1 2

� � i(� x �� x ) 21 1 2 2e � �1 2� � � d� d� , (3.A.1)1 22 2 2 2 2
�� �� [(� � � ) � �� � ]1 2 1 2

� � i(� x �� x ) 31 1 2 2e �2I � � � d� d�2 1 22 2 2 2 2
�� �� (� � � ) � �� �1 2 1 2

� � i(� x �� x ) 31 1 2 2e �1� � � d� d� , (3.A.2)1 22 2 2 2 2
�� �� (� � � ) � �� �1 2 1 2

� � i(� x �� x )1 1 2 2e
I � � � d� d� . (3.A.3)3 1 2

�� �� �1

Let us consider (3.A.3) first. Making use of the well-known integrals,

� � i� x1 1ei� x2 2� e d� � 2	�(x ), � d� � i	 sgn(x ), (3.A.4)2 2 1 1
�� �� �1

we can reduce (3.A.3) to

� � i� x1 1ei� x 22 2I � � e d� � d� � 2i	 �(x )sgn(x ). (3.A.5)3 2 1 2 1
�� �� �1

To evaluate the other integrals, we introduce the polar coordinate sys-
tems

x � r cos �, x � r sin �, � � � cos �, � � � sin �.1 2 1 2

The above integrals can then be written as
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2	 � ir�cos(���) 2e sin � cos � d�
I � � � d�, (3.A.6)1 2 2

0 0 [1 � � cos � sin �]

2	 � ir�cos(���) 3e sin � d�
I � � � d�. (3.A.7)2 2 2

0 0 [1 � � cos � sin �]

Next, consider the integral

�
ir�cos(���)I � � e d�. (3.A.8)

0

Making use of the expansion

�
ir�cos(���) ke � J (r�) � 2 i J (r�)cos[k(� � �)], (3.A.9)
0 k

k�1

we have

��
kI � � J (r�) � 2 i J (r�)cos[k(� � �)] d�. (3.A.10)
� 	0 k

0 k�1

where Jk(●) is the Bessel function of order k. Since

� 1� J (r�) d� � , for any k � 0 and r � 0, (3.A.11)k
0 r

we obtain

�1 kI � 1 � 2 i cos[k(� � �)]
� 	r k�1

�1 k� 1 � 2 i [cos(k�)cos(k�) � sin(k�)sin(k�)] . (3.A.12)
� 	r k�1

Substituting (3.A.12) into (3.A.6)–(3.A.7) yields



APPENDIX 3.A 69

�2 kI � i [a cos(k�) � b sin(k�)], (3.A.13)
1 1k 1kr k�0

�2 kI � i [a cos(k�) � b sin(k�)], (3.A.14)
2 2k 2kr k�0

where

2	 21 sin � cos � d�
a � � , (3.A.15)10 2 2

02 [1 � � cos � sin �]

2	 2cos(k�)sin � cos �
a � � d�, (3.A.16)1k 2 2

0 [1 � � cos � sin �]

2	 2sin(k�)sin � cos �
b � � d�, (3.A.17)1k 2 2

0 [1 � � cos � sin �]

2	 31 sin � d�
a � � , (3.A.18)20 2 2

02 [1 � � cos � sin �]

2	 3cos(k�)sin � d�
a � � , (3.A.19)2k 2 2

0 [1 � � cos � sin �]

2	 3sin(k�)sin � d�
b � � . (3.A.20)2k 2 2

0 [1 � � cos � sin �]

For isotropic materials, � � 0. The nonzero coefficients from
(3.A.15) to (3.A.20) are

	 3	 	
b � b � , b � , b � � .11 13 21 234 4 4

Thus,

i	 i	 3I � [sin � � sin(3�)] � [2 sin � � sin �],1 2r r

i	 i	 3I � [3 sin � � sin(3�)] � [3 sin � � 2 sin �].2 2r r
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APPENDIX 3.B

The following integrals are given in Mura (1987, pp. 17):

� � i(� x �� x )1 1 2 2� e x2 2�1� � d� d� � 2	 tan , (3.B.1)� 	1 22 2
�� �� � (� � � ) x1 1 2 1

� � i(� x �� x )1 1 2 2� � e �	x x2 1 1 2� � d� d� � , (3.B.2)1 22 2 2 2 2
�� �� (� � � ) x � x1 2 1 2

� � i(� x �� x )1 1 2 2e 2 2� � d� d� � �	 log(x � x ), (3.B.3)1 2 1 22 2
�� �� � � �1 2

� � 2 i(� x �� x ) 21 1 2 2� e 	 	x2 22 2� � d� d� � � log(x � x ) � . (3.B.4)1 2 1 22 2 2 2 2
�� �� (� � � ) 2 x � x1 2 1 2
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4

INCLUSIONS AND
INHOMOGENEITIES

In this chapter, we first introduce the concepts of inclusions and in-
homogeneities. We will then derive the stress and displacement fields
due to the presence of inclusions and inhomogeneities. Finally, we will
derive explicitly solutions to ellipsoidal inclusions and inhomogenei-
ties.

4.1 DEFINITIONS OF INCLUSIONS AND INHOMOGENEITIES

Although the terms inclusion and inhomogeneity are used interchange-
ably in the literature, we will use them differently throughout this book.
The readers are advised that the distinction between these two terms
made in this book is mainly for the convenience of discussion.

An inclusion is defined as a subdomain � in a domain D, where
eigenstrain is given in � and is zero in D � �. The material�*(x)ij

properties in � and in D � � are the same. The domain outside �,
that is, D � �, is called the matrix; see Figure 4.1. For linear elastic
material, this can be stated as

� is an inclusion ⇔ �*(x) � 0 for x � � � Dij

�*(x) � 0 for x � D � �ij

L is uniform throughout Dijkl

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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* ( ) 0ijε =x

* ( ) 0ijε ≠x
(0) ( )ijklL x

(0) ( )ijklL x

Ω

D

Figure 4.1 Inclusion.

* ( ) 0ijε =x

* ( ) 0ijε =x
(1) ( )ijklL x

(0) ( )ijklL x

Ω

D

Figure 4.2 Inhomogeneity.

An inhomogeneity is defined as a subdomain � in domain D, where
the material properties in � and in D � � are different. The domain
outside �, that is, D � �, is called the matrix; see Figure 4.2. For
linear elastic material, this can be stated as

(1)L in � � Dijkl� is an inhomogeneity ⇔ L (x) � �ijkl (0)L in D � �ijkl

no eigenstrain throughout D

From the above definition, we see that inclusion is nothing but a
distribution of eigenstrains in an otherwise homogeneous material. The
presence of eigenstrain may cause stresses in the material. On the other
hand, inhomogeneity is a foreign material embedded in an otherwise
homogeneous matrix material. If the inhomogeneity fits into the sur-
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S n

S −
S +

Figure 4.3 Interface with positive and negative sides.

rounding matrix perfectly, there will not be stress produced either in
the matrix or in the inhomogeneity.

4.2 INTERFACE CONDITIONS

Consider an inclusion � in an elastic domain D of elastic stiffness
tensor Lijkl. The interface between � and its surrounding material will
be denoted by S. We wish to investigate the continuity of field quan-
tities (displacements, strain, stress) across this interface. If the material
across the interface S is continuous (e.g., no gap and slip), we call it
a perfect interface. For perfect interface, the displacement and the in-
terfacial traction across the interface must be continuous, that is,

� ��u � u (S ) � u (S ) � 0, (4.2.1)i i i

� ��� n � [� (S ) � � (S )]n � 0. (4.2.2)ij j ij ij j

where nj is the outward unit normal to the interface S, and ui(S�) and
�ij(S�) are the values of ui(x) and �ij(x) evaluated at the positive side
of S, while ui(S�) and �ij(S�) are the values of ui(x) and �ij(x) evaluated
at the negative side of S. The positive side of S is the side to which nj

points; see Figure 4.3.
It then follows from (4.2.1) that the displacement gradient may have

a jump across the interface given by

� ��u � u (S ) � u (S ) � � n , (4.2.3)i, j i, j i, j i j

where �i is the magnitude of the jump that will be determined shortly.
Note that the right-hand side of (4.2.3) is orthogonal to the tangent
vector of S. Thus, Eq. (4.2.3) simply says that, due to the constraint of
(4.2.1), the tangential derivatives of the displacements along S must be
continuous.
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Next, making use of Hooke’s law (3.1.5) in (4.2.2) and the fact that
the stiffness tensor is the same inside and outside the inclusion yields

L (�u � ��*)n � 0, (4.2.4)ijkl k,l kl j

where

� � ���* � �*(S ) � �*(S ) � ��*(S ). (4.2.5)kl kl kl kl

Since

��*(S ) � 0, (4.2.6)kl

substitution of (4.2.3) into (4.2.4) gives

�L n n � � �L �*(S )n . (4.2.7)ijkl l j k ijkl kl j

This is a system of algebraic equations for �k. Comparing it with
(2.6.13), one can easily write out the solution

�� � �L �* (S )n N (n)/D(n), (4.2.8)i jkmn mn k ij

where

1–N (n) � � � K (n)K (n), (4.2.9)ij 2 ikl jmn km ln

D(n) � � K (n)K (n)K (n), (4.2.10)mnl m1 n2 l3

K (n) � L n n , (4.2.11)ik ijkl i j

� � permutation tensor.ijk

Notice that Nij is the cofactor of Kij and D is the determinant of Kij.
Therefore, Nij/D is the inverse of Kij. Expressions of Nij and D for
isotropic, cubic, and transversely isotropic materials are given in Ap-
pendix 4.A.

Substituting (4.2.8) into (4.2.3) we arrived at

��u � �L �* (S )n n N (n)/D(n). (4.2.12)i, j lkmn mn k j il

It thus follows that
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1 �–�� � � L �* (S )n {n N (n) � n N (n)}/D(n), (4.2.13)ij 2 lkmn mn k j il i jl

� ��� � � (S ) � � (S ) � L (�u � ��*)ij ij ij ijkl k,l kl

� �1� L {�L �* (S )n n N (n)/D(n) � �*(S )}. (4.2.14)ijkl lkmn mn k j il kl

Note that for a given inclusion the right-hand sides of (4.2.13) and
(4.2.14) involve only known quantities. Therefore, if the strain and
stress are known within the inclusion, the corresponding strain and
stress just outside the inclusion can be computed from these equations.
This proves the following uniqueness theorem.

Uniqueness Theorem for Inclusion–Matrix Interface If the stress
or strain tensor is known locally at one side of the interface between
an inclusion and the surrounding matrix, then their jumps and conse-
quent values at the other side of the interface are explicitly determin-
able in terms of the matrix moduli, the eigenstrain in the inclusion, and
the interface normal.

Let us now consider the continuity conditions at the interface be-
tween an inhomogeneity and its surrounding matrix. Let the stiffness
tensor of inhomogeneity be and that of the matrix be Lijkl. Further,(1)Lijkl

we assume that the interface is a perfect one, that is, the continuity
conditions (4.2.1) and (4.2.2) are satisfied. Consequently, Eq. (4.2.3)
also holds.

Making use of Hooke’s law, we have

� � � (1) �� (S ) � L u (S ), � (S ) � L u (S ). (4.2.15)ij ijkl k,l ij ijkl k,l

Substituting the above into (4.2.2) yields

� (1) �L u (S )n � L u (S )n . (4.2.16)ijkl k,l j ijkl k,l j

Eliminating uk,l(S�) in the above equation by using (4.2.3), we arrive
at the following equation for �i:

�L � n n � �L u (S )n , (4.2.17)ijkl k l j ijkl k,l j

where



76 INCLUSIONS AND INHOMOGENEITIES

(1)�L � L � L . (4.2.18)ijkl ijkl ijkl

Similar to (4.2.7), Eq. (4.2.17) can be solved to yield

� �� � �L u (S )n N (n)/D(n) � �L � (S )n N (n)/D(n).i jkmn m,n k ij jkmn mn k ij

(4.2.19)

Making use of the above in (4.2.3) yields

��u � �L � (S )n n N (n)/D(n). (4.2.20)i, j lkmn mn l j ik

Thus, we have

1 �1–�� � �L � (S )n {n N (n) � n N (n)}/D(n). (4.2.21)ij 2 lkmn mn l j ik i jk

Further, combination of (4.2.20) and the first of (4.2.15) gives

� � �� (S ) � L {� (S ) � �L � (S )n n N (n)/D(n)}ij ijkl kl pqmn mn l q kp

or

��� � �L � (S )[L n n N (n)/D(n) � � ]. (4.2.22)ij pqmn mn ijkl l q kp pq

Again, we notice from (4.2.21) and (4.2.22) that for a given inhomo-
geneity, if the strain or the stress field on one inside the interface is
known, the corresponding strain and stress immediately on the other
side of interface can be computed. Therefore, similar to the inclusion
case, we can state a uniqueness theorem for the inhomogeneity.

Uniqueness Theorem for Inhomogeneity–Matrix Interface If the
stress or strain tensor is known locally at one side of the interface
between an inhomogeneity and its surrounding matrix, then their jumps
and consequent values at the other side of the interface are explicitly
determinable in terms of the moduli of the inhomogeneity and the
matrix and the interface normal.
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Figure 4.4 Ellipsoidal inclusion �.

4.3 ELLIPSOIDAL INCLUSION WITH UNIFORM
EIGENSTRAINS (ESHELBY SOLUTION)

Consider an infinite domain D containing an ellipsoidal inclusion �
with uniform eigenstrain Let the stiffness tensor of the material be�*.ij

Lijkl, and the ellipsoidal inclusion (Figure 4.4) be described by

2 2 2� � {x , x , x ; (x /a ) � (x /a ) � (x /a ) � 1}, (4.3.1)1 2 3 1 1 2 2 3 3

where a1, a2, and a3 are the semiaxes of the ellipsoid.
Since

�* for x � �ij�*(x) � (4.3.2)�ij 0 for x � �,

it then follows from Green’s function formulation of the general so-
lution to eigenstrain problems (3.3.14), (3.3.15), and (3.3.16) that

��G (x � y)miu (x) � L �* � dV(y), (4.3.3)i mjkl kl
� �yj

�� (x) � L �* P (x), (4.3.4)ij klmn mn ijkl

�� (x) � L (L �* P (x) � �*), (4.3.5)ij ijkl pqmn mn klpq kl

where

2 � 2 �2 � 2 �� G (x, y) � G (x, y)1 � G (x, y) � G (x, y)kj ljki li�	 (x, y) � � � �� �ijkl 4 �x �y �x �y �x �y �x �yj l i l j k i k

(4.3.6)

was introduced by (3.3.17), and
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Figure 4.5 Unit sphere Ŝ.

� �P (x) � � 	 (x, y) dV(y). (4.3.7)ijkl ijkl
�

For convenience, we introduce

�S (x) � L P (x). (4.3.8)ijkl mnkl ijmn

Then (4.3.4) and (4.3.5) can be rewritten as

� (x) � S (x)�*, (4.3.9)ij ijkl kl

� (x) � L {S (x)�* � �*} � L {S (x) � I }�* , (4.3.10)ij ijkl klmn mn kl ijkl klmn klmn mn

where Iijkl is the fourth-order identity tensor given by

1–I � (� � � � � ). (4.3.11)ijkl 2 ik jl il jk

It is noted that (4.3.3)–(4.3.10) are valid for both x inside and outside
the inclusion �. We now show that is a constant fourth-order�P (x)ijkl

tensor for x inside �, that is,

a a a1 2 3� �3 �1 ˆP (x) � P � � H (�)a D (�) dS(�), x � � (4.3.12)ijkl ijkl ijkl
Ŝ4


where Pijkl is referred to as the Hill polarization tensor, and

H (�) � N (�)� � � N (�)� � � N (�)� � � N (�)� � , (4.3.13)ijkl ik j l jk i l il j k jl i k

2 2 2ˆ ˆ ˆa � �(a � ) � (a � ) � (a � ) . (4.3.14)1 1 2 2 3 3

In (4.3.12), the integration is over the surface of the unit sphere asŜ
shown in Figure 4.5.

To this end, let us consider the integral
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2 � 2� G (x, �) �kiG (x) � � d� � � � G (x, �) d�. (4.3.15)ijkl ik
� ��x �� �x �xj l j l

Replacing Green’s function in the above integral by its expression
(2.6.37), we have

21 � �1ˆ ˆ ˆ ˆ ˆG (x) � � � � �[� � (x � �)]N (�)D (�) dS(�) d�.� �ijkl ik2 ˆ� S8
 �x �xj l

(4.3.16)

Exchanging the order of integration,

21 � �1ˆ ˆ ˆ ˆ ˆG (x) � � � � �[� � (x � �)] d� N (�)D (�) dS(�).� �ijkl ik2
Ŝ �8
 �x �xj l

(4.3.17)

Making use of the result in Appendix 4.A, we have

2a a a � 11 2 3 2 2 �1ˆ ˆ ˆ ˆ ˆG (x) � � � [a � (� � x) ]N (�)D (�) dS(�)ijkl ik3
Ŝ8
 �x �x aj l

a a a1 2 3 �3 �1ˆ ˆ ˆ ˆ ˆ ˆ� � � � a N (�)D (�) dS(�).j l ik
Ŝ4


(4.3.18)

Substituting (4.3.18) into (4.3.7) yields (4.3.12). Consequently, it fol-
lows from (4.3.8) that for x inside the inclusion �,

a a a1 2 3 �3 �1 ˆS � L P � l � H (�)a D (�) dS(�). (4.3.19)ijkl mnkl ijmn mnkl ijmn
Ŝ4


This proves (4.3.12).
Consequently, it follows from (4.3.9) that the total strain (and the

stress as well) is uniform inside the ellipsoidal inclusion when the
eigenstrain is uniform, that is,

� (x) � S �* for x � � (4.3.20)ij ijkl kl

where the fourth-order tensor Sijkl is commonly referred to as the Esh-
elby inclusion tensor, and (4.3.20) is called the Eshelby ellipsoidal
inclusion solution. It can be seen from (4.3.12) that
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S � S � S . (4.3.21)ijkl jikl ijlk

However, the Eshelby tensor does not possess the diagonal symmetry,
that is, in general, Sijkl � Sklij.

Having obtained the total strain within the inclusion, the stress field
within the inclusion can be computed from Hooke’s law (3.1.5):

� � L (� � �*) � L � � �*, (4.3.22)ij ijkl kl kl ijkl kl ij

where

�* � �L �* (4.3.23)ij ijkl kl

is called the stress polarization. It is the stress in the inclusion caused
by the eigenstrain when the inclusion is not allowed to deform at�*ij
all (i.e., the total strain is zero, �kl � 0). This can be easily understood
if we recalled the example in Chapter 3, where an aluminum ball is
heated while the ball is constrained so the total strain is zero. The
corresponding stress generated in the ball, according to (3.2.6), is

� � �* � �
 L �Tij ij A nnij

because the eigenstrain in this case is 
A �T.
It then follows from (4.3.19) that the Eshelby solution (4.3.20) can

be written as

� � S �* � P L �* � �P �* , (4.3.24)ij ijkl kl ijmn mnkl kl ijmn mn

where

P � S Mijmn ijkl klmn

is called the stress polarization. Note that this is not the stress on the
inclusion. The stress on the inclusion (4.3.22) is given by

� � L (S �* � �*) � �Q �*,ij ijkl klmn mn kl ijkl kl

where the fourth-order tensor

Q � L (I � S ) (4.3.25)ijkl ijmn mnkl mnkl

can be viewed as the dual of the stress polarization tensor Pijkl.
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One can also show that

TL(I � S) � (I � S )L (4.3.26)

is positive definite. To this end, consider the total strain energy of the
ellipsoidal inclusion problem:

1 1 1
U � � � (� � �*) dv � � � u dv � � � �* dvij ij ij ij i, j ij ij

D D �2 2 2

1 1
� � [(� u ) � � u ] dv � � L (� � �*)�* dvij i , j ij, j i ijkl kl kl ij

D �2 2

1 1 1
� � � u n ds � � � u dv � � L (� � �*)�* dv,ij i j ij, j i ijkl kl kl ij

S D �2 2 2�

(4.3.27)

where S� is the boundary of D. Since D is an infinite domain and the
stress vanishes at infinity, the surface integral must be zero. By virtue
of the equilibrium equation, the second term on the right-hand side of
(4.3.27) is also zero. Therefore, we have

1 1
U � � (�* � �)L�* dv � � (�* � S�*)L�* dv

� �2 2

1 1T� � �*(I � S )L�* dv � � �*L(I � S)�* dv. (4.3.28)
� �2 2

Since the strain energy must be positive and becomes zero only if the
eigenstrain is zero, we must have

T� �*(I � S )L�* dv � � �*L(I � S)�* dv � 0. (4.3.29)
� �

Note that S is independent of the size of � and (4.3.29) should hold
for any size of �, we can conclude from (4.3.29) that

T�*(I � S )L�* � �*L(I � S)�* � 0, (4.3.30)

and the equal sign is realized only when �* � 0. This proves that L(I
� S) � (I � ST)L is positive definite. Two corollaries of (4.3.30) are
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TLS � S L, (4.3.31)

and (I � S) is nonsingular.
Next, we show that S is also nonsingular. We begin by computing

the strain energy stored in the region outside the inclusion:

1 1
U � � � � dv � � � u dvm ij ij ij i, j

D�� D��2 2

1
� � [(� u ) � � u ] dv. (4.3.32)ij i , j ij, j i

D��2

Again, the second term on the right hand of (4.3.32) vanishes because
of equilibrium. The first term can be converted to a surface integral by
using the divergence theorem:

1 1
U � � � u n ds � � � u n ds, (4.3.33)m ij i j ij i j

S S2 2�

where the negative sign of the second term comes about because nj is
the outward normal vector of �. The first term vanishes because the
stresses go to zero at infinity. Thus, we have

1 1 1
U � � � � u n ds � � � � u dv � � � � � dv. (4.3.34)m ij i j ij i, j ij ij

S � �2 2 2

If S is singular, there must exist an eigenstrain field

�̂* � 0 (4.3.35)kl

such that

� � S �̂* � 0 on �. (4.3.36)ij ijkl kl

In what follows, we will show that (4.3.36) contradicts (4.3.35), that
is, if (4.3.36) is satisfied, then (4.3.35) cannot be true, thus proving
that S cannot be singular.

To this end, first compute the corresponding stress on � when
(4.3.36) holds:
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� � L (� � �̂*) � �L �̂*. (4.3.37)ij ijkl kl kl ijkl kl

Substitution of (4.3.36) into (4.3.34) leads to Um � 0. It then follows
from (4.3.32) that �ij � �ij � 0 in the region outside the inclusion, or
�ij(S�) � 0.

On the other hand, the traction continuity condition on the inclusion/
matrix interface yields

� �0 � � (S )n � � (S )n � �L �̂*n , (4.3.38)ij j ij j ijkl kl j

where (4.3.37) has been used in deriving the last equation of (4.3.38).
Note that Lijkl is a constant second-order tensor while nj varies along�̂*kl

the boundary. For (4.3.38) to hold for the entire boundary, we must
have Lijkl � 0. Since Lijkl is nonsingular, we end up with � 0.�̂* �̂*kl kl

This contradicts (4.3.35). Therefore, S cannot be singular.
We also note that Sijkl is independent of the eigenstrain. But, it does

depend on the matrix material. For general anisotropic materials, nu-
merical methods are typically required to carry out the integral in Sijkl.
For isotropic materials, the integral can be written in terms of elliptical
integrals and explicit expression in terms of elemental functions can be
obtained for certain special cases. For example, the Eshelby tensor Sijkl

for a spherical inclusion in an isotropic material is a fourth-order iso-
tropic tensor:

2–S � �� � � �(� � � � � � � � ), (4.3.39)ijkl ij kl ik jl il jk 3 ij kl

where

K 1 � v 3(K � 2�) 4 � 5v
� � � , � � � .

3K � 4� 9(1 � v) 5(3K � 4�) 15(1 � v)

(4.3.40)

Using the symbolic notation introduced in (1.3.3), we can simply write

S � (3�, 2�). (4.3.41)

The expressions of Sijkl for inclusions of special shapes are given in
Appendix 4.B.

Before closing this section, we mention that (4.3.20) is no longer
valid for a material point outside the inclusion �. To obtain the strain
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Figure 4.6 Ellipsoidal inhomogeneity.

and stress fields outside the inclusion, one needs to evaluate the integral
in (4.3.7) for x outside the ellipsoid. An alternative approach is to use
the continuity conditions at the interface between an inclusion and its
surrounding matrix. Since the stresses and strains are known inside the
inclusion, the stresses and strains, based on the uniqueness theorem,
can be obtained just outside the inclusion. This allows us to compute
the strain and stress field anywhere outside the inclusion. The stresses
and strains outside the inclusion will not be needed in this book. So,
we will not present them. However, we do note that for x outside of
�r, Sr(x) decades as �x��3 as �x� → �. Readers are referred to the
Suggested Readings at end of this chapter for further details.

4.4 ELLIPSOIDAL INHOMOGENEITIES

Consider an elastic body D with elastic modulus L0 containing an el-
lipsoidal inhomogeneity � with elastic modulus tensor L1. Let D be
subjected to surface traction p0 � �0 � n on the boundary of D, as
shown in Figure 4.6. We are to find the stress fields in D.

Obviously, when L1 � L0, the material is homogeneous. Conse-
quently, the total stress field becomes uniform throughout D (see Figure
4.7), and is given by

t 0� � � (4.4.1)

It is therefore conceivable that, through the principle of linear super-
position, when L1 is different from L0, the total stress field in D can
be written as
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Figure 4.7 Uniform stress field in homogeneous body.

t 0� � � � �, (4.4.2)

where � is the stress perturbation due to the presence of the inhomo-
geneity �. Obviously, the perturbed stress field � should satisfy the
equilibrium equations and the homogeneous boundary condition

� � n � 0 on S. (4.4.3)

If �0 is used to denote the strain field corresponding to �0, that is,

0 0� � L � , (4.4.4)0

then the total strain on the inclusion can be written as

t 0� � � � �, (4.4.5)

where � is the perturbed strain field due to the presence of the inhomo-
geneity. Application of Hooke’s law in D and D � � yields, respec-
tively,

t 0 0� � � � � � L (� � �) in �, (4.4.6)1

t 0 0� � � � � � L (� � �) in D � �, (4.4.7)0

Our task is to solve for � and � by the so-called equivalent inclusion
method.

To this end, let us consider a homogeneous body D with elastic
modulus tensor L0 everywhere, containing an inclusion � with eigen-
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Figure 4.8 Ellipsoidal inclusion.

strain �* (the value of which is to be determined); see Figure 4.8. The
eigenstrain �* is introduced here to simulate the inhomogeneity. In
other words, we are trying to create an inclusion problem which, by
properly adjusting the value of �*, has the same stress field as that of
the inhomogeneity problem.

For the inclusion problem shown in Figure 4.8, Hooke’s law gives

t 0 0� � � � � � L (� � � � �*) in �, (4.4.8)0

t 0 0� � � � � � L (� � �) in D � �, (4.4.9)0

where �0 and �0 are the fields in D due to the applied traction p0 �
�0 � n when the inclusion is absent, and � and � are the fields due to
eigenstrain �* in the inclusion �. From the Eshelby solution (4.3.20),

� � S�*, (4.4.10)

we can rewrite (4.4.8) as

t 0 0� � � � � � L (� � S�* � �*) in �. (4.4.11)0

Now, recall that we created this inclusion problem to simulate the
inhomogeneity problem. We want to adjust the eigenstrain �* so that
the stress field in the inclusion � given by (4.4.11) is the same as the
stress field in the inhomogeneity � given by (4.4.6), namely,
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0 0L (� � S�* � �*) � L (� � �) in �. (4.4.12)0 1

Making use of the Eshelby solution (4.3.20) again yields

0 0L (� � S�* � �*) � L (� � S�*) in �. (4.4.13)0 1

This is called the equivalent inclusion equation. From this equation,
the eigenstrain needed to simulate the inhomogeneity can be solved:

�1 0�* � �[(L � L )S � L ] (L � L )�1 0 0 1 0

�1 �1 0� �((L � L ) [(L � L )S � L ]) �1 0 1 0 0

�1 �1 0� �[S � (L � L ) L )] � . (4.4.14)1 0 0

The total strain on the inclusion thus follows from (4.4.5):

t 0 0 0� � � � � � � � S�* � T� , (4.4.15)

where

�1 �1T � I � S[S � (L � L ) L ]1 0 0

�1 �1 �1� [S � (L � L ) L ) � S][S � (L � L ) L ]1 0 0 1 0 0

�1 �1 �1� (L � L ) L [S � (L � L ) L ]1 0 0 1 0 0

�1 �1 �1� ([S � (L � L ) L ]L (L � L ))1 0 0 0 1 0

�1 �1� [SL (L � L ) � I] (4.4.16)0 1 0

or

�1 �1T � [I � SL (L � L )] . (4.4.17)0 1 0

Since the stresses in the inclusion are the same as those in the in-
homogeneity, the total stress in the inhomogeneity is, therefore, given
by

t 0 0� � � � � � L (� � S�* � �*), (4.4.18)0

where �* is given by (4.4.14). This completes the solution of the in-
homogeneity problem.
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To close this section, we need to mention that when the eigenstrain
is given by (4.4.14), the stresses for the inclusion problem and the
inhomogeneity problem are identical not only inside � but also in D
� �. This can be shown by using the uniqueness theorem for inclusions
and inhomogeneities.

4.5 INHOMOGENEOUS INHOMOGENEITIES

Sometimes an inhomogeneity may possesses its own eigenstrains. Such
inhomogeneities are called inhomogeneous inhomogeneities. In other
words, a subdomain occupied by foreign material may involve a dis-
tribution of eigenstrains as well. Examples of such inhomogeneous in-
homogeneities include the formation of martensite blades in quenched
carbon steels and precipitations in alloys.

To solve for the inhomogeneous inhomogeneity problem, let us con-
sider the inhomogeneity shown in Figure 4.1. Let D be subjected to
surface traction p0 � �0 � n on the boundary. Furthermore, we assume
that a uniform eigenstrain �p is prescribed on the inhomogeneities �.
We are to find the stress field in D.

If �0 is used to denote the strain field corresponding to �0, that is,

0 0� � L � , (4.5.1)0

then application of Hooke’s law in D and D � � yields, respectively,

t 0 0 p� � � � � � L (� � � � � ) in �, (4.5.2)1

t 0 0� � � � � � L (� � �) in D � �, (4.5.3)0

where � and � are the perturbed stress and strain fields, respectively,
caused by the sum of two factors, the inhomogeneity and the eigen-
strain �p in the inhomogeneity. Our task is to solve for � and �.

Imagine that the inhomogeneous inhomogeneity is being simulated
by an inclusion in a homogeneous matrix with elastic stiffness tensor
L, where the total eigenstrain on the inclusion is �p � �*. Then, (4.5.2)
and (4.5.3) can be rewritten as
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t 0 0 p� � � � � � L (� � � � � � �*) in �, (4.5.4)0

t 0 0� � � � � � L (� � �) in D � �. (4.5.5)0

Consequently, the equivalent inclusion equation becomes

0 p 0 pL (� � � � � � �*) � L (� � � � � ) in �. (4.5.6)0 1

The Eshelby solution (4.3.20) in this case takes the form of

p� � S�** � S(� � �*), (4.5.7)

where

p�** � � � �*. (4.5.8)

Introducing (4.5.7) into (4.5.6) yields

0 0 pL (� � S�** � �**) � L (� � S�** � � ) in �. (4.5.9)0 1

This can be solved to obtain

�1 0 p�** � [L (S � I) � L S] (�L M � � L � ), (4.5.10)0 1 0 1

where

�L � L � L . (4.5.11)1 0

Note that

�1 �1S[L (S � I) � L S] � S[L (S � I) � L S]0 1 0 1

�1 �1 �1� �(L S � L � L ) � �(H � L ) ,0 0 1 1

(4.5.12)

where
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�1 �1 �1H � L S � L � L (S � I) � P � L (4.5.13)0 0 0 0

is known as Hill’s constraint tensor. Therefore, (4.5.10) can be written
alternatively,

�1 �1 0 p�** � �S (H � L ) (�L M � � L � ). (4.5.14)1 0 1

Once the eigenstrain �** is known, the total strain on the inhomo-
geneous inhomogeneity can be computed as

t 0 0� � � � � � � � S�**. (4.5.15)

Therefore, substituting (4.5.14) into (4.5.15), we can write the total
strain in the inhomogeneous inhomogeneity as

t 0 0 �1 0 p� � � � � � � � (H � L ) (�L M � � � ), (4.5.16)1 0

where the stress polarization is defined by

p p� � �L � . (4.5.17)1

Similarly, the total stress on the inhomogeneous inhomogeneity is
given by (4.5.4)

t 0� � L (� � S�** � �**)0

0 �1 �1 0 p� � � L (I � S )(H � L ) (�L M � � � ) in �0 1 0

0 �1 0 p� � � H(H � L ) (�L M � � � ). (4.5.18)1 0

Making use of (4.5.16) in (4.5.18) gives an alternative form:

t 0 t 0� � � � H(� � � ) in �. (4.5.19)

In the absence of the applied loading, (4.5.16) and (4.5.18) become,
respectively,

t �1 p� � �(H � L ) � , (4.5.20)1

t �1 p t� � H(H � L ) � � �H� in �. (4.5.21)1
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Figure 4.9

PROBLEMS

4.1 A spherical cavity of radius a is present in an otherwise uniform,
isotropic, linearly elastic solid of infinite extent with Poisson’s ratio
�. A uniaxial tension � �0�i3�j3 is applied at infinity. (See Fig.0� ij

4.9.)
1. Use the equivalent inclusion method to find the stress compo-

nents �ij(x1, x2, x3) at points (0, 0, a) and (0, a, 0).
2. Define the stress concentration factors by

� (0, a, 0) � (0, 0, a)33 11� � , � �t c� �0 0

and plot the stress concentration factors versus the Poisson’s
ratio �.

4.2 Prove that the stress polarization tensor Pijkl symmetric and
positive-definite. Further,

�*M �* � �*P �* � 0ij ijkl kl ij ijkl kl

for any arbitrary second-order tensor �*.ij

4.3 Prove the identity

�1 �1�(L � L ) L � M (M � M ) .1 0 0 1 1 0
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APPENDIX 4A

Consider the integral

ˆI � � �[� � (x � �)] d�, (4.A.1)
�

where the integration doman � is an ellipsoid defined by (4.3.1). To
carry out this integral, we introduce the following substitutions:

ˆa �� /a x /a 1 11 1 1 1 1 ˆ� � � /a , x � x /a , � � a � , (4.A.2)2 2 2 2 2 2a� � � � � �ˆ� /a x /a a �3 3 3 3 3 3

where

2 2 2ˆ ˆ ˆa � �(a � ) � (a � ) � (a � ) . (4.A.3)1 1 2 2 3 3

Then, the volume integral over the ellipsoid can be converted to a
volume integral overa unit sphere:

ˆI � � �[� � (x � �)] d� � � �[a(� � x � � � �)]a a a d�.1 2 3
� � � �1i i

(4.A.4)

In the case � � � 1, the above integral can be written asx

22
 1 �1�za a a1 2 3I � � � � �(� � x � z) dr dz d�� � � �
0 �1 0a
2
 1a a a1 2 3 2� � � (1 � z )�(� � x � z) dz d�� �

0 �12a
2
a a a1 2 3 2� � [1 � (� � x) ] d�

02a


a a a1 2 3 2� [1 � (� � x) ]. (4.A.5)
a

See Figure 4.10.
Returning to the original variables, we have



APPENDIX 4B ESHELBY TENSOR FOR ISOTROPIC MATERIALS 93

x

η

ξ

ϕ
r z

Figure 4.10 Domain of integration.


a a a 
a a a1 2 3 1 2 32 2 2ˆI � [1 � (� � x) ] � [a � (� � x) ]. (4.A.6)3a a

For a point x inside the ellipsoid, the corresponding is inside a unitx
sphere, that is, � 1. Since � is a unit vector, we have � � � 1�x� x
for any point x inside the ellipsoid �. Therefore, the above result is
valid for any point x inside the ellipsoid �.

APPENDIX 4B ESHELBY TENSOR FOR ISOTROPIC
MATERIALS WITH POISSON’S RATIO 	

Ellipsoid (a1 � a2 � a3)

3 1 � 2v2S � a I � I ,1111 1 11 18
(1 � v) 8
(1 � v)

1 1 � 2v2S � a I � I ,1122 2 12 18
(1 � v) 8
(1 � v)

1 1 � 2v2S � a I � I ,1133 3 13 18
(1 � v) 8
(1 � v)

2 2a � a 1 � 2v1 2S � I � (I � I ).1212 12 1 216
(1 � v) 16
(1 � v)

All other nonzero components are obtained by the cyclic permutation
of the above equations. The components that cannot be obtained by the
cyclic permutation are zero; for instance, S1112 � S1223 � S1232 � 0.
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In the above equations, the constants I1, I2, I11, I12, and I13 are given
by the following:

4
a a a1 2 3I � {F(�, k) � E(�, k)},1 2 2 2 2 1 /2(a � a )(a � a )1 2 1 3

2 2 1 /24
a a a a (a � a )1 2 3 2 1 3I � � E(�, k) ,� �3 2 2 2 2 1 /2(a � a )(a � a ) a a2 3 1 3 1 3

where the elliptical integrals are defined by

� dw
F(�, k) � � ,2 2 1 /2

0 (1 � k sin w)

�
2 2 1 /2E(�, k) � � (1 � k sin w) dw,

0

�1 2 2 1 /2 2 2 2 2 1 /2� � sin (1 � a /a ) , k � {(a � a )/(a � a )} .3 1 1 2 1 3

Furthermore

I � I � I � 4
,1 2 3

23I � I � I � 4
 /a ,11 12 13 1

2 2 23a I � a I � a I � 3I ,1 11 2 12 3 13 1

2 2I � (I � I )/(a � a ).12 2 1 1 2

These equations and their cyclic counterparts give sufficient relations
to express Ii and Iij in terms of I1 and I3.

Sphere (a1 � a2 � a3 � a)

I � I � I � 4
 /3,1 2 3

2I � I � I � I � I � I � 4
 /5a ,11 22 33 12 23 31

7 � 5v
S � S � S � ,1111 2222 3333 15(1 � v)
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5v � 1
S � S � S � S � S � S � ,1122 2233 3311 1133 2211 3322 15(1 � v)

4 � 5v
S � S � S � .1212 2323 3131 15(1 � v)

Elliptic Cylinder (a3 → �)

I � 4
a /(a � a ), I � 4
a /(a � a ), I � 01 2 1 2 2 1 1 2 3

2 2I � 4
 /(a � a ) , 3I � 4
 /a � I ,12 1 2 11 1 12

23I � 4
 /a � I , I � I � I � 0,22 2 12 13 23 33

2 2 2a I � I , a I � I , a I � 0.3 13 1 3 23 2 3 33

21 a � 2a a a2 1 2 2S � � (1 � 2v) ,� �1111 22(1 � v) (a � a ) a � a1 2 1 2

21 a � 2a a a1 1 2 1S � � (1 � 2v) , S � 0,� �2222 333322(1 � v) (a � a ) a � a1 2 1 2

21 a a2 2S � � (1 � 2v) ,� �1122 22(1 � v) (a � a ) a � a1 2 1 2

1 2va1S � , S � 0,2233 33112(1 � v) a � a1 2

1 2va2S � ,1133 2(1 � v) a � a1 2

21 a a1 1S � � (1 � 2v) ,� �2211 22(1 � v) (a � a ) a � a1 2 1 2

2 21 a � a 1 � 2v1 2S � 0, S � � ,� �3322 1212 22(1 � v) 2(a � a ) 21 2

a a1 2S � , S � .2323 31312(a � a ) 2(a � a )1 2 1 2
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Penny Shape (a1 � a2 �� a3)

2 2I � I � 
 a /a , I � 4
 � 2
 a /a ,1 2 3 1 3 3 1

2 3I � I � 3
 a /4a ,12 21 3 1

4 2 2–I � I � I � I � 3( 
 � 
 a /a )/a ,13 23 31 32 3 3 1 1

2 3 4 2–I � I � 3
 a /4a , I � 
 /a ;11 22 3 1 33 3 3

13 � 8v a 1 � 2v 
 a3 3S � S � 
 , S � 1 � ,1111 2222 333332(1 � v) a 1 � v 4 a1 1

8v � 1 a 2v � 1 a3 3S � S � 
 , S � 
 ,1122 2211 223332(1 � v) a 8(1 � v) a1 1

v 4v � 1 a3S � S � 1 � 
 ,	 
3311 3322 1 � v 8v a1

7 � 8v a 1 v � 2 
 a3 3S � 
 , S � S � 1 � ,	 
1212 1313 232332(1 � v) a 2 1 � v 4 a1 1

1 � 2v 
 a v 1 � 2v 
 a3 3S � S � � , S � 1 � .kk11 kk22 kk331 � v 4 a 1 � v 1 � v 2 a1 1

When a3 � 0,

I � I � 0, I � 4
,1 2 3

2 2I � 0, I � 4
 /a , I � 4
 /a ,12 23 2 31 1

2I � I � 0, a I � 4
 /3,11 22 3 33

1–S � S � ,2323 3131 2

S � S � v /(1 � v),3311 3322

S � 1, and all other S � 0.3333 ijkl
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Flat Ellipsoid (a1 � a2 �� a3)

2 2I � 4
a a {F(k) � E(k)}/(a � a ),1 2 3 1 2

2 2I � 4
a E(k)/a � 4
a a {F(k) � E(k)}/(a � a ),2 3 2 2 3 1 2

I � 4
 � 4
a E(k)/a ,3 3 2

2 2 2 2I � [4
a E(k)/a � 8
a a {F(k) � E(k)}/(a � a )]/(a � a ),12 3 2 2 3 1 2 1 2

2 2 2I � [4
 � 8
a E(k)/a � 4
a a {F(k) � E(k)}/(a � a )]/a ,23 3 2 2 3 1 2 2

2 2 2I � [4
 � 4
a a {F(k) � E(k)}/(a � a ) � 4
a E(k)/a ]/a ,31 2 3 1 2 3 2 1

2I � 4
 /3a ,33 3

where F(k) and E(k) are the complete elliptic integrals of the first and
the second kind, respectively,


 / 2
2 2 1/2E(k) � � (1 � k sin �) d�,

0


 / 2
2 2 �1 /2F(k) � � (1 � k sin �) d�,

0

2 2 2 2k � (a � a )/a .1 2 1

Oblate Spheroid (a1 � a2 � a3)

1 /22 22
a a a a a1 3 3 3 3�1I � I � cos � 1 � ,� 	 
 �1 2 2 2 3 /2 2(a � a ) a a a1 3 1 1 1

I � 4
 � 2I ,3 1

I � I � I ,11 22 12

I � I1 32 1 2–I � 
 /a � I � 
 /a � ,12 1 4 13 1 2 24(a � a )3 1

2 2 2I � I � (I � I )/(a � a ), 3I � 4
 /a � 2I .13 23 1 3 3 1 33 3 13
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Prolate Spheroid (a1 � a2 � a3)

1 /22 22
a a a a a1 3 1 1 1�1I � I � � 1 � cosh ,� 	 
 �2 3 2 2 3 /2 2(a � a ) a a a1 3 3 3 3

2 2I � 4
 � 2I , I � (I � I )/(a � a ),1 2 12 2 1 1 2

23I � 4
 /a � 2I ,11 1 12

2 2 2I � I � I , 3I � 4
 /a � I � (I � I )/(a � a ),22 33 23 22 2 23 2 1 1 2

2 2 2I � 
 /a � (I � I )/4(a � a ).23 2 2 1 1 2
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5
DEFINITIONS OF

EFFECTIVE MODULI OF
HETEROGENEOUS

MATERIALS

Most engineering materials are heterogeneous in nature. They generally
consist of different constituents or phases, which are distinguishable at
specific scales. Each constituent may show different physical properties
(e.g., elastic moduli, thermal expansion, yield strength, electrical con-
ductivity, thermal conductivity, etc.) and/or material orientations. How-
ever, in many engineering applications, a structure component may
contain numerous such constituents such that it is impractical or even
impossible to account for each and every one of them for engineering
design and analysis. What is really relevant is the overall or effective
property of the material from which the component is made. In this
chapter, we will lay out the basic definitions of overall or effective
properties of engineering materials that are heterogeneous at the length
scale of interest.

Generally speaking, heterogeneous materials can be classified into
two categories, periodic and nonperiodic. In this text, we will focus
primarily on heterogeneous materials with nonperiodic microstructures.
So, unless indicated otherwise, the term heterogeneous material refers
to heterogeneous materials with nonperiodic microstructures. Examples
of such materials may include most of the fiber or particulate reinforced
composites and polycrystalline materials.

5.1 HETEROGENEITY AND LENGTH SCALES

Generally speaking, engineering materials are heterogeneous, that is,
they have microstructure and they contain heterogeneities. However,

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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what constitutes a heterogeneity depends on the length scales used in
the observation. Certain constituents or phases in a given material are
identifiable only at or below a specific length scale. At such a length
scale, each constituent may be homogeneous, but when observed at a
smaller length scale, the constituent itself may become heterogeneous.
A polycrystal copper, for example, may seem to be homogeneous with
the naked eye (�10 �m). But, under optical microscope (�1 �m), the
polycrystal copper is composed of many grains—small single copper
crystals with different orientations. At this length scale, although each
grain can be treated as a homogeneous material, the polycrystal copper
as an assembly of grains cannot be treated as a homogeneous material
any more because the microstructure attributes, such as grain size, ori-
entation, and grain boundaries, dictate how the material behaves at this
length. When we go down further along the length scales, we know
that each grain also has its own microstructure. The behavior and prop-
erties of materials at each length scale are controlled by the observable
microstructure at the corresponding length scale. Therefore, whether a
material is heterogeneous or not depends on the length scale used in
the observation. In other words, when studying the properties of a real
material, which is always heterogeneous, we need to define the length
scale at which the properties of interest are directly relevant. Micro-
structure features not observable at this length can be neglected. In
fact, for practical purposes, it is only certain averaged effects of the
microstructure that are of interest. So, in the study of heterogeneous
materials, we often speak of overall properties. By that we mean the
properties averaged over a certain volume of the heterogeneous mate-
rial. For such overall properties to be meaningful, the average taken
over any arbitrary volume element comparable with the relevant length
scale must be the same with the heterogeneous material sample under
consideration. Heterogeneous materials that meet this requirement are
said to be macroscopically homogeneous. We will give a more quan-
titative definition of macroscopic homogeneity later in this chapter.

For now, let us consider, for example, a fiber-reinforced composite
laminate. It is certainly impractical and unnecessary to deal with each
individual fiber when the overall bending rigidity of the laminate is of
primary interest. On the other hand, the bending rigidity of the laminate
is very closely related to the lay up of the various layers within the
laminate. To derive the overall rigidity of the composite, the laminate
must be treated as a stack of plies each being different in composition
and/or orientation, albeit each ply can be treated as a homogeneous
layer.
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In the examples given above, we have implicitly implied that there
is a separation of length scales D and d on which the macroscopic
properties (e.g., bending rigidity of the composite laminate) and mi-
croscopic properties (elasticity of the plies) are defined, respectively.
The microscale length d corresponds to the smallest constituent whose
physical properties, orientation, and shape are judged to have direct
first-order effects on the macroscopic overall physical properties of the
heterogeneous material at the length scale D. The choice of d is gen-
erally adapted to the problem under consideration. An appropriate
choice should be guided by systematic ‘‘multiscale’’ experimental ob-
servations. Generally speaking, an optimum choice would be the one
that includes a good balance between the definitions of the microscale
that have a first-order effect on the overall properties, and the simplicity
of the resulting model. The macroscale length D should be large
enough so that the microscale fluctuations (perturbations) of the stress
and strain fields due to the local variation of microstructure at the scale
d influence the overall effective property only through their averages.
In fact, in the framework of micromechanics, the stress and strain fields
are split into contributions corresponding to different length scales. It
is assumed that these length scales are sufficiently different in terms
of their order of magnitude, so that for each pair of them, the fluctu-
ations of stress and strain fields (micro or local quantities) at the smaller
length scale influence the overall (or macroscopic) behavior at the
larger length scale only through their averages, and, conversely, fluc-
tuations of stress and strain fields as well as the compositional gradients
(macro or global quantities) are not significant at the smaller length
scale. Therefore, at this scale, these macrofields are locally uniform
and can be described as uniformly applied stresses and strains. To meet
these conditions, the typical dimension of the microscale constituents
should be orders of magnitude smaller than the macroscale element so
that, d /D �� 1. In the composite laminate example mentioned above,
if the thickness of each single ply is on the order of d � 0.1 mm, the
thickness of the laminate should be at least on the order of D � 1 mm
so that the macroscopic effective bending rigidity can be defined mean-
ingfully.

Note that the identification of d and D is dependent of the length
scale of interest. In the above example, since our interest is in the
overall bending rigidity of the laminate, we have taken the overall
thickness of the laminate to be our macroscopic length parameter and
the thickness of each ply to be our microscopic parameter. This way,
it implies that each ply is a homogeneous material with no micro-
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structure. However, if we are interested in the behavior of each indi-
vidual ply, that is, our interest is in the length scale of the ply thickness,
we must then identify the ply thickness as our macroscopic length
parameter. In this case, the microscopic length parameter d would be
the diameter of the individual fibers within the ply. Each ply as a whole
can no longer be viewed as a homogeneous material. Instead, it be-
comes a composite consisting of polymer resin and the fibers. Each
constituent can be considered a homogeneous material.

5.2 REPRESENTATIVE VOLUME ELEMENT

In light of the above discussions, we introduce the concept of micro-
homogeneity. The microstructure of heterogeneous materials is, at any
given length scale, very complex, and, to a certain extent, random. To
describe the precise topographic features of the microstructure variation
is usually impractical and very often impossible. In fact, for practical
purposes, it is only certain averaged effects of the microstructure that
are of interest. So, in the study of heterogeneous materials, we often
speak of overall properties. By that we mean the properties averaged
over a certain volume of the heterogeneous material. For such overall
properties to be meaningful, the average taken over any arbitrary vol-
ume element comparable with the relevant length scale must be the
same with the heterogeneous material sample under consideration. Het-
erogeneous materials that meet this requirement are said to be macro-
scopically heterogeneous. In light of the discussions in the preceding
paragraph, if in a heterogeneous material the microscopic length pa-
rameter d and the macroscopic length parameter D can be identified
for a length scale of interest such that d /D �� 1, then the heteroge-
neous material is microscopically homogeneous at the length scale D.
A volume element with characteristic dimension of D is called a rep-
resentative volume element (RVE) because the overall properties on
any RVE would be the same. In other words, the overall properties of
each RVE represent the overall properties of the heterogeneous mate-
rial.

5.3 RANDOM MEDIA

The foregoing discussions assumed that the microstructure of the het-
erogeneous material is known. In reality, the microstructures of engi-
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neering materials are very complex and very often random in nature.
It is impractical and even impossible to have knowledge on every detail
of the microstructure configuration at any given length scale, except in
cases such as those displaying periodicity. Typically, only certain ‘‘av-
erage’’ features of the microstructure will be known, and such infor-
mation is likely to be statistical in character. In this section, we will
discuss how such statistical information can be incorporated in the
definition of RVE.

Consider a batch of particulate-reinforced composite blocks made
under the same processing conditions. Let R denote the batch and N
be the total number of blocks in R. Assume that all the blocks are the
same size D, which is much larger than the particle diameter d, and
the particle content (e.g., volume fraction) c is the same for all blocks.
However, due to manufacture variability, the distribution of the particles
in each block is inevitably different one from the other. Consequently,
if we choose a small volume at the same location x on each block, the
particle content c(x, �) in this small volume may not be the same
among all the blocks, and thus, the average

N1
�c(x)� � c(x, �), (5.3.1)�

N ��1

may depend on N. However, it is conceivable that if N is very large,
the average value computed from (5.3.1) would become relatively in-
dependent of N. In the limit of N → �, the summation can be replaced
by an integral over the sample space R, and the average becomes in-
dependent of N:

N1
�c(x)� � lim c(x, �) � � c(x, �) d�. (5.3.2)�

RNN→� ��1

Such an averaging scheme is called the ensemble average.
Now, let us consider a different average by picking out a block

randomly from the batch; call it the �th block. First we divide this
block into M subdomains of volume Vi, where Vi � V with VM�i�1

being the total volume of the block. Then, we calculate the particle
volume fraction c(x, �) on each of the subdomains, where xi is the
coordinate of a representative point, for example, the centroid of Vi.
Again, due to manufacture variability, the particle volume fraction on
each of the subdomains may not be the same among all the subdo-
mains, and, thus, the average
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M1
c(�) � c(x )V (5.3.3)� i iV i�1

may depend on M. However, it is conceivable that if M is very large,
the average value computed from (5.3.3) would become relatively in-
dependent of M. In the limit of M → �, the summation can be replaced
by an integral over the entire volume V and the average becomes in-
dependent of M:

M1 1
c(�) � lim c(x )V � � c(x) dv. (5.3.4)� i i

VV VM→� i�1

We will call this average scheme the volume (or spatial) average.
Note that the ensemble average is carried out over a group of blocks

made under the same process, while the volume average is performed
over an individual block out of the group. The nature of manufacture
variability is such that the local particle volume fraction c(x, �) at x
can be viewed as a random function of the sample �, as well as a
random function of the position x; each represents a different random
process. The ensemble average gives the mean value among all the
samples in the sample space, while the volume average tells us the
mean value over a particular sample. Imagine that the particle distri-
bution in each and every block were exactly the same; it is plausible
that the two average schemes should give the same value, that is,

�c(x)� � c(�), (5.3.5)

or

1� c(x, �) d� � � c(x, �) dV(x). (5.3.6)
R VV

This statement, that is, ensemble average equals volume average, is
known as the ergodic hypothesis, a concept used frequently in sto-
chastic analysis, where time average is used in lieu of the volume
average defined in (5.3.4).

Let us now generalize the ergodic hypothesis to the description of
microstructure features in heterogeneous materials. Consider, generally,
a group of heterogeneous materials. Let us name the group R and each
member of the group will be characterized by the label �. The value
of � is taken as defining the member (one of the materials in the group)
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completely. Further, assume that, associated with �, there is a proba-
bility distribution function p(�) defined over R, which satisfies

� p(�) d� � 1. (5.3.7)
R

Next, assume that each member of the group has a total volume V
and consists of N different types of inhomogeneities or phases. The r
th phase in sample � is assumed to occupy the volume Vr(�), r �1, 2,
3, . . . , N. To describe the material’s microstructure or the spatial
distribution of inhomogeneities, it is convenient to introduce the char-
acteristic function that takes the value of 1 if x lies within the volume
Vr(�) and zero otherwise, that is,

1 x � V (�)rƒ (x, �) � . (5.3.8)�r 0 x � V (�)r

Clearly, the characteristic function ƒr(x, �) satisfies the following con-
sistency condition:

N

ƒ (x, �) � 1. (5.3.9)� r
r�1

Thus, the ensemble average of ƒr(x, �) defines the probability Pr(x) of
finding phase r at location x:

P (x) � �ƒ (x, �)� � � ƒ (x, �)p(�) d�. (5.3.10)r r r
R

The function Pr(x) is also referred to as the one-point correlation func-
tion for the characteristic function ƒr(x, �). Likewise, the probability
Prs(x, x�) of finding simultaneously phase r at x and phase s at x� is

P (x, x�) � �ƒ (x, �)ƒ (x�, �)� � � ƒ (x, �)ƒ (x�, �)p(�) d�.rs r s r s
V

(5.3.11)

The function Prs(x, x�) is also referred to as the two-point correlation
function for the characteristic function ƒr(x, �). Following this ap-
proach, probabilities involving, for example, k points, or k-point cor-
relation function, can be defined similarly.
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Let us now develop an understanding of the geometrical interpreta-
tions of the correlation functions. Consider an epoxy matrix containing
spherical silica particles, a two-phase composite used commonly in the
electronics industry. If we take a large group of the material samples,
each has the same particle content and a volume V large enough to
contain many particles, we can, in principle, compute the one-point
correlations Pr(x) (r � 1, 2) by knowing the distribution density p(�)
and the characteristic function ƒr(x, �). Let r � 1 be the matrix phase
and r � 2 be the particle phase. If we found that P2(x) is a constant
(i.e., independent of x), then we can say that the particles are uniformly
distributed through each sample. This is because P2(x) � const. means
that the chance of finding a particle is the same everywhere in V. Note
that this does not necessarily mean that the particles are everywhere in
V. It just gives us a sense of how ‘‘uniformly’’ the particles are dis-
tributed. Next, we take x to be the center of a particle and x� to be the
center of another particle, and compute P22(x, x�). Let us assume that
it satisfies P22(x, x�) � P22(x � x�), that is, the two-point correlation
function P22(x, x�) depends only on the distance between the two
points, regardless where these two points are located. What that means
is that if one takes a measuring stick shorter than the smallest dimen-
sion of V, and places the stick inside V, the chance that there is a
particle at each end of the stick is the same regardless of where the
stick is placed. The other two-point correlation functions P11(x, x�),
P12(x, x�), and P21(x, x�) can be interpreted similarly. Clearly the two-
point correlation functions give us another measure of the ‘‘uniformity’’
of the heterogeneous materials. Said differently, if a material is statis-
tically uniform, then its correlation functions Pr(x), Prs(x, x�), and so
forth are insensitive to translation, that is, Pr(x) reduces to a constant,
Prs(x, x�) becomes a function of (x � x�) only, and so on.

More generally, in micromechanics, a heterogeneous medium is
called statistically homogeneous (or uniform) of grade k if the corre-
lation functions up to the k point are all translation invariant. Since it
is very unlikely that enough information is available to computer the
k-point correlation function for k greater than 2, in this book we will
typically call a statistically homogenous of grade 2 simply statistically
homogeneous.

In what follows, we show that if the characteristic function of a
heterogeneous material satisfies the ergodic hypothesis, the material is
statistically homogeneous. To this end, consider the volume average of
the characteristic function ƒr(x, �) for sample �:
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1 Vrƒ (x, �) � � ƒ (x, �) dV(x) � � c , (5.3.12)r r r
VV V

where cr is the volume fraction of the r th phase in the heterogeneous
material. The ergodic hypothesis thus means

P (x) � �ƒ (x, �)� � ƒ (x, �) � c . (5.3.13)r r r r

Next, consider the volume average of the two-point correlation:

1
ƒ (x, �)ƒ (x�, �) � � ƒ (x, �)ƒ (x�, �) dV(x). (5.3.14)r s r s

VV

Let

x� � x � x�. (5.3.15)

Then, we have

1 1� ƒ (x, �)ƒ (x�, �) dV(x) � � ƒ (x � x�, �) dV(x) � g (x�),r s s rs
V VV V r

(5.3.16)

or

ƒ (x, �)ƒ (x�, �) � g (x�) � g (x � x�). (5.3.17)r s rs rs

Therefore, according to the ergodic hypothesis,

P (x, x�) � �ƒ (x, �)ƒ (x�, �)� � ƒ (x, �)ƒ (x�, �) � g (x � x�).rs r s r s rs

This completes the proof.
We can summarize the foregoing discussions as follows:

1. The microstructure or the distribution of heterogeneities in a het-
erogeneous material can be characterized quantitatively by the
correlation functions Pr(x), Prs(x, x�), and so forth, which are the
ensemble average of the characteristic function ƒr(x, �).
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2. The heterogeneous material is considered statistically homoge-
neous if the correlation functions are translation invariant, that is,
Pr(x) � cr, Prs(x, x�) � grs(x � x�), and so forth.

3. If the correlation functions are ergodic, that is, the ensemble av-
erage equals the volume average, then they are translation invar-
iant. Therefore, if the correlation functions of a heterogeneous
material are ergodic, the material is considered statistically ho-
mogeneous.

Having considered the random media and introduced the concepts
of ergodicity and statistical homogeneity, we can now give the repre-
sentative volume element (RVE) a more precise definition. To define
the length scale corresponding to the properties of interest, we need to
select an RVE of the heterogeneous material in question. The size of
the RVE must be such that it includes a very large number of inhom-
ogeneities and in the meanwhile be statistically homogeneous and rep-
resentative of the local continuum properties, so that appropriate
averaging schemes over these domains give rise to the same mechanical
properties, corresponding to the overall or effective mechanical prop-
erties.

Finally, to close this section, we mention that in the rest of this book,
we will be mainly concerned with the statistically homogeneous media.
Therefore, it will be assumed implicitly, unless indicted otherwise, that
the ensemble average and the volume average are the same, that is,

1
�h(x)� � � h(x, �) d� � � h(x, �) dV(x) � h(�), (5.3.18)

R VV

where h(x, �) can be either a scalar or a tensor function.

5.4 MACROSCOPIC AVERAGES

In this section, attention is focused on developing averaging theorems
devoted to heterogeneous materials with arbitrary constituents indepen-
dent of their thermomechanical behavior.

The average stresses over a domain D is defined as

1 1
� � � � dV, or � � � � dV. (5.4.1)ij ij

D DD D

Similarly, the average strain over in a domain D is defined as
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1 1
� � � � dV, or � � � � dV. (5.4.2)ij ij

D DD D

In these definitions, the domain D does not need to be homogeneous,
nor does it need to be a single domain. Note that, as mentioned earlier,
the volume average and ensemble average are the same for statistically
homogeneous materials.

Average-Stress Theorem Let be a given constant stress tensor0� ij

and S be the entire boundary of a domain D with outward normal nj.
If

0 0� n � � p � � n (5.4.3)ij j S j ij j

is prescribed on S, then the average stress on D is given by

0� � � . (5.4.4)ij ij

To prove this theorem, consider the definition of average stress:

1 1
� � � � dV � � � � dV. (5.4.5)ij ij ik jk

D DD D

Note that xj,k � �jk, so

1 1
� � � � x dV � � [(� x ) � � ] dV. (5.4.6)ij ik j,k ik j ,k ik,k

D DD D

When there is no body force as assumed here, the second term in the
above integral vanishes. Making use of the divergence theorem and
then the traction boundary condition (5.4.3), we have

1 10� � � � x n dS � � � x n dS. (5.4.7)ij ik j k ik j k
S SD D

Making use of the divergence theorem again leads to

1 10 0 0� � � � x dV � � � � dV � � . (5.4.8)ij ik j,k ik jk ij
D DD D

This completes the proof of the average stress theorem.



110 DEFINITIONS OF EFFECTIVE MODULI OF HETEROGENEOUS MATERIALS

What the average stress theorem tells us is that when a body is
subjected to the traction boundary condition (5.4.3) with being a0� ij

constant stress tensor, the stress averaged over the entire body is the
same as regardless the complexity of the stress field within the0� ,ij

domain. Therefore, in the rest of this book, traction boundary condi-
tions will be written as

� n � � � n , (5.4.9)ij j S ij j

with the understanding that is the average stress tensor in the body�ij

enclosed by S when (5.4.9) is applied.

Average-Strain Theorem Let be a given constant strain tensor0�ij

and S be the entire boundary of a domain D with outward normal nj.
If

0u � � � x (5.4.10)i S ij j

is given on S, then the average strain on D is given by

0� � � . (5.4.11)ij ij

To prove this theorem, consider the definition of average strain:

1 1
� � � � dV � � (u � u ) dVij ij i, j j,i

D DD 2D

1 1
� � u dV � � u dV. (5.4.12)i, j j,i

D D2D 2D

Making use of the divergence theorem yields

1 1
� � � u n dS � � u n dS. (5.4.13)ij i j j i

S S2D 2D

Substitute the boundary condition (5.4.10) into the above integrals:
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1 10 0� � � � x n dS � � � x n dS.ij ik k j jk k i
S S2D 2D

Making use of the divergence theorem again,

1 1 10 0 0 0 0� � � � x dV � � � x dV � (� � � ) � � .ij ik k, j jk k,i ij ji ij
D D2D 2D 2

(5.4.14)

This completes the proof of the average strain theorem.
According to average strain theorem, if the displacements along the

entire boundary of a given body is prescribed by (5.4.10) with being0�ij

a constant strain tensor, then the strain field averaged over the entire
body is regardless the complexity of strain field within the body.0� ,ij

Thus, in the rest of this book, displacement boundary conditions will
be written as

u � � � x , (5.4.15)i S ij j

with the understanding that is the average strain tensor in the body�ij

enclosed by S when (5.4.15) is applied.

5.5 HILL’S LEMMA

Again, consider an RVE with volume V and boundary S. For any stress
and strain fields �ij and �ij at a given point in the RVE under prescribed
boundary traction or boundary displacement condition, one has the fol-
lowing result:

1
� � � � � � � (u � x � )(� n � � n ) dS, (5.5.1)ij ij ij ij i j ij ik k ik k

SD

where the overbar stands for the volume average; for example,

1
� � � � � � dv. (5.5.2)ij ij ij ij

VV

To prove Hill’s lemma, let us first expand the integrand of the surface
integral on the right-hand side of (5.5.1):



112 DEFINITIONS OF EFFECTIVE MODULI OF HETEROGENEOUS MATERIALS

� (u � x � )(� n � � n ) dSi j ij ik k ik k
S

� � (u � n � u n � � � n x � � x n � � ) dS. (5.5.3)i ik k i k ik ik k j ij j k ij ik
S

The following surface integrals can be easily evaluated:

� u � n dS � � u � dV � � � � dV � D� � ,i ik k i, j ij ij ij ij ij
S V V

� u n � dS � � � u dV � D� � ,i k ik ik i,k ik ik
S V

� � n x dS � � � � dV � D� ,ik k j ik ik ij
S V

� x n dS � � � dV � D� .j k jk jk
S V

Substituting the above into (5.5.3) yields

1 � (u � x � )(� n � � n ) dS � � � � � � � � � � � �i j ij ik k ik k ij ij ik ik ij ij ik ik
SD

� � � � � � .ij ij ij ij (5.5.4)

This proves Hill’s lemma (5.5.1).
A corollary of Hill’s lemma can be stated as follows:

� � � � � , (5.5.5)ij ij ij ij

if �ijnj�S � or ui�S � In other words, for statically admissible� n , � x .ij j ij j

stress fields (�ijnj�S � or kinematically admissible displacement� n ),ij j

fields (ui�S � the volume average of the product is the same� x ), � �ij j ij ij

as the product of the volume averages and Equation (5.5.5) is� � .ij ij

also known as Hill’s macrohomogeneity condition or Mandel–Hill con-
dition. Note that �ij�ij is twice the value of strain energy density, (5.5.5)
implies that the volume-averaged strain energy density of a heteroge-
neous material can be obtained from the volume averages of the
stresses and strains. Accordingly, homogenization can be interpreted as
finding a homogeneous comparison material that is energetically equiv-



5.6 DEFINITIONS OF EFFECTIVE MODULUS OF HETEROGENEOUS MEDIA 113
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(1)L

( )rL

Figure 5.1 Multiphase heterogeneous material.

alent to a given microstructured material. This idea will be used to
define the effective properties of heterogeneous media next.

5.6 DEFINITIONS OF EFFECTIVE MODULUS OF
HETEROGENEOUS MEDIA

In this section, we introduce the concept of effective modulus of a
statistically homogeneous heterogeneous medium. It is assumed that
such a medium can be represented by an RVE consisting of N distinct
phases dispersed throughout the RVE as inhomogeneities (or hetero-
geneities) of dimension much less than the size of the RVE. For the
moment, perfect bonding will be assumed across the interfaces between
the different phases. Nonperfect interfaces will be considered in Chap-
ter 10.

Some common engineering materials are special cases of the heter-
ogeneous material described in the preceding paragraph. For example,
a polycrystalline material can be viewed as a heterogeneous material
with infinite (N � �) number of distinct phases. Fiber- (particulate-)
reinforced composites contain two distinct phases (N � 2), namely
fibers (particles) and the matrix. Heterogeneous materials with a dis-
tinct matrix phase are called composite materials.

For convenience, body force is not considered in the remaining part
of the book unless indicated otherwise.

Consider a heterogeneous material D bounded by surface S. Assume
that the heterogeneous material consists of randomly oriented and
shaped inhomogeneities embedded in a matrix with stiffness tensor L0.
Let the stiffness tenors of the inhomogeneities be L1, L2, L3, . . . , LN,
as shown in Figure 5.1.
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(0)L
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( )rL L

(a) (b)

Figure 5.2 (a) Heterogeneous material and (b) its comparison material.

A straightforward definition of the effective modulus (stiffness) ten-
sor of the heterogeneous material is given by the following relationship:

� � L�, (5.6.1)

where and are, respectively, the average stress and strain tensors,� �
and the fourth tensor defined by (5.6.1) is call the effective modulusL
or effective stiffness tensor of the heterogeneous material.

Similarly, the effective compliance tensor of the heterogeneous ma-
terial is defined by

� � M�, (5.6.2)

where the fourth-order tensor is called the effective compliance ten-M
sor of the heterogeneous material. Obviously, it follows from the def-
initions that

�1LM � ML � I, or L � M. (5.6.3)

Although such definitions stated above are straightforward, they are not
very convenient to use.

An alternative definition of the effective modulus tensor can be given
based on the strain energy concept. To this end, let us consider two
materials of the same geometry. One is a heterogeneous material, the
other is a homogeneous one with stiffness tensor as shown in FigureL,
5.2. First, assume displacements are prescribed on the boundary of both
materials, namely
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u � � � x , (5.6.4)i S ij j

where as discussed in the previous section, would be the average� ,ij

strain in both materials.
The stiffness tensor of the homogeneous material is said to be theL

effective stiffness tensor of the heterogeneous material shown in Figure
5.2(a) if and only if

U � U , (5.6.5)c h

where Uc and Uh are the strain energy stored in the heterogeneous
material and in the homogeneous material, respectively.

It can be easily shown that the two definitions of the stiffness tenor
given above are equivalent. To this end, we calculate first the strain
energy stored in the composite:

1
U � � � � dv � D� � . (5.6.6)c ij ij ij ij

D2

Making use of (5.6.4) in conjunction with Hill’s lemma (5.5.5), we
arrive at

D
U � � � . (5.6.7)c ij ij2

In matrix notation, we have

D
U � ��. (5.6.8)c 2

For the homogeneous material, it is obvious the strain and stress
fields are uniform when (5.6.4) is applied. They are �ij � and �ij ��ij

So, the total strain energy of the homogeneous material is givenL � .ijkl kl

by

D D
U � � � � � L � , (5.6.9)h ij ij ij ijkl kl2 2

or in matrix notation
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D
U � �L�. (5.6.10)h 2

Comparing (5.6.8) with (5.6.10), we conclude that Uc � Uh for any
arbitrary if and only if � Consequently, we have proved that�, � L�.
the two foregoing definitions of stiffness tenors for heterogeneous ma-
terials are equivalent.

An alternative definition of the effective compliance tensor also can
be given based on the strain energy concept. For example, consider the
two materials shown in Figure 5.2. Assume that the homogeneous ma-
terial has a compliance tensor This time let the traction �ijnj�S �M.

be prescribed on the entire boundary of both materials. Then, the� nij j

compliance tensor is said to be the effective compliance tensor ofM
the composite shown in Figure 5.2(a) if and only if

U � U , (5.6.11)c h

where again Uc and Uh are the strain energy stored in the composite
and in the homogeneous material, respectively.

Proof of the equivalency between this definition and the one given
by (5.6.2) is straightforward; see Problem 5.1.

Although the definition based on strain energy does not seem as
straightforwards as the direct definition, it is nevertheless convenient
for the determination of the effective properties, as will be seen in later
chapters.

5.7 CONCENTRATION TENSORS AND
EFFECTIVE PROPERTIES

Consider the composite material shown in Figure 5.2(a). Let the dis-
placement boundary condition be given by

u � � � x . (5.7.1)i S ij j

Then, it follows from (5.4.11) that

N

� � c � , (5.7.2)� r r
r�0
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where is the average strain on the r th inhomogeneity and cr is the�r

volume fraction of the r th inhomogeneity. The case of r � 0 is for the
matrix. Note that is the average strain of the entire composite material�
and is the average strain of the r th inhomogeneity. Thus, a ‘‘strain�r

concentration tensor’’ Ar (r 	 0) can be defined for the r th inhomo-
geneity through

� � A �. (5.7.3)r r

Clearly, the ‘‘magnitude’’ of Ar represents the strain concentration on
the inhomogeneity. Substituting (5.7.3) into (5.7.2) yields

N N

c � � � � c � � � � c A �. (5.7.4)� �0 0 r r r r
r�1 r�1

Next, consider the average stress in the composite

N N

� � c � � c L � � c L � , (5.7.5)� �r r 0 0 0 r r r
r�0 r�1

where is the average stress tensor in the r th inhomogeneity, and�r

Hooke’s law � Lr for each inhomogeneity has been used. Making� �r r

use of (5.7.4) in (5.7.5) gives the following:

N

� � L � c (L � L )A �. (5.7.6)� �0 r r 0 r� r�1

Comparing (5.7.6) with (5.6.1) leads to

N

L � L � c (L � L )A . (5.7.7)�0 r r 0 r
r�1

In other words, the effective stiffness tensor of a composite material
can be expressed in terms of the stiffness tensors of the constituent
materials, their corresponding volume fraction and the strain concen-
tration tensors. Among these, the strain concentration tensor is the only
unknown in typical engineering applications. Much of the effort in
micromechanics has been devoted to find ways to compute the con-
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centration tensor. Several of the most commonly used methods to ap-
proximate the concentration tensors are discussed in Chapters 7 and 8.

Along a parallel path, it can be shown (Problem 5.2) that under the
traction boundary condition �ijnj�S � the effective compliance� n ,ij j

tensor of a composite is given by

N

M � M � c (M � M )B , (5.7.8)�0 r r 0 r
r�1

where Br is the stress concentration tensor for the r th inhomogeneity,
that is,

� � B �, (5.7.9)r r

where is the average stress in the r th inhomogeneity and is the� �r

average stress over the entire composite.
The concentration tensors introduced above represent the stress–

strain concentration of the r th inhomogeneity with respect to the av-
erage strain over the entire sample. It can be regarded as the global
concentration tensors. Since the composite has a distinctive matrix
phase in which all the other inhomogeneities are embedded, one can
also introduce the local concentration tensors through

� � G � and � � H � (5.7.10)r r 0 r r 0

where and are, respectively, the average strain and average stress� �0 0

tensor in the matrix phase. Clearly, Gr and Hr are, respectively, the
strain and stress concentration tensors of the r th inhomogeneity with
respect to the average strain and stress in the matrix immediately sur-
rounding itself.

To find the relationship between the local and global concentration
tensors, consider the average strain:

N N N

� � c � � c � � c � � c � � c G �� � �r r 0 0 r r 0 0 r r 0
r�0 r�1 r�1

N

� c I � c G � . (5.7.11)�	 �0 r r 0
r�1

This yields
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�1N

� � c I � c G �. (5.7.12)�	 �0 0 n n
n�1

Substitution of the above equation into (5.7.10) results in

�1N

� � G c I � c G �. (5.7.13)�	 �r r 0 n n
n�1

Comparing this to the definition of global concentration tensor (5.7.3)
leads to

�1N

A � G c I � c G . (5.7.14)�	 �r r 0 r r
r�1

Similarly, one can show that

�1N

B � H c I � c H . (5.7.15)�	 �r r 0 n n
n�1

Because of these relationships, the knowledge of the local concentra-
tion tensors is sufficient to determine the effective stiffness (compliant)
tensor of the composite.

PROBLEMS

5.1 Prove the equivalency between the two definitions of the effective
compliance tensor.

5.2 Assume that a composite is subjected to the traction boundary
condition �ijnj�S � Show Eq. (5.7.8).� n .ij j

5.3 Derive (5.7.15).
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6

BOUNDS FOR
EFFECTIVE MODULI

Obtaining the effective modulus tensor of a heterogeneous material is
often a very difficult task. In most cases, only approximate solutions
can be found. Several of these approximate estimates will be discussed
in Chapters 7–9. Although exact solutions to the effective moduli may
not be found easily, for all practical purposes, knowing the bounds for
these moduli is enough. In this chapter, some of these bounds are
derived based on variation principles.

6.1 CLASSICAL VARIATIONAL THEOREMS IN
LINEAR ELASTICITY

To prepare for the study of bounds of the effective properties of com-
posite materials, we state here, without proof, two of the classical var-
iational theorems in linear elasticity.

Minimum Potential Energy Theorem Among all the kinematically
admissible displacement fields, the true solution makes the following
potential energy minimum:

1 0�[u ] � � L u u d� � � p u ds, (6.1.1)i ijkl k,l i, j i i
D S2 �

where D is the total volume, and S� is the portion of the boundary of
D where traction is prescribed.0pi

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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Minimum Complementary Energy Theorem Among all the stati-
cally admissible stress fields, the true solution makes the following
complementary energy minimum:

1 0� [� ] � � M � � d� � � u � n ds, (6.1.2)c ij ijkl kl ij i ij j
D S2 u

where D is the total volume, and Su is the portion of the boundary of
D where displacement is prescribed.0ui

It should be mentioned that the stiffness tensor L, and the compli-
ance tensor M in the above theorems need not be uniform throughout
D, meaning that both theorems are applicable to heterogeneous mate-
rials.

In what follows, we will derive, based on the above theorems, some
variational principles that are convenient to use for obtaining the
bounds of effective properties. To begin, consider the heterogeneous
material considered in Section 5.6. Let the displacement be prescribed
on the boundary S:

u � � � x , (6.1.3)i S ij j

where is a constant strain tensor, which, according to the average�ij

strain theorem (5.4.11), is also the average in the composite under such
boundary condition:

1
� � � � d�. (6.1.4)ij ij

DD

Therefore, the overbar on the strain tensor causes no confusion between
the given strain tensor on the boundary and the average strain tensor
in D since they are the same. Under the displacement boundary con-
dition (6.1.3), the potential energy of the composite, following (6.1.1),
can be written as

1 1
�[u ] � � L u u d� � � L � � d�, (6.1.5)i ijkl k,l i, j ijkl kl ij

D D2 2

since no traction is prescribed. To facilitate the following discussions,
we will denote the actual displacement field by ui and any kinematically
admissible displacement field by Clearly, under the displacementû .i
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boundary condition, all kinematically admissible displacement (the ac-
tual displacement included) fields must satisfy (6.1.3). Let be theU
average strain energy density in the heterogeneous material when it is
subjected to (6.1.3):

1 1
U � � L � � d� � � L � , (6.1.6)ijkl kl ij ij ijkl kl

D2D 2

where is the effective stiffness tensor of the heterogeneous materialLijkl

and the last equality follows from (5.6.6). Then, according to the min-
imum potential energy theorem, the following inequality holds for any
kinematically admissible displacement field û :i

1
U � � L û û d�. (6.1.7)ijkl k,l i, j

D2D

Now, consider the complimentary energy. Again, under the displace-
ment boundary condition (6.1.3), the complimentary energy becomes

1
� [� ] � � M � � d� � � � x � n ds. (6.1.8)c ij ijkl kl ij ik k ij j

D S2

Upon the use of the divergence theorem on the second term,

1
� [� ] � � M � � d� � � (� x � ) ds. (6.1.9)c ij ijkl kl ij ik k ij j

D D2

For any statically admissible stress field, that is, �ij, j � 0, the above
reduces to

1
� [� ] � � M � � d� � � � � d�, (6.1.10)c ij ijkl kl ij ij ij

D D2

where is the average stress in D,�ij

1
� � � � d�. (6.1.11)ij ij

DD

Let �ij be the actual stress field and be any kinematically admissible�̂ij

stress field. Then, by making use of Hooke’s law, �ij � Mijkl�kl, we can
show, following the steps described in (5.6.6) and (5.6.7), that
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1
� [� ] � � M � � d� � � � � d� � �DU, (6.1.12)c ij ijkl kl ij ij ij

D D2

where is the average strain energy density as introduced in (6.1.7).U
Thus, according to the minimum complimentary energy theorem, the
following inequality holds for any statically admissible stress �̂ :ij

1 1
U � � � �̂ d� � � M �̂ �̂ d�. (6.1.13)ij ij ijkl kl ij

D DD 2D

Combining (6.1.7) and (6.1.13), we arrive at the following inequal-
ities, in matrix notations:

� � �̂ d� � � �̂M�̂ d� � 2DU � � �̂L�̂ d�, (6.1.14)
D D D

where can be any stress field that satisfies�̂ij

�̂ � 0 in D, (6.1.15)ij, j

and � � /2 with being any displacement field that satisfies�̂ (û û ) ûij i, j j,i i

û � � x on S. (6.1.16)i ij j

6.2 VOIGT UPPER BOUND AND REUSS LOWER BOUND

Again, consider the heterogeneous material discussed in Section 5.6.
Let the heterogeneous material be subjected to the displacement bound-
ary condition,

u � � x on S, (6.2.1)i ij j

where is a given constant strain tensor. According to the average�ij

strain theorem stated in Section 5.4, the average strain in D is also
Next, we define� .ij

û � � x everywhere in D. (6.2.2)i ij j

Obviously, the so defined is a kinematically admissible displacementûi

field, that is,
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û � � x on S. (6.2.3)i ij j

The kinematical admissible strain field corresponding to is simplyûi

Further, for the boundary condition (6.2.1), any constant stress ten-� .ij

sor would be a statically admissible stress field. Thus, by substitut-�̂ij

ing (6.2.2) and a constant tensor into (6.1.14) yields�̂ij

R2��̂ � �̂M �̂ � 2U � �L��, (6.2.4)

where

1 1V RL � � L d�, M � � M d�. (6.2.5)
D DD D

Since can be any constant stress tensor, we should try to select one�̂
that maximizes the far left-hand side of (6.2.4) to obtain the optimal
lower bound. It turns out that

R R �1�̂ � L � � (M ) � (6.2.6)

would be the choice. Substituting (6.2.6) and (6.1.6) into (6.2.4), we
obtain the following:

R V�L � � �L� � �L �, (6.2.7)

where

�11R R �1L � (M ) � � M d� ; (6.2.8)� �
DD

These inequalities must hold true for any constant strain tensor �.
Therefore, we conclude

R VL � L � L , (6.2.9)

where defined by the first of (6.2.5) is called the Voigt upper bound,VL
and defined by (6.2.8) is called the Reuss lower bound.RL

If the stiffness tensor of the r th phase of volume �r is uniform and
given by Lr , where r � 0, 1, . . . , N (r � 0 corresponds to the matrix),
then the first of (6.2.5) can be simplified to
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N
VL � c L , (6.2.10)� r r

r�0

where

�rc � , r � 1, 2, . . . , N (6.2.11)r D

are the volume fraction of the inhomogeneities with stiffness tensor Lr.
Obviously, we have the relationship

N

c � 1. (6.2.12)� r
r�0

Equation (6.2.10) gives the Voigt upper bound for the effective stiffness
tensor of a composite with N distinct phases.

Similarly, (6.2.8) can be written as

�1N
RL � c M , (6.2.13)�� �r r

r�0

where Mr is the compliance tensor for the r th phase.
It is noted that the bounds are derived in terms of the volume faction

of each phase only. Therefore, they are independent of the geometry
of the phases and their distribution.

Example 6.1 Consider an isotropic matrix of stiffness tensor L0 �
(3K0, 2	0) reinforced by particles of stiffness tensor L1 � (3K1, 2	1).
We are to find the bounds of the effective elastic constants.

To solve this problem, let us first consider the compliance tensors.
Following the rules discussed in Section 1.4:

1 1 1 1
M � , , M � , . (6.2.14)� � � �0 13K 2	 3K 2	0 0 1 1

Thus,
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�1c c c c0 1 0 1�1[c M � c M ] � � , �� �0 0 1 1 3K 3K 2	 2	0 1 0 1

3K K 2	 	0 1 0 1� , . (6.2.15)� �c K � c K c 	 � c 	0 1 1 0 0 1 1 0

According to (6.2.9), the effective stiffness tensor of the composite
satisfies the inequality

�1[c M � c M ] � L � (3K, 2	) � c L � c L , (6.2.16)0 0 1 1 0 0 1 1

where and are the effective bulk and shear moduli of the com-K 	
posite, respectively, and c1 is the volume fraction of the particles. Mak-
ing use of (6.2.15) in (6.2.16), we have

K K0 1 � K � K � c (K � K ), (6.2.17)0 1 1 0K � c (K � K )1 1 1 0

	 	0 1 � (	 � 	 � c (	 � 	 ). (6.2.18)0 1 1 0	 � c (	 � 	 )1 1 1 0

These give the upper and lower bounds for the effective bulk and shear
moduli of the composite.

6.3 EXTENSIONS OF CLASSICAL VARIATIONAL PRINCIPLES

It is noted that the Voigt upper and the Reuss lower bounds were
obtained by specifying a kinematically admissible displacement field
in the potential energy and by specifying a statically admissible stress
field in the complimentary energy. In other words, the key to find
bounds is to find suitable admissible fields. In fact, this approach is
rather general. Tighter bounds can be derived by specifying kinemati-
cally and statically admissible fields that make some explicit allowance
for the microstructure of the composite.

To this end, let us first try to develop an alternative form of the
classical variational principles that are better suited for developing
bounds of the effective properties of heterogeneous materials. For the
heterogeneous material considered in Section 5.6, we assume that the
following displacement boundary condition is prescribed:
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u � � x on S. (6.3.1)i ij j

Our objective is to find a kinematically admissible displacement field
(rather than a constant tensor as in the Voigt upper bound) and a stat-
ically admissible stress tensor (rather than a constant tensor as in the
Reuss lower bound) for this heterogeneous material under the boundary
condition (6.3.1).

To this end, let us write the elastic stiffness tensor of the heteroge-
neous material in the following form:

h pL(x) � L � L (x), (6.3.2)

where it is understood that L(x) is a function of position vector x, Lh

is a constant fourth-order tensor representing a homogeneous material,
and Lp(x), being the difference between L(x) and Lh, is also a function
of position vector x, representing the perturbation from the homoge-
neous material. The constant stiffness tensor Lh is introduced to rep-
resent a homogeneous ‘‘comparison’’ material. The corresponding
actual stress field in the heterogeneous material is then given by

h�(x) � L �(x) � �(x), (6.3.3)

where


u (x)1 
u (x) ji� (x) � � (6.3.4)� �ij 2 
x 
xj i

is the actual strain tensor in D and

p�(x) � L (x)�(x) (6.3.5)

is called the stress polarization in some of the literature. Clearly, �(x)
is symmetric, that is, �ij(x) � �ji(x), because of the symmetry of Lp(x).

In light of (6.3.3), the equations of equilibrium in terms of the dis-
placement can be written as

hL u (x) � � (x) � 0 in D. (6.3.6)ijkl k,lj ij, j

If we treat the second term on the left-hand side as a body force, the
solution to the boundary value problem (6.3.1) and (6.3.6) can be at-
tained in terms of Green’s function; see (2.6.51):
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G (x, y) 
� (y)ki mnhu (x) � � L � y n dS(y) � � G (x, y) dV(y),i pjkl pq q j mi
S D
x 
yl n

(6.3.7)

where Gmi(x, y) is Green’s function in the homogeneous comparison
material satisfying

2
 G (x, y)km,ljhL � � �(x � y) � 0 in V, (6.3.8)ijkl im
x 
xl j

G (x, y)� � 0. (6.3.9)ij x�S

By using the divergence theorem and (6.3.8), the surface integral in
(6.3.7) can be simplified to


G (x, y)kih� L � y n dS(y)pjkl pq q j
S 
xi

2
 G (x, y) 
G (x, y)ki kih h� �� L � y dV(y) � � L � dV(y)pjkl pq q pjkl pj
D D
x � 
y 
xl j l

h� � � �(x, y)� y dV(y) � � L G (x, y)� n dS(y)pi pq q pjkl ki pj j
D S

� � x .iq q (6.3.10)

Substituting (6.3.10) into (6.3.7) and applying the divergence theorem
to the volume integral in conjunction with (6.3.9), we have


� (y)mnu (x) � � x � � G (x, y) dV(y)i iq q mi
D 
yn


G (x, y)mi� � x � � � (y) dV(y). (6.3.11)iq q mn
D yn

The displacement gradient is thus given by

2
 G (x � y)miu (x) � � � � � (y) dV(y). (6.3.12)i, j ij mn
D 
x 
yj n

The strain tensor follows (6.3.12) readily,
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22 
 G (x � y)1 
 G (x � y) mjmi� (x) � � � � � � (y) dV(y),� �ij ij mn
D2 
x 
y 
x 
yj n i n

(6.3.13)

Using the symmetry properties of �mn(y), we can rewrite the above into

�(x) � � � � �(x, y)�(y) dV(y), (6.3.14)
D

where


 (x, y)ijkl
2 22 2
 G (x � y) 
 G (x � y)1 
 G (x � y) 
 G (x � y)kj ljki li� � � � .� �4 
x 
y 
x 
y 
x 
y 
x 
yj l i l j k i k

(6.3.15)

Since the integral operator in (6.3.14) will be used many times, we
will, for convenience, use the following symbolic notation to indicate
the integration operation:

� �(x, y)�(y) dV(y) � �(x, y) �(y). (6.3.16)*
D

Using this notation, (6.3.14) can be awritten as

�(x) � � � �(x, y) �(y). (6.3.17)*

Before proceeding forward, we note that the integral operator is self-
adjoint, that is,

�(x) [�(x, y) �(y)] � �(x) [�(x, y) �(y)]. (6.3.18)* * * *

This can be readily proven by noting that

�(x, y) � �(y, x). (6.3.19)

Further, we have
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h� �(x, y) dV(y) � 0, �(z, x) L �(x, y) � �(z, y). (6.3.20)*
D

The first of (6.3.20) can be verified by noting, for example,

2
 G (x, y) 
 
G (x, y)ki ki� dV(y) � � dV(y)
D D
x 
y 
x 
yj l j l



� � G (x, y)n dS(y) � 0. (6.3.21)ki l

S
xj

The second of (6.3.20) can be verified by noting, for example,

22 
 G (x, y)
 G (z, x) pmki h� L dV(x)klmn
D 
x 
z 
x 
yl j n q

2 
G (x, y)
 
G (z, x) pmki h� � L dV(x)klmn
D
z 
y 
x 
xj q l n

2 
G (x, y)
 
 pmh� � G (z, x)L� � �ki klmn
D
z 
y 
x 
xj q l n


G (x, y)pmh� G (z, x)L dV(x)	ki klmn 
x 
xn l

2 
G (x, y)
 pmh� � � G (z, x)L dV(x)ki klmn
D
z 
y 
x 
xj q n l

2

� � G (z, x)� �(x � y) dV(x)ki kp

D
z 
yj q

2
 G (z, y)pi
� .


z 
yj q

(6.3.22)

Let us now consider (6.3.11). Because of (6.3.9), we have


� (y)mnu (x)� � � x � � � G (x, y)� dV(y) � � x � ,i x�S iq q x�S mi x�S iq q x�S
D 
yn

regardless of the choice of �(y). In other words, for any given the�̂(y),
displacement derived from (6.3.11), therefore, the corresponding strain
derived from (6.3.17),
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�̂(x) � � � �(x, y) �̂(y) (6.3.23)*

are kinematically admissible displacement and strain fields, respec-
tively. Therefore, the minimum potential energy theorem (6.1.7) leads
us to the following inequality:

h p2DU � � �̂L�̂ d� � � �̂L �̂ d� � � �̂L �̂ d�. (6.3.24)
D D D

Substitute (6.3.23) into (6.3.24) and make use of properties of the in-
tegral operator �(x, y), and (6.3.19) and (6.3.20), we arrive at the
following inequality:

h p2D(U � U ) � � �̂�(x, y) �̂(y) d� � � �L � d�*
D D

p� 2 � �L �(x, y) �̂(y) d�*
D

p� � �(x, y) �̂(y)L �(x, y) �̂(y) d�,* *
D

(6.3.25)

where

1h hU � � �L � d�. (6.3.26)
D2D

Through a straightforward simplification, one can show that the last
term in (6.3.25) can be rewritten as

p� �(x, y) �̂(y)L �(x, y) �̂(y) d�* *
D

p p �1� � �[�̂]L �[�̂] d� � � �̂(L ) �̂ d�
D D

p� 2 � �̂�(x, y) �̂(y) d� � � �L � d�*
D D

p� 2 � �{�̂ � L �(x, y) �̂(y)} d�,*
D

(6.3.27)

where

p �1�[�̂] � (L ) �̂ � �(x, y) �̂(y) � �. (6.3.28)*
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Substituting (6.3.27) into (6.3.25), we obtain, for any stress tensor �̂,
the desired inequality,

h p2D(U � U ) � �H[�̂] � � �[�̂]L �[�̂] d�, (6.3.29)
D

where

H[�̂] � � �̂�[�̂] d� � � ��̂ d�. (6.3.30)
D D

Next, we want to know what happens if the in (6.3.29) is indeed�̂
the actual stress polarization tensor of the problem, that is, � �. In�̂
this case, we have, from (6.3.5) and (6.3.17), that

p �1�[�] � (L ) � � �(x, y) �(y) � � � 0, (6.3.31)*

therefore, the second term on the right-hand side of (6.3.29) would
vanish. Further

h hH[�] � �� �� d� � �� �(L � L )� d� � �2D(U � U ).
D D

(6.3.32)

In other words, the right-hand side of (6.3.29) is minimized if � ��̂
is used, and the minimum value is equal to the left-hand side, 2D(U
� hU ).

We can now summarize the above derivations. First, once Lh is se-
lected, the perturbed part of the stiffness tensor Lp and Green’s function
�(x, y) can be computed from (6.3.2) and (6.3.8) and (6.3.9). Second,
displacement ui generated from (6.3.11) is a kinematically admissible
displacement field, which leads the minimum potential energy theorem
to the inequality (6.3.29). Third, the inequality is valid for any stress
tensor Finally, the equal sign is realized when is replaced by the�̂. �̂
actual solution to the stress polarization tensor of the problem. There-
fore, we have just proved the following theorem.

Theorem 6.1 Among all the symmetric second-order tensors, the true
solution to the stress polarization tensor renders the following func-�̂
tional minimum:



6.3 EXTENSIONS OF CLASSICAL VARIATIONAL PRINCIPLES 133

1 1h pI[�̂] � U � H[�̂] � � �[�̂]L �[�̂] d�, (6.3.33)
D2D 2D

and the minimum value of is the strain energy density of theI[�̂]
heterogeneous material under the displacement boundary condition
(6.3.1), that is,

1–min{I[�̂]} � �L�. (6.3.34)2

The inequality (6.3.29) can be further simplified if one assumes that
Lp is negative semidefinite, that is, for any �,

p� �[�̂]L �[�̂] d� � 0. (6.3.35)
D

In this case, (6.3.29) reduces to

h2D(U � U ) � �H[�̂]. (6.3.36)

Therefore, we have the following theorem.

Theorem 6.1a (Hashin–Shtrikman Variational Principle) When
Lp is negative semidefinite, among all the symmetric second-order ten-
sors, the true solution to the stress polarization tensor renders the�̂
following functional minimum:

1hI [�̂] � U � H[�̂], (6.3.37)h 2D

and the minimum value of is the strain energy density of theI [�̂]h

heterogeneous material under the displacement boundary condition
(6.3.1), that is,

1–min{I [�̂]} � �L�. (6.3.38)h 2

Let us now turn to the complimentary energy principle. Introducing
(6.3.17) to (6.3.3) yields
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h h�(x) � L � � L � �(x, y)�(y) dV(y) � �(x). (6.3.39)
D

Thus, it follows from, for example,

2
 
 G (x, y)kmh� L � (y) dV(y)� �ijmn kl
D 
x 
x 
yj n l

2
 
 G (x, y)kmh� � L � (y) dV(y)� �ijmn kl
D 
y 
x 
xl n j

2
 G (x, y)kmh� � L � (y) dV(y)ijmn kl,l
D 
x 
xn j

2 2
 G (x, y) 
 G (x, y)km kmh h� � L n dS(y) � � L � (y) dV(y)ijmn l ijmn kl,l
S D
x 
x 
x 
xn j n j

2
 G (x, y)kmh� �� � �(x � y)n dS(y) � � L � (y) dV(y)ik l ijmn kl,l
S D 
x 
xn j

2
 G (x, y)kmh� �� L � (y) dV(y)ijmn kl,l
D 
x 
xn j

that

hdiv(�(x)) � L � �(x, y)div(�(y)) dV(y) � div(�(x)). (6.3.40)
D

One may then conclude that for any statically admissible stress tensor
that is, div(�(x)) � 0, the stress tensor generated from (6.3.3)�̂(x), �̂(x)

h�̂(x) � L �(x) � �̂(x), (6.3.41)

is also a statically admissible stress field, that is,

h hdiv(�̂(x)) � div(L �(x) � �̂(x)) � div(L �(x)) � 0. (6.3.42)

Having established that is statically admissible, whenever�̂(x) �̂(x)
is, we can now consider (6.1.13) for a statically admissible �̂(x),
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2DU � � � �̂ d� � � �̂M�̂ d�
D D

h p� � � �̂ d� � � �̂(M � M )�̂ d�, (6.3.43)
D D

where, analogous to (6.3.2), the compliance tensor is written as

h pM(x) � M � M (x), (6.3.44)

and the superscripts on the compliance tensors carry the same meaning
as those for the stiffness tensors. Substituting (6.3.41) into (6.3.43),
following similar steps in deriving (6.3.29) and making use of the iden-
tity,

h p p h pL M � L (M � M ) � 0, (6.3.45)

we conclude that

h h p h2D(U � U ) � �H[�̂] � � L �[�̂]M L �[�̂] d�, (6.3.46)
D

for any statically admissible stress tensor As shown earlier, if�̂(x).
happens to be the true stress polarization to the deformation prob-�̂(x)

lem considered here, the equal sign in (6.3.46) holds. We have just
proved the following variational theorem.

Theorem 6.2 Among all the statically admissible stress fields, the
true solution renders the following functional maximum,

1 1c h h p hI [�̂] � U � H[�̂] � � L �[�̂]M L �[�̂] d�, (6.3.47)
D2D 2D

and the maximum value of Ic is the strain energy density of the[�̂]
heterogeneous material under the displacement boundary condition
(6.3.1), that is,

c 1–min{I [�̂]} � �L�. (6.3.48)2

If Mp is negative semidefinite (or, equivalently, Lp is positive semi-
definite), that is,
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h p h� L �[�̂]M L �[�̂] d� � 0,
D

then (6.3.46) implies

h2D(U � U ) � �H[�̂]. (6.3.49)

This leads to another form of the Hashin–Shtrikman variational prin-
ciple.

Theorem 6.2a (Hashin–Shtrikman Variational Principle) Among
all the statically admissible stress fields, the true solution renders the
following functional maximum:

c hI [�̂] � 2DU � H[�̂], (6.3.50)h

and the maximum value of is the strain energy density of thecI [�̂]h

heterogeneous material under the displacement boundary condition
(6.3.1), that is,

c 1–min{I [�̂]} � �L�. (6.3.51)h 2

6.4 HASHIN–SHTRIKMAN BOUNDS

As can be seen from (6.3.36) and (6.3.49), the key to developing the
bounds is to find an appropriate statically admissible stress tensor �̂.
This is what we will do next. Remembering that the Reuss and Voigt
bounds were obtained by assuming uniform admissible fields through-
out the composite, let us try a piecewise uniform field for �̂,

�̂(x)� � �̂ , r � 0, 1, 2, . . . , N. (6.4.1)x�� rr

In other words, we assume that the stress polarization tensor is a con-
stant tensor on each inhomogeneity including the matrix. Introducing
(6.4.1) into (6.3.28) yields
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N crp �1�[�̂] � (L ) �̂ � D � �(x, y) dV(y)� � �. (6.4.2)� s
�� ss�0 s

It thus follows from (6.3.30) that

N N crp �1H[�̂] � � � (L ) � � D � �(x, y) dV(y)� � � d�� �� �r s
� ��r sr�0 s�0 s

N

� � �� d�� r
�rr�0

N N N N
p �1 2� D c � (L ) � � D c c � P � � 2D� c � ,� � � �r r r r r s r rs s r r

r�0 r�0 s�0 r�0

(6.4.3)

where cr is the volume fraction of the r th inhomogeneity and

1p �1 p �1(L ) � � (L ) d�, (6.4.4)r
�� rr

1
P � � � �(x, y) dV(y) dV(x). (6.4.5)rs

� �� � r sr s

The validity of (6.4.4) is based on the fact that the stiffness tensor is
uniform on each inhomogeneity.

Clearly, is now a quadratic function of the constant tensor �r.H[�̂]
The specific �r that gives the extreme value of can be determinedH[�̂]
from /
�r � 0,
H[�̂]

N
p �1(L ) � � D c P � � �, r � 0, 1, . . . , N. (6.4.6)�r r s rs s

s�0

This is a system of linear algebraic equations for �r . The solution can
be written formally as

� � R �. (6.4.7)r r

This leads to the following extreme value of :H[�̂]
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N
h ˜H[�̂]� � �D� c R � � D�(L � L)�, (6.4.8)�� �R � r rr r

r�0

where

N
hL̃ � L � c R . (6.4.9)� r r

r�0

For Lp being negative semidefinite, substituting (6.4.8) into (6.3.36)
yields

˜2U � �L� � �L�, (6.4.10)

or

N
h˜L � L � L � c R , (6.4.11)� r r

r�0

with being given by (6.4.9). Dually, for Lp being positive semide-L̃
finite, substituting (6.4.8) into (6.3.49) yields

N
h˜L � L � L � c R . (6.4.12)� r r

r�0

The inequalities (6.4.11) and (6.4.12) are the Hashin–Shtrikman
bounds for the effective stiffness tensor of a heterogeneous material
containing N-phase inhomogeneities. In general, the Hashin–Shtrikman
bounds are more restrictive than Voigt and Reuss bounds.

It is noted that, in order to evaluate the Hashin–Shtrikman bounds,
the double integral in (6.4.5) needs to be evaluated. Although, theoret-
ically speaking, the integral can be carried out for a given heteroge-
neous material, the large number of inhomogeneities and the statistical
nature of their distributions in a heterogeneous material render the in-
tegration impractical. We need to find a practical way to evaluate it,
albeit, approximately.

Recall from (6.3.15) that the integrand consists of the second deriv-
atives of Green’s function Gij(x, y) in the domain D, which satisfies
zero displacement boundary condition; see (6.3.8) and (6.3.9). One of
the proposals of simplifying (6.4.5) (see Willis, 1982) is to replace
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Green’s function Gij(x, y) in the finite domain D by its counterpart in
the infinite domain,

1 �P 
 � � � (x, y) dV(y) dV(x), (6.4.13)rs
� �� � r sr s

where ��(x, y) is given by (3.3.18), which is related to Green’s function
in an unbounded domain, (x, y) derived in Section 2.6:�Gij

�1� �1 i��(x�y)G (x, y) � � N (�)D (�)e d�. (6.4.14)ij ij3
��(2�)

For statistically homogeneous and isotropic distribution of inhomoge-
neities, the integral in (6.4.13) can be evaluated; see Appendix 6.A:

1 1�P 
 � � � (x, y) dV(y) dV(x) � (� � c )P, (6.4.15)rs rs s
� �� � �r sr s s

where

� 2ˆP(x) � � 
 (x, y) dV(y) for x � S , (6.4.16)
ˆ2S

and the integral is over a unit sphere It follows from (4.3.19) that2Ŝ .
the tensor P is related to the Eshelby tensor S through

h �1P � S(L ) . (6.4.17)

Substituting (6.4.15) into (6.4.6) yields

N
p �1(L ) � � P� � P c � � �, r � 0, 1, . . . , N, (6.4.18)�r r r s s

s�0

which can be rewritten as

N
p �1 �1� � [(L ) � P] � � P c � , r � 0, 1, . . . , N.�� �r r s s

s�0
(6.4.19)

Further,
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N N N
p �1 �1c � � c [(L ) � P] � � P c �� � �� �r r r r s s

r�0 r�0 s�0

N N N
p �1 �1 p �1 �1� c [(L ) � P] � � [(L ) � P] P c � .� � �r r r s s

r�0 r�0 s�0

(6.4.20)

Finally, making use of (6.4.7), we have

�1N N N
p �1 �1 p �1 �1c R � I � c [(L ) � P] P c [(L ) � P]� � �� 	s s r r r r

s�0 r�0 r�0

�1N N
p �1 p �1 p� c (I � L P) c (I � L P) L .� �� �r r r r r

r�0 r�0
(6.4.21)

Thus, it follows from (6.4.9) that

�1N N
h p �1 p �1 pL̃ � L � c (I � L P) c (I � L P) L . (6.4.22)� �� �r r r r r

r�0 r�0

Example 6.2 Let a composite material be made of a matrix with
elastic stiffness tensor L0 containing uniformly distributed identical
spherical inhomogeneities with elastic stiffness tensor L1. Assume that
both L0 and L1 are isotropic and given by

L � (3K , 2	 ), L � (3K , 2	 ), (6.4.23)0 0 0 1 1 1

where K1 � K0, 	1 � 	0. If the volume fraction of the inhomogeneities
is c1, find the bounds of its effective stiffness tensor.

To find the bounds for the effective stiffness tensor of the compos-
ites, we need to know the tensor as given by (6.4.22). To this end,L̃
let us compute the relevant tensors one at a time. First, we choose (it
will be seen later that the choice is arbitrary)

hL � L . (6.4.24)0

Consequently,
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L � L x � �p 1 0 1L (x) � . (6.4.25)�0 x � �0

So,

1 1p p p pL � � L d� � 0, L � � L d� � L � L .0 1 1 0
� �� �0 10 1

(6.4.26)

Introducing the above to (6.4.22) leads to

�11 1
p �1 p �1L̃ � L � c (I � L P) c (I � L P) (L � L )� �� �0 r r r r r 0

r�0 r�0

�11 1
p �1 p �1� c (I � L P) c (I � L P) L� �� �r r r r r

r�0 r�0

�1 �1� {c I � c [I � (L � L )P] }0 1 1 0

�1� {c L � c [I � (L � L )P] L }.0 0 1 1 0 1 (6.4.27)

For spherical inhomogeneities, the Eshelby tensor is given by (see Ap-
pendix 4.B)

S � (3� , 2� ), (6.4.28)0 0

where

K 1 � � 3(K � 2	 ) 4 � 5�0 0 0 0 0� � � , � � � .0 03K � 4	 9(1 � � ) 5(3K � 4	 ) 15(1 � � )0 0 0 0 0 0

(6.4.29)

Therefore, making use of (6.4.17), we have

I � (L � L )P1 0

1 1
� (1,1) � (3K � 3K , 2	 � 2	 )(3� , 2� ) ,� �1 0 1 0 0 0 3K 2	0 0

K � 3� (K � K ) 	 � 2� (	 � 	 )0 0 1 0 0 0 1 0� , .� �K 	0 0

(6.4.30)

Thus,
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K 	0 0�1[I � (L � L )P] � , .� �1 0 K � 3� (K � K ) 	 � 2� (	 � 	 )0 0 1 0 0 0 1 0

(6.4.31)

This leads to

�1 �1 �1L̃ � {c I � c [I � (L � L )P] } {c L � c [I � (L � L )P] L }0 1 1 0 0 0 1 1 0 1

˘� (3K, 2	̆),

where

K {(1 � c )[K � 3� (K � K )] � c K }0 1 0 0 1 0 1 1K̆ � ,
K � 3� (1 � c )(K � K )0 0 1 1 0 (6.4.32)

	 {(1 � c )[	 � 2� (	 � 	 )] � c 	 }0 1 0 0 1 0 1 1	̆ � .
	 � 2� (1 � c )(	 � 	 )0 0 1 1 0

Introducing (6.4.29) into the above expressions,

K (3K � 4	 ) � 4c 	 (K � K )0 1 0 1 0 1 0K̆ � ,
3K � 4	 � 3(1 � c )(K � K )0 0 1 1 0

6	 	 (K � 2	 ) � 	 (9K � 8	 )[c 	 � (1 � c )	 ]0 1 0 0 0 0 0 1 1 1 0	̆ � .
	 (9K � 8	 ) � 6(K � 2	 )[c 	 � (1 � c )	 ]0 0 0 0 0 1 0 1 1

(6.4.33)

Since K1 � K0, 	1 � 	0, one can see that the tensor Lp(x) defined by
(6.4.25) is positive semidefinite. It thus follows from (6.4.12) that

˜ ˘L � (3K, 2	) � L � (3K, 2	̆),

or equivalently,

K (3K � 4	 ) � 4c 	 (K � K )0 1 0 1 0 1 0K � , (6.4.34)
3K � 4	 � 3(1 � c )(K � K )0 0 1 1 0

6	 	 (K � 2	 ) � 	 (9K � 8	 )[c 	 � (1 � c )	 ]0 1 0 0 0 0 0 1 1 1 0	 � .
	 (9K � 8	 ) � 6(K � 2	 )[c 	 � (1 � c )	 ]0 0 0 0 0 1 0 1 1

(6.4.35)
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These are the Hashin–Shtrikman lower bounds.
To find the Hashin–Shtrikman upper bounds, we choose

hL � L . (6.4.36)1

Consequently,

L � L x � �p 0 1 0L (x) � . (6.4.37)�0 x � �1

So,

1 1p p p pL � � L d� � L � L , L � � L d� � 0.0 0 1 1
� �� �0 10 1

(6.4.38)

Thus, we have

�11 1
p �1 p �1L̃ � L � c (I � L P) c (I � L P) (L � L )� �� �1 r r r r r 1

r�0 r�0

�11 1
p �1 p �1� c (I � L P) c (I � L P) L� �� �r r r r r

r�0 r�0

�1 �1� {c [I � (L � L )P] � c I}0 0 1 1

�1� {c [I � (L � L )P] L � c L }.0 0 1 0 1 1 (6.4.39)

Since

I � (L � L )P0 1

1 1
� (1,1) � (3K � 3K , 2	 � 2	 )(3� , 2� ) ,� �0 1 0 1 0 0 3K 2	0 0

K � 3� (K � K ) 	 � 2� (	 � 	 )0 0 0 1 0 0 0 1� , .� �K 	0 0

(6.4.40)

Thus,

K 	0 0�1[I � (L � L )P] � , .� �0 1 K � 3� (K � K ) 	 � 2� (	 � 	 )0 0 0 1 0 0 0 1

(6.4.41)
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This leads to

�1 �1L̃ � {c [I � (L � L )P] � c I}0 0 1 1

� ��1� {c [I � (L � L )P] L � c L } � (3K, 2	), (6.4.42)0 0 1 0 1 1

where

2K � c (K � K )(3� K � K )� 0 1 1 0 0 1 0K � ,
K � 3� c (K � K )0 0 1 1 0

2	 � c (	 � 	 )(2� 	 � 	 )� 0 1 1 0 0 1 0	 � . (6.4.43)
	 � 2� c (	 � 	 )0 0 1 1 0

Introducing (6.4.29) into the above expressions,

K (3K � 4	 ) � c (K � K )[4	 � 3(K � K )]� 0 0 0 1 1 0 0 1 0K � ,
3K � 4	 � 3c (K � K )0 0 1 1 0

25	 (3K � 4	 ) � c (	 � 	 )[5	 (3K � 4	 ) � 6	 (K � 2	 )]� 0 0 0 1 1 0 0 0 0 1 0 0	 � .
5	 (3K � 4	 ) � 6c (K � 2	 )(	 � 	 )0 0 0 1 0 0 1 0

(6.4.44)

Since K1 � K0, 	1 � 	0, one can see that the tensor Lp(x) defined by
(6.4.37) is negative semidefinite. It thus follows from (6.4.11) that

� �˜L � (3K, 2	) � L � (3K, 2	),

or equivalently,

K (3K � 4	 ) � c (K � K )[4	 � 3(K � K )]0 0 0 1 1 0 0 1 0K � , (6.4.45)
3K � 4	 � 3c (K � K )0 0 1 1 0

25	 (3K � 4	 ) � c (	 � 	 )0 0 0 1 1 0

[5	 (3K � 4	 ) � 6	 (K � 2	 )]0 0 0 1 0 0	 � . (6.4.46)
5	 (3K � 4	 ) � 6c (K � 2	 )(	 � 	 )0 0 0 1 0 0 1 0

These are the Hashin–Shtrikman upper bounds.
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PROBLEMS

6.1 Show that

R R �12��̂ � �̂M �̂ � �(M ) �

for any constant tensor �̂ .ij

6.2 Show that the integral operator

� �(x, y)�(y) dV(y) � �(x, y) �(y)*
D

is self-adjoint, that is,

�(x) (�(x, y) �(y)) � �(x) (�(x, y) �(y)).* * * *

6.3 Show the identity LhMp � Lp(Mh � Mp) � 0.

6.4 Show that, for a composite comprising isotropic matrix and N-
phase isotropic, spherical inhomogeneities, the Hashin–Shtrikman
bounds are given by

�1 �1N Nc cr r� K* � K � � K*,� �� � � �S LK � K* K � K*r�0 r�0r S r L

�1 �1N Nc cr r� 	* � 	 � � 	*,� �� � � �S L	 � 	* 	 � 	*r�0 r�0r S r L

where

4	 3LK* � , 	* � ,L L3 2[1/	 � 10/(9K � 8	 )]L L L

4	 3SK* � , 	* � ,S S3 2[1/	 � 10/(9K � 8	 )]S S S

	 � max{	 , 	 , . . . , 	 }, 	 � min{	 , 	 , . . . , 	 },L 0 1 N S 0 1 N

K � max{K , K , . . . , K }, K � min{K , K , . . . , K }.L 0 1 N S 0 1 N
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6.5 Assume that the traction boundary condition �n�x�S � is pre-�n
scribed on the entire boundary, where is a constant stress tensor�
(the average stress). Use the minimum potential energy theorem to
prove that for any continuously differentiable displacement field
û ,i

2DU � �� �̂L�̂ d� � 2� � �̂ d�,
D D

where

1 1
U � � �L� d� � �L�,

D2D 2

1–�̂ � (û � û ).ij 2 i,j j,i

(Hint: Since there is no displacement boundary, any continuously
differentiable displacement field would be kinematically admissi-
ble.)

6.6 Show that under the traction boundary condition �n�x�S � �n,

�� L û û d� � 2� � û d� � 2DU � � �̂ M �̂ d�,ijkl i, j k,l ij i, j ij ijkl kl
D D D

where is any continuously differentiable displacement field andûi

is any statically admissible stress fields, that is, � 0 in D�̂ �̂ij ij,i

and �ijnj�x�S � on S.� nij j

6.7 Following the notations introduced in Appendix 6.A, please show
that the following inequality holds for any eigenstrain �̂:

h p˜2D(U � U ) � �H(�̂) � � �(x)L (x)�(x) dV(x).c
D

6.8 Prove Theorems 6.4 and 6.4a in Appendix 6A.

6.9 Prove Lpqij �S ns dS(y) �
˜
G (x, y)mi � � .ms pq
xj
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APPENDIX 6.A

In Sections 6.3 and 6.4, the variational theorems have been established
for heterogeneous material under the displacement boundary condi-
tions. Let us now consider the traction boundary condition,

�(x)n� � �n, (6.A.1)x�S

where is a constant stress tensor. Analogous to (6.3.5), we introduce�
a strain polarization �* (or eigenstrain) through

h h �1� � M � � �* or � � (M ) (� � �*), (6.A.2)

where Mh is defined in (6.3.44), and � is the actual total strain in the
heterogeneous material D, which is related to the displacements
through (6.3.4). Using Hooke’s law � � M� in the first of (6.A.2)
gives

p�* � M �. (6.A.3)

Substituting the second of (6.A.2) into the equations of equilibrium,

h hL u (x) � L �* (x) � 0 in D, (6.A.4)ijkl k,lj ijkl kl, j

where is to denote the inverse of To solve (6.A.4) under theh hL M .ijkl ijkl

traction boundary condition (6.A.1), let us consider the following
Green’s function:

2 ˜
 G (x, y)kmhL � � �(x � y) � 0 in V, (6.A.5)ijkl im
x 
xl j

˜
G (x, y)kmhL n � � 0. (6.A.6)ijkl j x�S
xl

It then follows from (2.6.51) that

h
L �*(y)mnkl kl˜ ˜u (x) � � G (x, y)� n dS(y) � � G (x, y) dV(y).i mi ms s mi
S V 
yn

(6.A.7)

The corresponding displacement gradient tensor follows immediately:
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h˜ ˜
G (x, y) 
G (x, y) 
L �*(y)mi mi mnkl klu (x) � � � n dS(y) � � dV(y).i, j ms s
S V
x x 
yj j n

(6.A.8)

The use of Hooke’s law leads us to the corresponding stress tensor:

˜
G (x, y)mi� (x) � L � � n dS(y)pq pqij ms s
S 
xj

h˜
G (x, y) 
L �*(y)mi mnkl kl� L � dV(y). (6.A.9)pqij
D 
x 
yj n

It is easy to show that

˜
G (x, y)miL � � n dS(y) � � . (6.A.10)pqij ms s pq
S 
xj

Thus, the stress tensor is simplified to

h˜
G (x, y) 
L �*(y)mi mnkl kl� (x) � � � L � dV(y). (6.A.11)pq pq pqij
D 
x 
yj n

Note that is a constant stress tensor (the average stress in the com-�pq

posite). Therefore, by making use of the properties of Green’s function,
one can show that

h˜
G (x, y) 
L �*(y)mi mnkl kl� (x) � �L � dV(y)pq,q pqij
D 
x 
x 
yj q n

h
L �*(y)mnkl kl� � � �(x � y) dV(y)mp
D 
yn

h
L �*(x)pnkl kl h� � L �* (x) (6.A.12)pnkl kl,n
xn

and
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h˜
G (x, y) 
L �*(y)mi mnkl kl� (x)n � � �L � n dV(y) � � npq q x�S pqij q pq q
D 
x 
yj n

h˜
G (x, y) 
L �*(y)mi mnkl kl� �L � n dV(y) � � npqij q pq q
D 
x 
yj n

� � n .pq q (6.A.13)

In other words, regardless of the choice of the stress tensor�*(y),kl

generated from (6.A.11) is always a statically admissible stress field,
that is, it satisfies (6.A.4) and (6.A.1).

For convenience, we define the following operator to represent the
volume integral in (6.A.11):

h˜
G (x, y) 
L �*(y)mi mjkl kl ˜L � dV(y) � � 
 (x, y)�*(y) dV(y).pqij pqkl kl
D D
x 
yj j

(6.A.14)

Analogues to (6.3.16), the operator can also be written symbolically,

˜ ˜� �(x, y)�*(y) dV(y) � 
(x, y) �*(y). (6.A.15)*
D

Thus, the stress tensor can be written formally as

˜�(x) � � � �(x, y) �*(y). (6.A.16)*

It then follows from (6.A.3) that

p �1 ˜(M ) �*(x) � �(x, y) �* � �. (6.A.17)*

Let be any strain polarization, and�̂(y)

˜�̂(x) � � � �(x, y) �*(y) (6.A.18)*

the corresponding statically admissible stress field. The minimum com-
plementary energy theorem takes the following form:
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2DU � � �̂(x)M(x)�̂(x) dV(x), (6.A.19)c
D

where

1 1
U � � M � � d� � �M�. (6.A.20)c ijkl kl ij

D2D 2

Substituting (6.A.18) into (6.A.19), after some simplifications, yields

h p˜2D(U � U ) � �H(�̂) � � �(x)M (x)�(x) dV(x). (6.A.21)c
D

where the compliance tensor has been decomposed as in (6.3.44) and

h 1 h–U � �M �, (6.A.22)2

h h �1˜L �(x) � �(x, y) �̂(y) � (M ) �̂(x) � �,*

hH̃(�̂) � �� �̂(x)L �(x) dV(x) � � �̂(x)� d�. (6.A.23)
D D

If happens to be the actual strain polarization �* for the problem at�̂
hand, then the use of (6.A.17) leads to

�(x) � 0,

h hH̃(�*) � � �*(x)� d� � � �(M(x) � M )� d� � 2D(U � U ).c c
D D

In other words, the equal sign in (6.A.21) is attained when the actual
strain polarization �* for the problem at hand is used. Therefore, we
can state the following variational principle.

Theorem 6.3 Among all the symmetric second-order tensors, the true
solution to the strain polarization tensor �* renders the following func-
tional minimum:
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1 1 1c h p˜J [�̂] � �M � � H(�̂) � � �(x)M (x)�(x) dV(x),
D2 2D 2D

(6.A.24)

and the minimum value of is the strain energy of the heteroge-cJ [�̂]
neous material under the displacement boundary condition (6.3.1), that
is,

c 1–min{J [�̂]} � �M�. (6.A.25)2

The inequality (6.A.21) can be further simplified if one assumes that
Mp(x) is negative semidefinite, that is, for any �̂,

p� �(x)M (x)�(x) d� � 0. (6.A.26)
D

In this case, (6.A.21) reduces to

h2D(U � U ) � �H[�̂]. (6.A.27)

Therefore, we have the following theorem.

Theorem 6.3a When Mp(x) is negative semidefinite, among all the
symmetric second-order tensors, the true solution to the strain polari-
zation tensor �* renders the following functional minimum:

1 1c h ˜J [�̂] � �M � � H(�̂), (6.A.28)h 2 2D

and the minimum value of is the strain energy of the compositecJ [�̂]h

under the displacement boundary condition (6.3.1), that is,

1cmin{J [�̂]} � �M�. (6.A.29)h 2D

This is another form of the Hashin–Shtrikman variational principle.
The duals of the above theorems can be easily proven by using the

minimum potential energy theorem; see Problem 6.7.
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Theorem 6.4 Among all the symmetric second-order tensors, the true
solution to the strain polarization tensor �* renders the following func-
tional maximum:

1 1 1h p˜J[�̂] � �M � � H(�̂) � � �(x)L (x)�(x) dV(x), (6.A.30)
D2 2D 2D

and the maximum value of is the strain energy of the compositeJ[�̂]
under the displacement boundary condition (6.3.1), that is,

1–min{J[�̂]} � �M�. (6.A.31)2

The inequality (6.A.21) can be further simplified if one assumes that
Mp(x) is negative semidefinite, that is, for any �̂,

p� �(x)L (x)�(x) d� � 0. (6.A.32)
D

In this case, we have the following theorem.

Theorem 6.4a When Mp(x) is negative semidefinite, among all the
symmetric second-order tensors, the true solution to the strain polari-
zation tensor �* renders the following functional maximum:

1 1h ˜J [�̂] � �M � � H(�̂), (6.A.33)h 2 2D

and the maximum value of is the strain energy of the compositeJ [�̂]h

under the displacement boundary condition (6.3.1), that is,

1–min{J [�̂]} � �M�. (6.A.34)h 2

This is another form of the Hashin–Shtrikman variational principle.
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7

DETERMINATION OF
EFFECTIVE MODULI

In this chapter, we develop several methods to evaluate approximately
the effective properties of heterogeneous materials. All the approaches
presented are based on the Eshelby single-inclusion solution. In the
next chapter, we will present other methods of evaluating the effective
properties that are based on multiple-inclusion approaches.

7.1 BASIC IDEAS OF MICROMECHANICS FOR
EFFECTIVE PROPERTIES

Consider a heterogeneous material D consisting of a matrix phase �0

and ellipsoidal inhomogeneities, �1, �2, . . . , �N, as shown in Figure
7.1. The volume fraction of �r is cr � �r /�. Clearly, one has

N

c � 1.� r
r�0

Let the stiffness tenor of �r be Lr (r � 0, 1, . . . , N). Our objective
is to determine the effective elastic modulus of the composite materials
in terms of the stiffness tensors of the matrix and the inhomogeneities
and their respective volume fractions. We learned from Section 5.7 that
the effective elastic stiffness tensor can be easily computed once the
local or the global concentration tensors are known. However, the exact
expressions of the concentration tensors are rather difficult to obtain.
So, the various methods discussed in this chapter are aimed at obtaining
approximate solutions to these concentration tensors.

The multiphase composite shown in Figure 7.1 is a very general
case. Most engineering composites are two-phase materials, namely,

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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ΩN

Figure 7.1 Multiphase composite.

matrix phase and the reinforcement phase. The most common types of
reinforcement phases are either particles (particulate-reinforced com-
posites) or fibers (fiber-reinforced composites). The results derived be-
low for the multiphase composite can be easily specified to the case of
two-phase composite by assuming that all the inhomogeneities are the
same.

The basic idea of micromechanics is to develop solutions of either
the global or local concentration tensors. Once such concentration ten-
sors are known, the effective properties can be easily obtained per the
discussions in Section 5.7. One common approach of developing the
concentration tensors is to use the Eshelby solution in conjunction with
the equivalent inclusion method.

To this end, we assume that the composite is subjected to either the
displacement boundary condition

0u� � � x (7.1.1)S

or the traction boundary condition

0� • n� � � n, (7.1.2)S

where �0 and �0 are constant second-order tensors and are related by

0 0� � L � .0

If all the inhomogeneities are absent and the entire volume D is filled
with the matrix material L0, or equivalently, L0 � L1 � L2 � � � � �
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0L

00

Figure 7.2 Homogeneous material.

LN, it is obvious that the strain and stress field would be �0 and �0,
respectively, throughout the volume D; see Figure 7.2.

In the actual composite, the inhomogeneities have distinctive prop-
erties from the matrix material. The strain and stress in the matrix will
no longer be �0 and �0. For example, consider a typical inhomogeneity
called the r th inhomogeneity; see Figure 7.3a. It is surrounded by the
matrix material with elastic stiffness tensor L0. The strain in the matrix
around the r th inhomogeneity is conceivably different from �0 for two
reasons. First, the r th inhomogeneity itself perturbs the uniform distri-
bution of strains in the matrix. Second, the other inhomogeneities, es-
pecially those near by, also contribute to the strain perturbation. Thus,
as far as the r th inhomogeneity is concerned, it might be viewed as an
isolated inhomogeneity placed in a uniform matrix that possessed cer-
tain strain before the inhomogeneity is embedded. For convenience, we
will denote this strain by Furthermore, it is also plausible that the0�̂ .
influence of other inhomogeneities can be accounted for by assuming
that the r th inhomogeneity is embedded in a matrix material that is
somewhat different from the actual matrix. We will use L̂0 to denote
the stiffness tensor of this fictitious matrix material; see Figure 7.3b.

Now the companion problem can be restated as follows. An ellip-
soidal inhomogeneity �r with stiffness tensor Lr is placed within a
uniform matrix of stiffness tensor L̂0, which had been subjected to the
uniform strain before the inhomogeneity was embedded; see Figure0�̂
7.3b. Our objective is to find proper values for and L̂0 so that the0�̂
stress (and strain) on �r is the same as that occurring on the r th in-
homogeneity the actual composite.

To find such and L̂0, let us pretend at the moment that they are0�̂
known. We will first establish how the stresses and strains of the com-
panion problem are related to and L̂0. This can be done by solving0�̂
the Eshelby inclusion problem. The stress and strain on the inhomo-
geneity can be obtained by the equivalent inclusion method discussed
in Section 4.4. The equivalent inclusion equation in this case is
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Figure 7.3 (a) The rth inhomogeneity in the composite; (b) The rth inhomogeneity
in a uniform matrix of stiffness which had been subjected to the uniform strainL̂ ,0

before the inhomogeneity was embedded.0�̂

0 pt 0 ptˆL (�̂ � � ) � L (�̂ � � � �*), (7.1.3)r r 0 r r

where, according to the Eshelby solution given in Section 4.3,

pt ˆ� � S �*, (7.1.4)r r r

where Ŝr is the Eshelby tensor computed using the elastic constants of
L̂0 and the geometry of the r th inhomogeneity �r. Substitution of the
Eshelby solution into the equivalent inclusion equation yields the ei-
genstrain

�1 0ˆ ˆ ˆ�* � [(L � L )S � L ] (L � L )�̂ . (7.1.5)r r 0 r 0 r 0

The total strain in the r th inhomogeneity can then be written as

0 pt 0 0ˆ ˆ� � �̂ � � � �̂ � S �* � T �̂ , (7.1.6)r r r r

where

�1 �1ˆ ˆ ˆ ˆT � [I � S L (L � L )] . (7.1.7)r r 0 r 0

The derivation of the last equality in (7.1.6) is similar to that of
(4.4.15). The corresponding stress on the r th inhomogeneity is
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V0
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(a) (b)

Figure 7.4 (a) The rth inhomogeneity in the composite. (b) The rth inhomogeneity
in the original matrix of stiffness L0, which had been subjected to the uniform strain
�0 before the inhomogeneity was embedded.

0ˆ� � L � � L T �̂ . (7.1.8)r r r r r

We now have related the strain and stress fields in the r th inhomo-
geneity to an unknown strain field and a fictitious matrix material0�̂
with It will be seen later that the micromechanics schemes dis-L̂ .0

cussed below use various approximations to identify and compute 0�̂
and L̂0. Once and L̂0 are known, the concentration tensors can be0�̂
obtained and so can the effective properties of the composite.

7.2 ESHELBY METHOD

If the inhomogeneities in the composite shown in Figure 7.1 are far
apart from each other, their interactions may be neglected. In other
words, each inhomogeneity can be treated as if it exists in a homoge-
neous matrix without the interference by other inhomogeneities. There-
fore, a typical inhomogeneity, for example, the r th inhomogeneity, can
be treated as an ellipsoidal inhomogeneity in an otherwise uniform
matrix of stiffness L0, which was subjected to a uniform strain �0 be-
fore the inhomogeneity was imbedded. Therefore, we choose in (7.1.3),

0 0L̂ � L and �̂ � � (7.2.1)0 0

and consequently,
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Ŝ � S , (7.2.2)r r

where Sr is the Eshelby tensor computed using the matrix material
property L0 and the geometry of the r th inhomogeneity �r. These equa-
tions simply imply that other inhomogeneities have no influence on the
r th inhomogeneity at all. So, the interactions between inhomogeneities
are completely ignored. In this case, the strain in the r th inhomogeneity
follows directly from (7.1.6):

0 pt 0 0� � � � � � � � S �* � T � , (7.2.3)r r r r

where

�1 �1T � [I � S L (L � L )] . (7.2.4)r r 0 r 0

For future reference, we want to mention that although Tr is defined
for r � 0, it is nevertheless true that T0 � I as seen from (7.2.4).

We now assume that the composite is subjected to the displacement
boundary condition

0u� � � • x. (7.2.5)S

It follows from the average strain theorem discussed in Section 5.4 that
the average strain tensor of the composite is equal to �0, that is,

1 0� � � � dV � � . (7.2.6)
VV

Therefore, Eq. (7.2.3) can be rewritten as

� � T �. (7.2.7)r r

By comparing (5.7.3) and (7.2.7), it is clear that the global strain con-
centration tensor for the r th inhomogeneity is

A � T . (7.2.8)r r

Thus, it follows from (5.7.7) that the effective stiffness tensor of the
composite is given by
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N

L � L � c (L � L )T�0 r r 0 r
r�1

N
�1� L � c (L � L )[I � S (M L � I)] . (7.2.9)�0 r r 0 r 0 r

r�1

This is the Eshelby estimate of the effective stiffness tensor. Recall that
this effective stiffness tensor was derived based on the assumption
made earlier that the inhomogeneities in the composite are so far apart
that they do not interfere with each other. Thus, the Eshelby estimate
is valid only for very low volume fraction of inhomogeneities, or the
dilute case.

Instead of the displacement boundary conditions, a traction boundary
condition

0� • n� � � n (7.2.10)S

can be prescribed. In this case, the average strain of the composite is
no longer equal to �0, that is,

1 0� � � � dV � � , (7.2.11)
VV

where

0 0� � M � . (7.2.12)0

Instead, we have, according to the average stress theorem discussed in
Section 5.4,

1 0� � � � dV � � . (7.2.13)
VV

Substituting (7.2.12) and (7.2.13) into (7.2.3) and making use of �r �
Lr�r yield

� � L T M �. (7.2.14)r r r 0

The global stress concentration tensor is thus given by

�1B � L T M � [M � S (M � M )] M . (7.2.15)r r r 0 r r r 0 0



7.2 ESHELBY METHOD 161

It then follows from (5.7.8) that the effective compliant tensor of the
composite is given by

N N

M � M � c (M � M )B � M � c (M � M )L T M .� �0 r r 0 r 0 r r 0 r r 0
r�1 r�1

(7.2.16)

It can be further simplified to

N
�1M � M � c [(L � L )S � L ] (L � L )M . (7.2.17)�0 r r 0 r 0 r 0 0

r�1

This is the Eshelby estimate of the effective compliance of the com-
posite in consideration.

Finally, let us check the consistency of the Eshelby estimates by
considering

N N

ML � M � c (M � M )L T M L � c (L � L )T� �� �� �0 r r 0 r r 0 0 r r 0 r
r�1 r�1

N N

� I � c (I � M L )T c (I � M L )T� �� �� �r 0 r r r 0 r r
r�1 r�1

2� I � O(c ).r (7.2.18)

It is seen that � I only when the terms with order of are2ML cr

neglected. In other words, the Eshelby estimates are consistent only up
to the first order of the volume fraction of the inhomogeneities.

To close this section, we note that both the volume fraction and the
geometry of the inhomogeneities are taken into consideration in the
Eshelby estimate. However, the distribution of the inhomogeneities is
neglected. More importantly, the interaction between the inhomoge-
neities is not taken into consideration because the eigenstrain in each
inclusion is calculated by assuming that the other inclusions are not
present. Therefore, this method is limited to low (dilute) concentration
of inhomogeneities. The method is also called by some authors the
dilute concentration method.

Example 7.1 Consider a particulate-reinforced composite material.
Assume that all particles are spherical and randomly dispersed through-
out the matrix. Further, assume that both the particle and the matrix
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are made of isotropic elastic materials. Their elastic stiffness tensors
are

L � (3K , 2� ) for the matrix, (7.2.19)0 0 0

and

L � (3K , 2� ) for the particles, (7.2.20)1 1 1

where the matrix symbolic notation for the fourth-order tensors intro-
duced in Section 1.4 has been used for the stiffness tensors. The iso-
tropic elastic constants Kr and �r are the bulk and shear moduli,
respectively, for the matrix (r � 0) and the particles (r � 1). Finally,
we assume that the volume fraction of the particles in the composite
is c1.

To find the effective stiffness tensor of the composites, we can use
(7.2.9) directly by specifying N � 1. To this end, let us compute the
relevant tensors one at a time. First, the Eshelby tensor for an isotropic
material with L0 � (3K0, 2�0) can be written as (see Appendix 4.B)

S � (3� , 2� ), (7.2.21)1 0 0

where

K 1 � v 3(K � 2� ) 4 � 5v0 0 0 0 0� � � , � � � .0 03K � 4� 9(1 � v ) 5(3K � 4� ) 15(1 � v )0 0 0 0 0 0

(7.2.22)

Next, let us compute the fourth-order tensor T1:

�1 �1T � [I � S L (L � L )]1 1 0 1 0

�1 �1� {(1,1) � (3� , 2� )[(3K , 2� ) (3K , 2� ) � (1,1)]}0 0 0 0 1 1

�1K � K � � �1 0 1 0� (1, 1) � (3� , 2� ) ,� � ��0 0 K �0 0

�1K � 3� (K � K ) � � 2� (� � � )0 0 1 0 0 0 1 0� ,� �K �0 0

K �0 0� , .� �K � 3� (K � K ) � � 2� (� � � )0 0 1 0 0 0 1 0

(7.2.23)
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Finally,

L � L � c (L � L )T0 1 1 0 1

3c K (K � K ) 2c � (� � � )1 0 1 0 1 0 1 0� (3K , 2� ) � , .� �0 0 K � 3� (K � K ) � � 2� (� � � )0 0 1 0 0 0 1 0

(7.2.24)

Thus, we have

c K (K � K )1 0 1 0K � K � ,0 K � 3� (K � K )0 0 1 0

c � (� � � )1 0 1 0� � � � . (7.2.25)0 � � 2� (� � � )0 0 1 0

Making use of (7.2.22) in (7.2.25) yields alternative expressions

c (K � K )(3K � 4� )1 1 0 0 0K � K � , (7.2.26)0 3K � 4�1 0

5c � (� � � )(3K � 4� )1 0 1 0 0 0� � � � . (7.2.27)0 3K (3� � 2� ) � 4� (2� � 3� )0 0 1 0 0 1

This completes the solution. Note that in the above derivations, we
have used the symbolic notations of fourth-order isotropic tensors and
followed the rules of operation on using such symbolic notations, as
introduced in Section 1.4. The advantages of such operation are clearly
seen.

7.3 MORI–TANAKA METHOD

Before presenting the Mori–Tanaka method, let us recall the average
strain and average stress of a composite as defined in Section 5.4:

N N1 1
� � � � dV � � , � � � � dV � � , (7.3.1)� �r r

D DD Dr�0 r�0

where
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V

0

0

Figure 7.5 Average strain in matrix.

1 1
� � � � dV and � � � � dV (7.3.2)r r

� �� �r rr r

are the strain and stress tensors, respectively, averaged over the r th
inhomogeneity. For example, is the average strain in the inhomo-�1

geneity with stiffness tensor L1, and is the average strain in the�0

matrix phase, see Fig. 7.5. Furthermore,

� � L � .r r r

Now consider the composite material shown in Figure 7.1. For a
typical inhomogeneity Lr (r � 0) in the composite, the effects (or the
existence) of other inhomogeneities are communicated to it through the
strain and stress fields in its surrounding matrix material. Although the
strain and stress fields are different from one location to another in the
matrix, the averages ( and ) represent good approximations of the� �0 0

actual fields in the matrix surrounding each inhomogeneity, when a
large number of inhomogeneities exit and are randomly distributed in
the matrix (which is the case for most engineering composites). Also,
it would be reasonable to assume that taking only one inhomogeneity
out will not affect the overall elastic behavior of the composite. In other
words, when the r th inhomogeneity is removed and replaced by the
matrix material (or equivalently, let Lr � L0), the averages ( and�0

) will remain the same. Therefore, as far as the r th inhomogeneity�0

is concerned, it can be viewed as an ellipsoidal inhomogeneity with
stiffness tensor Lr placed within a uniform matrix of stiffness tensor
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Figure 7.6 (a) The rth inhomogeneity in the composite. (b) The rth inhomogeneity
in the original matrix of stiffness L0, which had been subjected to the uniform strain

before the inhomogeneity was embedded.�0

L0, which had been subjected to the uniform strain before the in-�0

homogeneity was embedded, see Fig. 7.6. Thus, we choose in (7.1.3),

0L̂ � L and �̂ � � (7.3.3)0 0 0

and consequently

Ŝ � S . (7.3.4)r r

Comparing these with (7.2.1) and (7.2.2), it is seen that the only
difference between the Eshelby and the Mori–Tanaka methods is the
use of . Note that represents how the effects of other inhomoge-0 0�̂ �̂
neities are accounted for. Because the Eshelby method assumes no
interaction between the inhomogeneities, it takes � �0, which is the0�̂
strain in the matrix when none of the inhomogeneities is present. The
Mori–Tanaka method also assumes the absence of all inhomogeneities,
but it includes certain effects of the inhomogeneity by taking �0�̂

because is the average strain in the matrix phase when all in-� , �0 0

homogeneities are present. For this reason, the Mori–Tanaka method
provides better estimate of the effective modulus than the Eshelby
method does for composite with nondilute reinforcement phases.
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The use of (7.3.3) and (7.3.4) in (7.1.6) yields the strain in the r th
inhomogeneity

pt� � � � � � � � S �* � T � , (7.3.5)r 0 r 0 r r r 0

where Tr is the same as that of (7.2.4). Although (7.2.7) and (7.3.5)
have similar appearance, they are very different equations in that (7.2.7)
relates the total strain on the inhomogeneity to the average strain over
the entire composite, while (7.3.5) relates the total strain on the
inhomogeneity to the average strain on the matrix surrounding the in-
homogeneity. Therefore, the tensor Tr in (7.2.7) represents the global
strain concentration, while the tensor Tr in (7.3.5) represents local
strain concentration tensor introduced in (5.7.9), that is,

G � T . (7.3.6)r r

Thus, it follows from (5.7.14) that the global strain concentration tensor
is

�1 �1N N

A � G c I � c G � T c T , (7.3.7)� �� � � �r r 0 n n r n n
n�1 n�0

where the fact that T0 � I has been used. Consequently, the effective
stiffness tensor of the composite follows directly from (5.7.7):

N

L � L � c (L � L )A�0 r r 0 r
r�1

�1N N

� L � c (L � L )T c T� �� �0 r r 0 r n n
r�0 n�0

�1 �1N N N N

� L � c L T c T � L c T c T� � � �� � � �0 r r r n n 0 r r n n
r�0 n�0 r�0 n�0

�1N N

� c L T c T� �� �r r r n n
r�0 n�0

(7.3.8)

or

�1N N

L � c L T c T . (7.3.9)� �� �r r r n n
r�0 n�0

This is the Mori–Tanaka estimate of the effective stiffness tensor.
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To obtain the Mori–Tanaka estimate of the effective complaint ten-
sor, we substitute

� � M � , � � L � (7.3.10)0 0 0 r r r

into (7.3.5), which yields

� � L T M � . (7.3.11)r r r 0 0

The local stress concentration tensor is thus given by

H � L T M . (7.3.12)r r r 0

It then follows from (5.7.15) that the global stress concentration tensor
is given by

�1N

B � H c I � c H�� �r r 0 n n
n�1

�1N

� L T M c L T M , (7.3.13)�� �r r 0 n n n 0
n�0

where the fact that H0 � L0T0M0 � I has been used. The Mori–Tanaka
effective compliant tensor thus follows from (5.7.8):

N

M � M � c (M � M )B�0 r r 0 r
r�1

�1N N

� M � c (M � M )L T M c L T M� �� �0 r r 0 r r 0 n n n 0
r�0 n�0

�1N N

� M � c T M c L T M� �� �0 r r 0 n n n 0
r�0 n�0

�1N N

� M c L T M c L T M� �� �0 r r r 0 n n n 0
r�0 n�0

�1N N

� c T M c L T M� �� �r r 0 n n n 0
r�0 n�0

�1N N

� c T c L T (7.3.14)� �� �r r n n n
r�0 n�0

or
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�1N N

M � c T c L T . (7.3.15)� �� �r r n n n
r�0 n�0

This is the Mori–Tanaka estimate of the effective compliance tensor of
the composite in consideration.

It is easy to see from (7.3.9) and (7.3.15) that, unlike in the Eshelby
method, the Mori–Tanaka method yields � � I for any cr.ML LM

Example 7.2 Let us use the Mori–Tanaka method to estimate the
effective elastic tensor and the effective compliant tensor for the com-
posite considered in Example 7.1. First, consider (7.3.9) for r � 1,

�1L � (c L T � c L T )(c T � c T )0 0 0 1 1 1 0 0 1 1

�1� (c L � c L T )(c I � c T ) , (7.3.16)0 0 1 1 1 0 1 1

where

�1T � [I � S (M L � I)] . (7.3.17)1 1 0 1

By substituting (7.3.17) into (7.3.16) and making use of (7.2.19)–
(7.2.22), we obtain using the symbolic notation,

L � (3K, 2�), (7.3.18)

where

c K (K � K )1 0 1 0K � K � , (7.3.19)0 K � 3� (1 � c )(K � K )0 0 1 1 0

c � (� � � )1 0 1 0� � � � . (7.3.20)0 � � 2� (1 � c )(� � � )0 0 1 1 0

Eliminating �0 and �0 by using (7.2.22), we can rewrite (7.3.20) as

c (K � K )(3K � 4� )1 1 0 0 0K � K � , (7.3.21)0 3K � 4� � 3(1 � c )(K � K )0 0 1 1 0

5c � (� � � )(3K � 4� )1 0 1 0 0 0� � � � .0 5� (3K � 4� ) � 6(1 � c )(� � � )(K � 2� )0 0 0 1 1 0 0 0

(7.3.22)
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Figure 7.7 (a) The rth inhomogeneity in the actual composite. (b) The rth inhom-
ogeneity in a homogeneous matrix with (as-yet-unknown) effective stiffness thatL
has been subjected to the uniform strain before the inhomogeneity was embed-�
ded.

These are the Mori–Tanaka estimates of the effective elastic constants
for a composite with spherical particles.

7.4 SELF-CONSISTENT METHODS FOR
COMPOSITE MATERIALS

Again, consider the composite material stated in Section 7.1. Let us
pretend at this point that we already knew the effective stiffness tensor

and its inverse Since there are numerous inhomogeneities in theL M.
composite, we know that the effective properties ( and ) will notL M
be affected if one inhomogeneity is removed from the composite. Now,
focus our attention to a typical inhomogeneity, for example, the r th
inhomogeneity. When the composite is subjected to either the displace-
ment boundary condition or the traction boundary condition, one may
envision that the effects of the applied loads (through the boundary
condition) and the interaction with other inhomogeneity can be ac-
counted for by assuming that the r th inhomogeneity is placed within
a homogeneous matrix of stiffness that had been subjected to theL
strain tensor before the inhomogeneity is embedded; see Figure 7.7.�
With this understanding, we can choose in (7.1.3),
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0L̂ � L and �̂ � �, (7.4.1)0

and consequently,

Ŝ � S , (7.4.2)r r

where the overbar on the Eshelby tensor indicates that its elements
should be computed based on the effective elastic constants of the
composite.

Substituting (7.4.1) and (7.4.2) into (7.1.6) yields the total strain in
the r th inhomogeneity:

pt� � � � � � � � S�* � T �, (7.4.3)r r r r

where

�1 �1T � [I � S L (L � L)] . (7.4.4)r r r

The corresponding stress on the r th inhomogeneity is

� � L � � L T � � L T M�. (7.4.5)r r r r r r r

It is seen that the global strain and stress concentration tensors for the
r th inhomogeneity are, respectively,

A � T and B � L T M. (7.4.6)r r r r r

Thus, it follows from (5.7.7) and (5.7.8) that the effective stiffness and
compliant tensors of the composite are given, respectively, by

N

L � L � c (L � L )T , (7.4.7)�0 r r 0 r
r�1

N

M � M � c (M � M )L T M, (7.4.8)�0 r r 0 r r
r�1

where is given in (7.4.4). These are the self-consistent estimates ofTr

the effective stiffness and compliant tensors of the composite. Unlike
the Eshelby and Mori–Tanaka methods, the self-consistent method
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yields implicit equations for the effective properties. Solutions to these
implicit equations typically require numerical iterations using comput-
ers.

To prove the consistency of the self-consistent estimates, let us con-
sider (7.4.7). Premultiplying by M0 and postmultiplying by we�1L ,
arrive at

N
�1 �1M � L � c M (L � L )T L�0 r 0 r 0 r

r�1

N
�1 �1� L � c (M � M )L T L . (7.4.9)� r 0 r r r

r�1

By rearranging the terms, we obtain

N
�1 �1L � M � c (M � M )L T L . (7.4.10)�0 r r 0 r r

r�1

Comparing (7.4.10) with (7.4.8), we observe that

�1M � L . (7.4.11)

Similarly, one can show that

�1L � M . (7.4.12)

Thus, we have � � I, that is, the self-consistent estimatesML LM
are indeed consistent.

Example 7.3 Consider again the composite described in Example 7.1.
To find the effective stiffness tensor of the composites using the self-
consistent method, we can use (7.4.7) directly by specifying N � 1.
To this end, let us compute the relevant tensors one at a time. First,
the Eshelby tensor for an isotropic material with L � (3 ,2 ) can beK �
written as (see Appendix 4.B)

S � (3�, 2�), (7.4.13)

where
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K 1 � � 3K � 6� 4 � 5�
� � � , � � � . (7.4.14)

3K � 4� 9(1 � �) 15K � 20� 15(1 � �)

Next, let us compute the fourth-order tensor T ,1

�1 �1T � [I � S(L L � I)]1 1

�1 �1� {(1,1) � (3�, 2�)[(3K, 2�) (3K , 2� ) � (1,1)]}1 1

�1K � K � � �1 1� (1,1) � (3�, 2�) ,� � ��K �
�1K � 3�(K � K) � � 2�(� � �)1 1� ,� �K �

K �
� , . (7.4.15)� �K � 3�(K � K) � � 2�(� � �)1 1

Finally

L � L � c (L � L )T0 1 1 0 1

3K(K � K ) 2�(� � � )1 0 1 0� (3K , 2� ) � c ,� �0 0 1 K � 3�(K � K) � � 2�(� � �)1 1

3c K(K � K ) 2c �(� � � )1 1 0 1 1 0� 3K � , 2� � .� �0 0K � 3�(K � K) � � 2�(� � �)1 1

(7.4.16)

Thus, we have

c K(K � K ) c �(� � � )1 1 0 1 1 0K � K � , � � � � . (7.4.17)0 0K � 3�(K � K) � � 2�(� � �)1 1

This is a pair of nonlinear algebraic equations. The roots of these equa-
tions are the effective elastic constants of the composite. Because of
the uniqueness of the problem, selections must be made judiciously
based on physical ground if there are multiple roots. A common
method to find the roots is iteration.

Making use of (7.4.14) in (7.4.17) yields a pair of alternative ex-
pressions:
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c (K � K )(3K � 4�)1 1 0K � K � , (7.4.18)0 3K � 4�1

5c �(� � � )(3K � 4�)1 1 0� � � � . (7.4.19)0 3K(3� � 2� ) � 4�(2� � 3� )1 1

7.5 SELF-CONSISTENT METHODS FOR
POLYCRYSTALLINE MATERIALS

The derivations used to develop the methods of determining the effec-
tive properties described in previous sections including the self-
consistent method rely on the fact that the composite has a distinct
matrix in which other inhomogeneities are embedded. For certain het-
erogeneous materials, such as polycrystalline materials, there is no dis-
tinct matrix phase. In a polycrystal, each grain can be viewed as an
inhomogeneity embedded in the remaining grains, and, hence, all
grains have the same significance. Clearly, there is a complete sym-
metry in treating each grain as an inhomogeneity. The concept of a
matrix with embedded inhomogeneities is thus no longer meaningful.
In this section, we will describe other self-consistent methods that treat
all inhomogeneities (one may consider the matrix as one of the inhom-
ogeneities) on an equal footing.

To begin, let us consider a polycrystalline material comprising N
randomly distributed grains. The different grains can be either different
materials (in the case of alloys) or grains with different crystallographic
orientations (in the case of single-element polycrystals). We assume
that the r th grain has volume fraction of cr, r � 1, 2, 3, . . . , N. It
then follows from (5.4.1) that the average strain and average stress in
the polycrystal is given by

N N

� � c � , � � c � , (7.5.1)� �r r r r
r�1 r�1

where and are the average strain and stress tensors, respectively,� �r r

on the r th grain. Note that is the average strain of the entire poly-�
crystal and is the average strain of the r th grain. The global strain�r

concentration tensor Ar is defined for the r th grain through (5.7.3):
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� � A �. (7.5.2)r r

Similarly, the global stress concentration tensor is defined for the r th
grain through (5.7.9):

� � B �. (7.5.3)r r

It then follows from (7.5.2) and (7.5.3) and the use of Hooke’s law
that

N N N

� � c � � c L � � c L A �, (7.5.4)� � �r r r r r r r r
r�1 r�1 r�1

N N N

� � c � � c M � � c M B �. (7.5.5)� � �r r r r r r r r
r�1 r�1 r�1

These lead to

N N

L � c L A , M � c M B . (7.5.6)� �r r r r r r
r�1 r�1

Clearly, once the strain concentration tensor Ar is known as a function
of the effective stiffness tensor for the polycrystal, the first of (7.5.6)L
can be used to obtain the effective stiffness tensor . Similarly, if theL
stress concentration tensor Br is known as a function of the effective
compliance tensor the second of (7.5.6) can be used to obtain theM,
effective compliance tensor Generally speaking, the effective com-M.
pliance and stiffness tensor obtained from these two equations may not
be consistent, unless the exact expressions of Ar and Br are used.

One way to obtain an approximate solution to Ar is to view each
grain as an ellipsoidal inhomogeneity embedded in a homogeneous
matrix (consisting of all the other grains) of elastic stiffness tensor L.
Under this assumption, when the polycrystal is subjected to displace-
ment boundary condition u�x�S � the strain concentration tensor Ar�x,
is given by (7.2.4) and (7.2.7) with M0 and L0 replaced by andM L,
respectively, because in this case the r th inhomogeneity is embedded
in a homogeneous matrix with instead of L0,L,

�1A � [I � S M(L � L] , (7.5.7)r r r
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where is the Eshelby tensor computed based on SubstitutingS L.r

(7.5.7) into the first of (7.5.6) results in a self-consistent scheme for
L:

N
�1 �1L � c L [I � S L (L � L)] . (7.5.8)� r r r r

r�1

To obtain an approximate solution to Br, let us consider the traction
boundary condition (7.2.10). In this case, it follows from (7.2.15) that

�1B � [M � S (M � M)] M. (7.5.9)r r r r

Substituting (7.5.9) into the second of (7.5.6) yields a self-consistent
scheme for M,

N
�1I � c M [M � S (M � M)] . (7.5.10)� r r r r r

r�1

It can be shown (see Problem 7.8) that the concentration tensors can
be written in alternative forms:

�1 �1 �1 �1A � (L � H ) (L � H ), B � (M � H ) (M � H ),r r r r r r r r

(7.5.11)

where

�1H � L(S � I) (7.5.12)r r

is the Hill’s constraint tensor (4.5.13). Thus, the self-consistent schemes
can be recast into more symmetric forms:

N
�1L � c L (L � H ) (L � H ), (7.5.13)� r r r r r

r�1

N
�1 �1 �1M � c M (M � H ) (M � H ). (7.5.14)� r r r r r

r�1
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These are implicit algebraic equations for the effective stiffness tensor
Solutions to these algebraic equations are the effective properties ofL.

the polycrystal. Making use of the relationships (see Problem 7.9)

L A � B L, M B � A M,r r r r r r

one can easily show that the stiffness and compliance tensors predicted
from (7.5.13) and (7.5.14), respectively, are indeed consistent, that is,

� � I.LM ML
Let us now consider a single-phase polycrystalline material. Single-

phase polycrystal is an assembly of grains, all of which are comprised
of the same material. Although all the grains are of the same material,
their physical orientations are different. By physical orientation we
mean rotations of the grain with respect to a fixed reference frame, or
equivalently, the rotation of the stiffness tensor with respect to a fixed
coordinate system. For example, let L be the elastic stiffness tensor of
a single crystal in a fixed coordinate system (x1, x2, x3). Then, the
stiffness tensor of the same crystal in a different orientation can be
represented by a rotation of L, that is,

(r)L � � � � � L , (7.5.15)ijkl ip jq kr ls pqrs

where the rotation matrix can be expressed, for example, in terms of
the Euler angles 	, 
, and �:

� � cos 
 cos � cos 	 � sin � sin 	,11

� � �cos 
 cos � sin 	 � sin � cos 	,12

� � sin 
 cos �,13

� � cos 
 sin � cos 	 � cos � sin 	,21

� � �cos 
 sin � sin 	 � cos � cos 	, (7.5.16)22

� � sin 
 sin �,13

� � �sin 
 cos 	,31

� � sin 
 sin 	,32

� � cos 
,32

where
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0 � 	 � 2
, 0 � 
 � 
, 0 � � � 2
. (7.5.17)

Since all the grains are comprised of the same material, only with
different orientations, we can write, symbolically, that,

˜ ˜L � L(L, 	, 
, �), M � M(M, 	, 
, �). (7.5.18)r r

To characterize the physical orientation of the grains in a given
single-phase polycrystal, we use a distribution function ƒ(	, 
, �), that
is,

2
 
 2
1 � d� � sin 
 d
 � ƒ(	, 
, �) d	 � 1. (7.5.19)2
0 0 08


The value ƒ(	0, 
0, �0) represents the percent of grains that are all
oriented in the direction (	0, 
0, �0). Clearly, ƒ(	, 
, �) � �(	 � 	0)�(

� 
0)�(� � �0) would mean all the grains are orientated in the (	0, 
0,
�0) direction.

In addition to physical orientation, each grain (ellipsoidal inhomo-
geneity) in the polycrystal has its own size, shape, and orientation, all
of which may not be the same for all grains. Since these geometric
attributes come into the self-consistent equations through only the Esh-
elby tensor, which is independent of the size of the inhomogeneity, one
may conclude that the effective stiffness tensor predicted by the self-
consistent methods (7.5.13) and (7.5.14) is invariant to the grain size.

Because of the large number of grains involved, distribution func-
tions are typically used to characterize the geometric shapes and ori-
entations of grains. For example, we can use the Euler angles to
indicate the geometric orientation of a grain, so that

(r)S � � � � � S , (7.5.20)ijkl ip jq kr ls pqrs

where is the Eshelby tensor for an ellipsoidal inclusion written inSpqrs

the same fixed coordinate system (x1, x2, x3). For convenience, one may
choose the ellipsoidal inclusion in such a way that its major axes co-
incide with the axes of the rectangular coordinate system. Therefore,
if all grains have similar shape, the Eshelby tensor for each grain can
be written as
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˜S � S(L, 	, 
, �), (7.5.21)r

where (	, 
, �) follows a distribution function g(	, 
, �).
Replacing the summation by integration and the volume fraction by

the distribution function, we can change the self-consistent equations
(7.5.13) and (7.5.14) to their integral counterparts that are more suited
for polycrystalline materials:

˜ �1 �1˜ ˜�g�ƒL[I � SL (L � L)] �� � L, (7.5.22)

˜ �1˜ ˜ ˜�g�ƒM[M � S(M � M)] �� � I, (7.5.23)

where the symbol � � � is defined as

2
 
 2


� � � � d	 � sin 
 d
 � d�. (7.5.24)
0 0 0

Let us, for brevity, use only (7.5.22) to consider some special cases:

1. Both geometric and physical orientations are random. In this case,
ƒ(	, 
, �) � g(	, 
, �) � 1. Thus, (7.5.22) reduces to

˜ �1 �1˜ ˜��L [I � SL (L � L)] �� � L. (7.5.25)

2. Both geometric and physical orientations are aligned. In this case,
ƒ(	, 
, �) � g(	, 
, �) � �(	)�(
)�(�). Thus, (7.5.22) reduces
to

L̃(L, 0, 0, 0)[I
˜ �1˜� S(L, 0, 0, 0)M(L(L, 0, 0, 0) � L)] � L. (7.5.26)

It can be easily seen from (7.5.20) and (7.5.15) that

˜ ˜S(L, 0, 0, 0) � S, L(L, 0, 0, 0) � L. (7.5.27)

Thus, we have

�1L[I � SM(L � L)] � L. (7.5.28)

Equivalently, this leads to
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L � L, (7.5.29)

that is, the effective stiffness tensor is the stiffness tensor of the single
crystal. This is certainly expected since all the grains are aligned both
geometrically and physically. In other words, the polycrystal in this
case is actually a single crystal!

7.6 DIFFERENTIAL SCHEMES

The differential scheme in determining the effective modulus of a com-
posite takes a somewhat different approach from the methods intro-
duced in previous sections. The differential approach was motivated by
the fact that the effective properties of a dilute composite can be cal-
culated with relatively high accuracy. Therefore, one may imagine that
a composite with a finite concentration of inhomogeneities can be con-
structed through the following process. First, start with the homoge-
neous matrix material with elastic stiffness tensor L0. Then, add a small
amount (volume fraction �c) inhomogeneities with elastic stiffness ten-
sor L1. We now have a composite with dilute concentration. The ef-
fective elastic stiffness tensor (�c, L0) can be obtained accurately,(1)L
where the fact that the effective stiffness tensor depends on the volume
fraction of the inhomogeneities and the matrix material is explicitly
indicated. In the next step, we will start with a homogenous matrix of
elastic stiffness tensor (�c, L0). Then add a small amount (volume(1)L
fraction �c) of inhomogeneities of stiffness tensor L1. Again, we have
created a new composite. As far as this composite is concerned, it still
has a dilute concentration of L1. Therefore, the effective stiffness tensor
of this new composite can be obtained accurately using the same
method used for the previous step. The only difference here is that the
matrix material in the current step is (�c, L0). Therefore, one can(1)L
symbolically write the effective stiffness tensor at the current step as

(�c, This process can continue. Each time, the newly obtained(2) (1)L L ).
composite will be viewed as a homogeneous matrix, and a small
amount of inhomogeneities of L1 is added to obtain the next composite,
until the desired volume fraction is achieved. Such a repetitive process
leads to differential equations for the effective properties as functions
of the concentrations (or volume fractions of the inhomogeneities). This
is the basic idea of all the differential schemes.

To illustrate how such thought process can be translated into differ-
ential equations, let us consider a two-phase composite (N � 1). Ac-
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cording to (5.7.7), the effective stiffness tensor of a two-phase
composite can be written as

L(c ) � L � c (L � L )�A (L ), (7.6.1)1 0 1 1 0 1 0

where the dependence of on the volume fraction c1 and A1 on L0 isL
explicitly indicated, and the strain concentration tensor A1 is defined
by

� � A (L )��. (7.6.2)1 1 0

In the above, the symbol � has been used to indicate the tensor product.
This is to make it clear that A1 (L0) means A1 is a function of L0.

Let us assume that the effective stiffness tensor is known at aL(c )1

volume fraction

�1c � , (7.6.3)1 � � �0 1

where �0 and �1 are, respectively, the volumes of the matrix and in-
homogeneities. If the composite with stiffness tensor (c1) is viewedL
as a homogeneous ‘‘matrix,’’ a new composite can be made by adding
��1 amount of new inhomogeneities to the ‘‘matrix.’’ The volume frac-
tion of the newly added inhomogeneities is

��1 . (7.6.4)
� � � � ��0 1 1

For such small-volume fractions, the effective elastic stiffness tensor
can be obtained from (7.6.1) by replacing L0 by the new matrix prop-
erty that is,L(c ),1

��1L(c � �c ) � L(c ) � (L � L(c ))�A (L(c )),1 1 1 1 1 1 1� � � � ��0 1 1

(7.6.5)

where �c is the increment of the volume fraction of L1 in the composite
due to the addition of ��1 amount of L1. Clearly, the total volume
fraction of L1 in this newly constructed composite is
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� � ��1 1c � �c � . (7.6.6)1 1 � � � � ��0 1 1

Subtracting (7.6.3) from (7.6.6) yields

� ��0 1�c �1 (� � � )(� � � � �� )0 1 0 1 1

(� � � � � )��0 1 1 1�
(� � � )(� � � � �� )0 1 0 1 1

(1 � c )��1 1� (7.6.7)
� � � � ��0 1 1

or

�� �c1 1� . (7.6.8)
� � � � �� (1 � c )0 1 1 1

Substitution of (7.6.8) into (7.6.5) yield

L(c � �c ) � L(c ) 11 1 1 � (L � L(c ))�A (L(c )). (7.6.9)1 1 1 1�c 1 � c1 1

In the limit of �c1 → 0, a first-order differential equation is derived:

dL(c ) 11 � (L � L(c ))�A (L(c )). (7.6.10)1 1 1 1dc (1 � c )1 1

The initial condition to compliment the differential equation is obvi-
ously

L(c )� � L . (7.6.11)1 c �0 01

It is straightforward to derive the dual of (7.6.10) and (7.6.11),

dM(c ) 11 � (M � M(c ))�B (M(c )), (7.6.12)1 1 1 1dc (1 � c )1 1

M(c )� � M , (7.6.13)1 c �0 01
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where B1 is the stress concentration tensor defined by (5.7.8). These
initial value problems are the starting point for the various differential
schemes, depending on how the strain concentration tensors A1 and B1

are computed.
Let us consider first the Eshelby approach discussed in Section 7.2.

It follows from (7.2.8) and (7.2.4) that

�1 �1A (L(c )) � T � � [I � S (L L � I)] , (7.6.14)1 1 1 L �L(c ) 1 10 1

where

1 1�1L � , , (7.6.15)� �3K 2�

K 3(K � 2�)
S � (3�, 2�) � , . (7.6.16)� �1 3K � 4� 5(3K � 4�)

Note that it goes without saying that all the quantities with an overbar
are functions of the volume fraction c.

Substituting the above into (7.6.10) and (7.6.11) yields

dL 1 �1 �1� (L � L)[I � S (L L � I)] , (7.6.17)1 1 1dc 1 � c1 1

L(0) � L . (7.6.18)0

For the composite described in Example 7.2, we have

�1 �1T � � [I � S (L L � I)]1 L �L(c) 1 10

K �
� , . (7.6.19)� �K � 3�(K � K) � � 2�(� � �1 1

Making use of the above in (7.6.17), we have

dK (K � K )(3K � 4�)1� � 0, (7.6.20)
dc (1 � c)(3K � 4�)1

d� 5�(� � � )(3K � 4�)1� � 0. (7.6.21)
dc (1 � c)[3K(3� � 2� ) � 4�(2� � 3� )]1 1

The solution must satisfy the initial conditions
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K(0) � K and �(0) � � . (7.6.22)0 0

Clearly, this is a set of highly nonlinear ordinary differential equations.
Numerical procedures are typically required to obtain the solution.

Another version of the differential scheme is attained by following
the Mori–Tanaka approach in obtaining the strain concentration tensor.
It follows from (7.3.7) that

�1A (L(c )) � T [(1 � c )I � c T ] � .1 1 1 1 1 1 L �L(c )0 1

The differential equation now becomes

dL 1 �1� (L � L)T [(1 � c )I � c T ] � . (7.6.23)1 1 1 1 1 L �L(c )0 1dc 1 � c1 1

7.7 COMPARISON OF DIFFERENT METHODS

In the previous sections, we have introduced several methods of esti-
mating the effective stiffness (compliance) tensors for a given com-
posite, namely, the Eshelby method (or the dilute concentration
method), the Mori–Tanaka method, the self-consistent method, and the
differential method. In this section, we will use these methods to obtain
the effective moduli of several idealized composite materials where
explicit analytical solutions can be obtained. We will compare the re-
sults to assess the validity and accuracy of these methods.

We first state that, based on the assumptions made in deriving them,
all these methods ignore the spatial distribution of the inhomogeneities,
that is, they all assume uniform distribution. However, the shapes and
orientations of the ellipsoidal inhomogeneities are taken into account
through the Eshelby tensor Sr. Note that the Eshelby tensor is shape
dependent but not size dependent. Thus, the effective modulus tensor
predicted by these methods will not depend on the size of the inhomo-
geneities. Interactions among the inhomogeneities are taken into con-
sideration differently by different methods. In general, the Eshelby
method works only for very dilute concentration, and the other methods
are applicable to somewhat higher concentration. We will see some
numerical examples later in this section.

Now consider the composite material described in Example 7.1. For
convenience, we list below the equations for the effective moduli of
this composite obtained by all these methods and consider a few special
cases.
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The Eshelby method:

c (K � K )(3K � 4� )1 1 0 0 0K � K � , (7.7.1)0 3K � 4�1 0

5c � (� � � )(3K � 4� )1 0 1 0 0 0� � � � . (7.7.2)0 3K (3� � 2� ) � 4 � (2� � 3� )0 0 1 0 0 1

The Mori–Tanaka method:

c (K � K )(3K � 4� )1 1 0 0 0K � K � , (7.7.3)0 3K � 4� � 3(1 � c )(K � K )0 0 1 1 0

5c � (� � � )(3K � 4� )1 0 1 0 0 0� � � � .0 5� (3K � 4� ) � 6(1 � c )(� � � )(K � 2� )0 0 0 1 1 0 0 0

(7.7.4)

The self-consistent method:

c (K � K )(3K � 4�)1 1 0K � K � , (7.7.5)0 3K � 4�1

5c �(� � � )(3K � 4�)1 1 0� � � � . (7.7.6)0 3K(3� � 2� ) � 4�(2� � 3� )1 1

The differential method:

dK (K � K )(3K � 4�)1� � 0, (7.7.7)
dc (1 � c )(3K � 4�)1 1 1

d� 5�(� � � )(3K � 4�)1� � 0, (7.7.8)
dc (1 � c )[3K(3� � 2� ) � 4�(2� � 3� )]1 1 1 1

K� � K and �� � � . (7.7.9)c �0 0 c �0 01 1
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Dilute Concentration

For dilute concentration of inhomogeneities, we can assume c1 		 1.
Therefore, by expanding (7.7.3) and (7.7.4) into power series of c1 and
neglecting high-order terms, we have

c (K � K )(3K � 4� )1 1 0 0 0K � K � , (7.7.10)0 3K � 4�1 0

5c � (� � � )(3K � 4� )1 0 1 0 0 0� � � � . (7.7.11)0 3K (3� � 2� ) � 4� (2� � 3� )0 0 1 0 0 1

Comparing the above with the Eshelby estimate, it is seen that at the
dilute concentration, the Mori–Tanaka estimate reduces to the Eshelby
results.

As for the self-consistent estimate, we can first expand and intoK �
power series of c1, that is,

(1) 2 (1)K � K � c K � c K . . . , (7.7.12)0 1 0 1 0

(1) 2 (1)� � � � c � � c � . . . . (7.7.13)0 1 0 1 0

Substituting these expansions into (7.7.5) and (7.7.6) yields immedi-
ately that the self-consistent estimate, in the dilute case, also reduces
to the Eshelby estimate.

Following similar steps, one can show that the differential method
predicts the same results as well (as expected, since the differential
method was based on the solution to the dilute case). In other words,
all four methods yield the same results when the volume fraction of
the inhomogeneity is very low. In the limit of c1 → 0, the effective
modulus of the composite as predicted by all these methods reduce to
the modulus of the matrix, as it should.

High-Concentration Asymptotes

For this case, we are interested in the limit c1 → 1, meaning the entire
‘‘composite’’ consists of particles only. Certainly, this would require
multiple size particles; see Problem 7.6. Since the composite contains
particles only, it is expected that the effective modulus of the composite
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should be the modulus of the particles. Taking the limit c1 → 1 in
(7.7.1)–(7.7.6), we find that the Eshelby method predicts

K (2K � K ) � 4� K0 1 0 0 1K � , (7.7.14)
3K � 4�1 0

� [3K (7� � 2� ) � 4� (8� � 3� )]0 0 1 0 0 1 0� � . (7.7.15)
3K (3� � 2� ) � 4� (2� � 3� )0 0 1 0 0 1

It is not surprising that the Eshelby method does not predict the correct
values because the Eshelby method is valid only for dilute concentra-
tions.

It is very easy to see by setting c1 � 1 in (7.7.3) and (7.7.4) that
the Mori–Tanaka method does predict the proper limiting values for
the effective moduli:

K � K , � � � . (7.7.16)1 1

It can also be easily verified that (7.7.16) represent a set of solutions
to the self-consistent equations (7.7.5) and (7.7.6). In other words, the
self-consistent method also predicts the property high-concentration
limit.

Rigid Particles

To mimic rigid particles, one may consider the limiting case of

� K0 0→ 0, → 0. (7.7.17)
� K1 1

Also, on physical grounds, we assume that

� K→ 0, → 0 (7.7.18)
� K1 1

for any 0 � c1 	 1.
Making use of the above in (7.7.1)–(7.7.4), we obtain
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c (3K � 4� ) 5c � (3K � 4� )1 0 0 1 0 0 0K � K � , � � � � ,0 03 6(K � 2� )0 0

(7.7.19)

from the Eshelby method, and

c (3K � 4� ) 5c � (3K � 4� )1 0 0 1 0 0 0K � K � , � � � �0 03(1 � c ) 6(K � 2� )(1 � c )1 0 0 1

(7.7.20)

from the Mori–Tanaka method. Again, it is seen that both methods
predict correctly that � K0 and � �0 at the low-concentration limitK �
c1 → 0. At the high-concentration limit, c1 → 1, the Mori–Tanaka
method predicts that the effective modulus increases without bound (as
it should because the composite is full of rigid particles), while the
Eshelby method yields a finite value. This is expected, for we know
that the Eshelby method is applicable only for the dilute case.

Making use of (7.7.17) and (7.7.18) in the self-consistent estimate,
we obtain

c (3K � �) 5c �(3K � 4�)1 1K � K � , � � � � . (7.7.21)0 03 6(K � 2�)

The effective bulk modulus can be solved from (7.7.21) to yieldK

3K � 4c �0 1K � . (7.7.22)
3(1 � c )1

Substituting (7.7.22) into the second of (7.7.21) yields

2
� K � 6K0 012(1 � 2c ) � 3(2 � 5c ) � 4(3 � c ) � � 0.� � � �1 1 1� � � �0 0 0 0

(7.7.23)

When c1 � 0.5, the above equation reduces to
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12K �0 0� � � 	 0. (7.7.24)
3K � 20�0 0

This is not a physically possible solution because the effective shear
modulus should be positive. For c1 � 0.5, the quadratic equation
(7.7.23) yields two roots. Numerical analysis shows that both roots are
real. One of them is always negative and other is given by

2
� � � 1 � �0� � � � � � � ,� ��� 1 � 2c 1 � 2c 3(1 � 2� )(1 � 2c )0 1 1 0 1

(7.7.25)

where �0 is the Poisson ratio of the matrix material, and

3(1 � 3� ) 11 � 19�0 0� � � , � � . (7.7.26)
24(1 � 2� ) 24(1 � 2� )0 0

In deriving (7.7.25), we have used the relationship

� 3(1 � 2� )0 0� . (7.7.27)
K 2(1 � � )0 0

Since 0 � �0 � 0.5, it can be shown that the right hand of (7.7.25) is
positive only for 0 � c1 	 0.5. In other words, for spherical rigid
particles dispersed in a matrix material, the self-consistent method
yields a physically meaningful solution to the effective shear modulus
only if the particle volume fraction is less than 50%.

Now, consider the differential method. Making use of (7.7.18) in
(7.7.7) and (7.7.8) yields

dK (3K � 4�)
� � 0, (7.7.28)

dc 3(1 � c )1 1

d� 5�(3K � 4�)
� � 0. (7.7.29)

dc 6(1 � c )(K � 2�)1 1

Solutions to this system of nonlinear differential equations are still
fairly complicated.

To exam the high-concentration asymptotic behavior of the differ-
ential scheme predictions, let us expand the solution near c1 � 1:
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A Bn nK � , � � , (7.7.30)� �m–n m–n(1 � c ) (1 � c )n�0 n�01 1

where the asymptotic behavior is dictated by the constant m, which is
to be determined from the solution procedure. Substituting (7.7.30) into
(7.7.28) and (7.7.29) and keeping the leading order terms only, we
obtain the following eigenvalue problem:

3(m � 1) �4 A 00 � . (7.7.31)� �� � � �3(2m � 5) 4(2m � 5) B 00

The corresponding eigenvalues are m � 0 and m � 2. The eigenvalue
m � 2 should be chosen on physical ground. Therefore, the asymptotic
behavior of the differential scheme for c1 → 1 is

A B0 0K 	 , � 	 . (7.7.32)2 2(1 � c ) (1 � c )1 1

In summary, for the case of rigid particles, the Eshelby method yields
finite values of the effective moduli in the high-concentration limit c1

→ 1, while the self-consistent method yields no solution for c1 � 1 in
this case. Both the Mori–Tanaka and the differential methods predict
unbounded effective moduli, but their asymptotic behavior is different.
The Mori–Tanaka solution behaves as 1/(1 � c1) while the differential
solution behaves as 1/(1 � c1)2.

Other interesting features of the differential scheme can also be ex-
plored. For example, in the case of the incompressible matrix, that is,

→ 0, (7.7.28) and (7.7.29) reduce to� /K

dK K
� � 0, (7.7.33)

dc 1 � c1

d� 5�
� � 0. (7.7.34)

dc 2(1 � c )1

The solutions that satisfy the initial conditions (7.7.9) are

K �0 0K � , � � . (7.7.35)5 /21 � c (1 � c )1

We see that the differential scheme does predict correctly
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K � K , � � � (7.7.36)0 0

in the low-concentration limit c → 0. It also predicts that in the high-
concentration limit c → 1, shear modulus approaches to infinity with
the order of 1/(1 � c1)5 / 2.

Note that the solutions (7.7.32) and (7.7.35) are different in that the
former is valid c1 � 1, while the later is for the incompressible matrix,
and is valid for all ranges of c1 between 0 and 1.

Voids

Consider a matrix containing spherical voids. When the void content
is zero (c1 � 0), we should expect that the effective modulus is the
same as that of the matrix. For high concentration of voids (c1 → 1),
we should expect the effective modulus approaches to zero. Let us see
how the various methods predict these limiting cases.

For voids, we can consider the limiting case of

� K1 1→ 0, → 0. (7.7.37)
� �0 0

The Eshelby estimate reduces to

c K (3K � 4� )1 0 0 0K � K � , (7.7.38)0 4�0

5c � (3K � 4� )1 0 0 0� � � � . (7.7.39)0 9K � 8�0 0

They correctly predict the low-concentration limiting value for c1 → 0.
For c1 → 1, the Eshelby method yields

33K 6� (K � 2� )0 0 0 0K � � , � � � . (7.7.40)
4� 9K � 8�0 0 0

These obviously are not physically admissible solutions.
The Mori–Tanaka method gives

c K (3K � 4� )1 0 0 0K � K � , (7.7.41)0 3K � 4� � 3(1 � c )K0 0 1 0
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5c � (3K � 4� )1 0 0 0� � � � . (7.7.42)0 5(3K � 4� ) � 6(1 � c )(K � 2� )0 0 1 0 0

For low concentration,

c K (3K � 4� ) 5c � (3K � 4� )1 0 0 0 1 0 0 0K 	 K � , � 	 � � .0 04� 9K � 8�0 0 0

(7.7.43)

For high concentration

4� K � (9K � 8� )0 0 0 0 0K 	 (1 � c ), � 	 (1 � c ).1 13K � 4� 5(3K � 4� )0 0 0 0

(7.7.44)

We see that the Mori–Tanaka method predicts both low- and high-
concentration limits correctly, while the Eshelby method is only good
for low concentration.

Similarly, the self-consistent estimate reduces

c K (3K � 4�) 5c � (3K � 4�)1 0 1 0K � K � , � � � � . (7.7.45)0 04� 9K � 8�

Solving the first of (7.7.45) for yieldsK

4(1 � c )K �1 0K � . (7.7.46)
3c K � 4�1 0

Making use of this in the second of (7.7.45) gives us the following
quadratic equation for the effective shear modulus:

2
� K � K0 08 � 3(3 � c ) � 4(2 � 5c ) � 9(1 � 2c ) � 0.� � � �1 1 1� � � �0 0 0 0

(7.7.47)

When c1 � 0.5, the two roots of this quadratic equation are, respec-
tively, zero and
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15K �0 0� � � � 	 0.� �16 4

Neither of them is physically meaningful. For c1 � 0.5, the two roots
are all real. Numerical analysis shows that one of these roots is always
negative and the other root is given by

� 3(1 � � )(1 � 2c )0 12� �(1 � 2c ) � � � [�(1 � 2c ) � �] � ,1 1�� 4(1 � 2� )0 0

(7.7.48)

where

3(3 � 7� ) 7 � �0 0� � , � � . (7.7.49)
16(1 � 2� ) 16(1 � 2� )0 0

Since 0 � �0 � 0.5, it can be shown that the right hand of (7.7.48) is
positive only for 0 � c1 	 0.5. In other words, for spherical voids
dispersed in an elastic matrix material, the self-consistent method
yields a physically meaningful solution to the effective shear modulus
only if the void volume fraction is less than 50%.

It is seen from the above cases that the self-consistent method has
trouble when the particles are rigid or voids. In fact, it is generally true
that the self-consistent method does not work well when the contrast
between the inhomogeneities and matrix is too large.

Now, consider the differential scheme. Use of (7.7.37) leads to

dK K(3K � 4�)
� � 0, (7.7.50)

dc 4(1 � c )�1 1

d� 5�(3K � 4�)
� � 0. (7.7.51)

dc (1 � c )[9K � 8�]1 1

Again, we first consider the asymptotic behavior near c1 � 1:


 

m�n m�nK � A (1 � c ) , � � B (1 � c ) . (7.7.52)� �n 1 n 1

n�0 n�0

By substituting (7.7.52) into (7.7.50) and (7.7.51) and keeping the lead-
ing order terms only, we obtain the following eigenvalue problem:
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3 4(1 � m) A 00 � . (7.7.53)� �� � � �3(3m � 5) 4(2m � 5) B 00

The corresponding eigenvalues are m � 0 and m � 2. The eigenvalue
m � 2 should be chosen on physical ground. Therefore, the asymptotic
behavior of the differential scheme for c1 → 1 is

2 2K 	 A (1 � c ) , � 	 B (1 � c ) . (7.7.54)0 1 0 1

Next, let us further assume that the matrix is incompressible, that is,
→ 0. In this case, Eq. (7.7.51) reduces to� /K

d� 5�
� � 0. (7.7.55)

dc 3(1 � c )1 1

The solution that satisfies the initial condition (7.7.9) is

3 /5� � � (1 � c ) .0 1

In summary, for the case of voids, the Eshelby method yields finite
values of the effective moduli in the high-concentration limit c1 → 1,
while the self-consistent method yields no physical solution for c1 �
0.5 in this case. Both the Mori–Tanaka and the differential physical
solution for methods yield vanishing effective moduli, but their as-
ymptotic behavior is different. The Mori–Tanaka solution behaves as
1 � c1, while the differential solution behaves as (1 � c1)2.

PROBLEMS

7.1 Derive (7.2.17) from (7.2.16).

7.2 Show that the Eshelby estimate of the elastic constants for an iso-
tropic spherical particulate-reinforced composite can also be writ-
ten as

�1N c (� � � )r r 0� � � 1 � ,�
 �0 � � 2� (� � � )r�1 0 0 r 0

�1N c (K � K )r r 0K � K 1 � ,�
 �0 K � 3� (K � K )r�1 0 0 r 0

where
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K 1 � v0 0� � � ,0 3K � 4� 9(1 � v )0 0 0

3K � 6� 4 � 5v0 0 0� � � .0 15K � 20� 15(1 � v )0 0 0

7.3 Show, when all the inclusions are similar in shape, that alternative
forms of the Mori–Tanaka effective stiffness and compliance ten-
sors are, respectively, given by

�1N
�1L � c (L* � L ) � L*,�
 �r 0 r 0

r�0

�1N
�1M � c (M � M*) � M*,�
 �r r 0 0

r�0

where

�1 �1 (0)L* � L (S � I), M* � [(I � S ) � I]M .0 0 0 0 0

7.4 Prove (7.4.12).

7.5 Show that all three (Eshelby, Mori–Tanake, and self-consistent)
estimates are the same for very low volume fractions of inhomo-
geneities (dilute concentration).

7.6 Assume spherical particles of equal size are dispersed in a matrix
material. What is the highest possible volume fraction of the par-
ticles?

7.7 Assume circular cross-section fibers of equal radius are placed in
a matrix. If all the fibers are aligned in the same direction, what
is the highest possible fiber volume fraction?

7.8 Show that

�1 �1[I � S M(L � L)] � (L � H ) (L � H ),r r r r r

�1 �1 �1 �1[M � S (M � M)] M � (M � H ) (M � H ),r r r r r r

where � ( � I) is the Hill constraint tensor (4.5.14).�1H L Sr r

7.9 Prove
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�1 �1L [I � S M(L � L)] � [M � S (M � M)] ,r r r r r r

�1 �1M [M � S (M � M)] � [I � S M(L � L)] .r r r r r r
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8
DETERMINATION OF

EFFECTIVE MODULI—
MULTIINCLUSION

APPROACHES

The methods discussed in the previous chapter are all based on a single-
inclusion idea. In this chapter, we will introduce methods of determin-
ing the effective properties based on multiple inclusions. This includes
coated inclusions.

8.1 COMPOSITE-SPHERE MODEL

The composite-sphere model was first introduced by Hashin (1962). It
mainly applies to particulate-reinforced composites. This model pos-
tulates that a composite is made of an assembly of composite spheres
of various sizes. Each composite sphere has a core of radius a com-
prised of the particle material with stiffness tensor L1 and a shell of
thickness b � a comprised of the matrix material with stiffness tensor
L0. Regardless the size of the composite sphere, the ratio of a /b for
all spheres in composite is such that the volume fraction of the particle
in each composite sphere is that of the particle volume fraction c1 of
the entire composite, that is, c1 � (a /b)3. The size distribution of the
composite spheres must be such that the entire space of the composite
is fully occupied by the composite spheres. This requires the presence
of composite spheres of infinitely small sizes; see Figure 8.1. Clearly,
such a model may not be appropriate for a composite with uniform
size particles. However, the microstructure so constructed enables us
to find an exact solution for the effective bulk modulus.

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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Figure 8.1 Composite-sphere model.

Let us consider first the effective bulk modulus of a typical sphere,
for example, the r th composite sphere. This can be easily obtained by
solving a spherically symmetric deformation problem; see Problem 8.1:

c (K � K )(3K � 4� )1 1 0 0 0K � K � , (8.1.1)r 0 3K � 4� � 3(1 � c )(K � K )0 0 1 1 0

where c1 � (a /b)3 is the volume fraction of the particle material. It is
interesting to note that this happens to be the Mori–Tanaka estimate
of the effective bulk modulus of a particulate-reinforced composite; see
Example 7.2.

Although (8.1.1) is for the r th composite sphere, it also applies to
the entire representative volume element of the composite. To prove
this, let the entire representative volume element be subjected to a
hydrostatic pressure p, that is, the stress everywhere in the represen-
tative volume element of the composite is given by

� � p� . (8.1.2)ij ij

The corresponding complimentary energy density can then be written
as

21 p p
� [� ] � � � � � � . (8.1.3)c ij ij ij ii2 2 2K

where effective bulk modulus of the composite.K
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On the other hand, we also know that (8.1.2) is also a statically
admissible stress field. Therefore, it follows from the minimum com-
plimentary energy theorem (see Section 6.1) that

2 2p p
� � [� ] � � [�̂ ] � , (8.1.4)c ij c ij2K 2Kr

that is,

1 1
� . (8.1.5)

K Kr

Similarly, if we assume that the representative volume element of the
composite is subjected to displacement boundary conditions so that the
strain everywhere in the representative volume element is given by �ij

� �0�ij, then the use of the minimum potential energy theorem leads
to

K � K . (8.1.6)r

Combining (8.1.5) and (8.1.6) yields the desired relationship:

c (K � K )(3K � 4� )1 1 0 0 0K � K � K � . (8.1.7)r 0 3K � 4� � (1 � c )(K � K )0 0 1 1 0

This equality can also be understood as follows. If the composite sphere
is in a state of pure radial compression (dilatation), it can be substituted
with a sphere of equivalent homogeneous material without perturbing
the state of stress in its surroundings. Since the substitution can be
performed on all composite spheres in the composite, and each sphere
has the same c1 � (a /b)3, the effective bulk modulus of the entire
composite should also be given by that of each individual composite
sphere.

Unlike the effective bulk modulus, the effective shear modulus is
rather difficult to estimate for the composite sphere model. This is due
to the fact that a composite sphere subjected to shear deformation does
not behave as a homogeneous sphere. Hence, the substitution scheme
is not valid.

The composite sphere model was extended by Hashin and Rosen
(1964) to the case of infinitely long cylinders imbedded in an isotropic
matrix. Later, Hill (1964) and Hashin (1966) used the composite-sphere
model to determine the effective modulus of fiber-reinforced composite
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Figure 8.2 Two-phase composite-cylinder model.

materials; see Figure 8.2. They were able to find the exact solutions to
four of the five elastic moduli (Christensen and Lo, 1979):

Longitudinal Young’s modulus EL:

E � c E � c EL ƒ ƒ m m
24c c (v � v ) �ƒ m ƒ m m

� ,
1 � 3c � /(3K � � ) � 3c � /(3K � � )ƒ m m m m m ƒ ƒ

(8.1.8)

Transverse bulk modulus KT:

�mK � K �T m 3
cƒ

� ,
3/(3K � � � 3K � � ) � 3c /(3K � 4� )ƒ ƒ m m ƒ m m

(8.1.9)

Longitudinal shear modulus �L:

(c � � c � � � )�ƒ ƒ m m ƒ m
� � , (8.1.10)L c � � c � � �m ƒ ƒ m m

Longitudinal Poisson’s ratio vLT:

v � c v � c vLT ƒ ƒ m m

3c c (v � v )� [c � /(3K � � ) � c � /(3K � � )]ƒ m ƒ m m ƒ m m m m m ƒ ƒ
� ,

1 � 3c � /(3K � � ) � 3c � /(3K �� )ƒ m m m m m ƒ ƒ

(8.1.11)
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Figure 8.3 Three-phase model.

where Kƒ, �ƒ, and Km, �m are the bulk and shear moduli of the
fiber and the matrix, respectively.

The remaining modulus, the transverse shear modulus, cannot be
obtained exactly using the two-phase composite-sphere model. It will
be obtained in the next section using the three-phase model.

8.2 THREE-PHASE MODEL

The three-phase model or generalized self-consistent model (Christen-
sen and Lo, 1979) is an extension of the composite-sphere model. As
in the composite-sphere model, the three-phase model assumes that
each particle of radius a is surrounded by a shell of matrix material
with thickness b � a, so that the particle volume fraction is given by
c1 � (a /b)3. Next, instead of using such composite spheres to fill in
the entire representative volume element of the composite as in the
composite-sphere model, the three-phase model assumes that the com-
posite sphere is imbedded in an effective medium whose properties are
yet to be determined; see Figure 8.3. This is very similar to the self-
consistent method discussed in Sections 7.4 and 7.5; thus the name
generalized self-consistent method. The reason it is called generalized
is that in the three-phase model, each particle is in contact with or
surrounded by the actual matrix material, while in the conventional
self-consistent methods discussed in Sections 7.4 and 7.5, the particles
are in indirect contact with the effective medium instead of the actual
matrix.
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Figure 8.4 Normalized effective bulk modulus (void/glass) with vM � 0.193.

It turns out that the effective bulk modulus of a three-phase com-
posite sphere is also given by (8.1.1); see Problem 8.2. Following the
similar argument used to arrive at (8.1.7), one can also show that the
effective bulk modulus of the representative volume element of a com-
posite coincides with the effective bulk modulus of the three-phase
composite sphere, that is,

c (K � K )(3K � 4� )1 1 0 0 0K � K � K � . (8.2.1)r 0 3K � 4� � 3(1 � c )(K � K )0 0 1 1 0

Figure 8.4 shows the comparison of effective bulk modulus obtained
experimentally, and predicted by the three-phase model and the self-
consistent model, for a polymer matrix with voids. The data are nor-
malized by the matrix bulk modulus. The Poisson ratio of the matrix
is 0.193. The experimental data are from Walsh et al. (1965). It is seen
that the conventional self-consistent method underestimates the exper-
imental results. As discussed in Section 7.7, the self-consistent method
yields no physically admissible solution for void volume fraction above
0.5. The three-phase model, on the other hand, provides solutions for
the entire range of void volume fraction and the results are in fairly
good agreement with the experimental data, even when the volume
fraction of voids is large.

Unlike the effective bulk modulus, obtaining the effective shear mod-
ulus is rather complicated. It involves solving the shear deformation of
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Figure 8.5 Normalized effective shear modulus for spherical model with �1 /�0 �
135.14, v1 � 0.20, and v0 � 0.35 (boron/epoxy composite).

a three-phase composite sphere. Detailed description of the solution
procedure is given in Appendix 8.A. The solution can be written for-
mally as

2�B � �B � AC�
� , (8.2.2)

� A0

where the constants A, B, and C are given in Appendix 8.A.
Presented in Figure 8.5 are the effective modulus estimated by the

three-phase model and the Hashin–Shtrikman bounds (Hashin and
Shtrikman, 1963, Hashin, 1966; Walpole, 1966). The material param-
eters used in this comparison are �1/�0 � 135.14, v1 � 0.20, and v0

� 0.35. It is seen from Figure 8.5 that the effective shear modulus from
the three-phase model is bounded by the Hashin–Shtrikman lower and
upper bounds.

The three-phase model has also been applied to fiber-reinforced com-
posite materials (Christensen and Lo, 1979) for obtaining the effective
transverse shear modulus. Again, the solution procedure is rather com-
plicated. The solution can be written formally as

2�B � �B � AC�T � , (8.2.3)
� Am

where the constants A, B, and C are given in Appendix 8.B.
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Figure 8.6 Decomposition of four-phase model: (a) four, (b) three, and (c) two
phases.

8.3 FOUR-PHASE MODEL

The four-phase model was developed in order to take into account more
complex heterogeneities found in advanced composite materials. In the
four-phase model, an interphase is introduced between the inhomoge-
neity and the surrounding matrix. This enables the modeling of com-
posites with coated fibers or particles. This model is very commonly
used in civil engineering applications (e.g., Li et al., 1999; Hashin and
Monteiro 2003; Heukamp et al., 2004). Bardella et al. (2002) have also
used the four-phase model to estimate the effective behavior of syn-
thetic foam, which are materials composed of a polymer matrix rein-
forced with hollow glass inclusions and isolated porosities. The
four-phase model can be applied in different ways. Some treat the four
phases in a single formulation, while others split them into a three-
phase model and a composite-sphere model. This later approach was
taken by Li et al. (1999) to evaluate the effective elastic properties of
an isotropic elastic medium. Their model was divided into two parts;
one part corresponds to the three-phase model of Christensen and Lo
(1979); the other part corresponds to the two-phase composite-sphere
model of Hashin (1962); see Figure 8.6.

Note that the problem shown in Figure 8.6(b) is equivalent to the
three-phase model. Therefore, the corresponding effective bulk modu-
lus is given by (8.2.1):

3 3(K � K )(3K � 4� )(b /c )e 0 0 0K � K � , (8.3.1)0 3 33K � 4� � 3(K � K )(1 � b /c )0 0 e 0
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Figure 8.7 Multicoated inclusion schematic.

where K0 and �0 are, respectively, the bulk and shear moduli of the
matrix, and Ke is the effective bulk modulus of the coated inhomoge-
neity, which can be obtained by solving the problem depicted in Figure
8.6(a):

3 3(K � K )(3K � 4� )(a /b )1 c c cK � K � , (8.3.2)e c 3 33K � 4� � 3(K � K )(1 � a /b )c c 1 c

where Kc and �c are the bulk and shear moduli of the coating layer,
respectively, and K1 is the bulk modulus of the inhomogeneity. Sub-
stitution of (8.3.2) into (8.3.1) yields the effective bulk modulus of the
representative volume element of the composite.

It is interesting to note that the effective bulk modulus depends not
only on the elastic properties of the inhomogeneity and the matrix but
also on the dimensions of the inhomogeneity and its coating material.

8.4 MULTICOATED INCLUSION PROBLEM

The ideas of the two-phase and three-phase models can be extended to
develop the multiphase model. In the multiphase model, it is assumed
that a spherical inhomogeneity comprised of isotropic material is
coated with N layers of different isotropic materials. The interfaces
between the inhomogeneity and the coating and between the coatings
are all assumed perfect.

To obtain the effective bulk modulus, we subject the multicoated
composite to pure dilatational deformation. It follows from the deri-
vation in the previous sections that the effective modulus can be written
as Herve and Zaoui (1993):
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3 3(R /R )(K � K )(3K � 4� )n�1 n n�1 n n nK � K � , n � 2,n n 3 33K � 4� � 3(1 � R /R )(K � K )n n n�1 n n�1 n

(8.4.1)

where Rn and Rn�1 are, respectively, the radii of phase n and (n � 1),
Kn and �n are, respectively, the bulk and shear moduli of phase n, and

is the effective bulk modulus of the (n � 1)-coated inclusion. IfKn�1

we define � K1 and � (8.4.1) provides a recursive relationshipK K K,1 N

to compute the effective bulk modulus.
For n � 2, the effective bulk modulus reduces to that of the two-

phase composite sphere model:

c (K � K )(3K � 4� )2 1 2 2 2K � K � , (8.4.2)2 3K � 4� � 3(1 � c )(K � K )2 2 2 1 2

where c � / gives the volume fraction of the inhomogeneity, and3 3R R1 2

the subscripts 1 and 2 refer to the inhomogeneity and the coating,
respectively.

For n � 3, the effective bulk modulus can be expressed as

3 3(R /R )(K � K )(3K � 4� )2 3 2 3 3 3K � K � , (8.4.3)3 3 33K � 4� � 3(1 � R /R )(K � K )3 3 2 3 2 3

where

3 3(R /R )(K � K )(3K � 4� )1 2 1 2 2 2K � K � . (8.4.4)2 2 3 33K � 4� � 3(1 � R /R )(K � K )2 2 1 2 1 2

Shown in Figure 8.8 are the prediction of the effective bulk modulus
by the multicoated inclusion method. The data are normalized by the
matrix’s bulk modulus, K3. The parameter � � K2/K3 is the ratio of
the bulk moduli of the coating and the matrix. The Poisson ratios of
the particle, matrix, and coating are all set to be 0.3 (v1 � v2 � v3 �
0.3). The ratio of the bulk modulus of particle and of matrix is set to
6 (K1/K3 � 6), and the volume fraction of the particle with coating is
c1 � c2 � 0.2.

It is seen that when � � 1 the interface is more rigid than the matrix.
The case � � 6 corresponds to a simply coated inclusion (Christensen
and Lo, 1979). The same remark stands for all values of � when the
volume fraction of coating is in the neighborhood 0.2.
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The effective shear modulus predicted by the multiphase model is
given by

2�B � �B � 4AC�
� , (8.4.5)

� 2AN

where the constants A, B, and C are given in Appendix 8.C.

PROBLEMS

8.1 Consider a composite-sphere consists of a core of radius a and a
shell of thickness b � a surrounding the core; see Figure 8.9. Let
both the core and shell be made of isotropic elastic material with
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Figure 8.10

moduli K0, �0 and K1, �1, respectively. Please find the effective
bulk modulus of the composite sphere.

8.2 Consider a three-phase concentric sphere as shown in Figure 8.10.
Please find the effective bulk modulus of the composite sphere.

APPENDIX 8.A

To derive (8.2.2), the elasticity problem depicted in Figure 8.3 needs
to be solved under simple shear deformation. This can be carried out
by writing the displacement fields in a spherical coordinate system in
each of the three regions: the inhomogeneity (r � a), the matrix (a �
r � b), and the effective medium (b � r). The following equation can
then be derived after making use of the equilibrium equations and the
continuity conditions at the interfaces between the different regions:

2
� �

A � 2B � C � 0, (8.A.1)� � � �� �0 0

where

� �1 110 /3 7 /3A � 8 � 1 (4 � 5v )	 c � 2 63 � 1 	 � 2	 	 c� � � � � �0 1 2 1 3� �0 0

� �1 15 /3 2� 252 � 1 	 c � 50 � 1 (7 � 12v � 8v )	 c� � � �2 0 0 2� �0 0

� 4(7 � 10v )	 	 ,0 2 3
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�1 10 /3B � �2 � 1 (4 � 5v )	 c� � 0 1�0

� �1 17 /3 5 /3� 2 63 � 1 	 � 2	 	 c � 252 � 1 	 c� � � � � �2 1 3 2� �0 0

�1� 75 � 1 (3 � v )v 	 c � 3(15v � 7)	 	 ,� � 0 0 2 0 2 3�0

� �1 110 /3 7 /3C � 4 � 1 (5v � 7)	 c � 2 63 � 1 	 � 2	 	 c� � � � � �0 1 2 1 3� �0 0

� �1 15 /3 2� 252 � 1 	 c � 25 � 1 (v � 7)	 c� � � �2 0 2� �0 0

� (7 � 5v )	 	 ,0 2 3

with

� �1 1	 � � 1 (49 � 50v v ) � 35 (v � 2v ) � 35(2v � v ),� � � �1 1 0 1 0 1 0� �0 0

� �1 1	 � 5v � 8 � 7 � 4 ,� � � �2 1 � �0 0

�1	 � (8 � 10v ) � (7 � 5v ),� �3 0 0�0

where c is the volume fraction of the particles, that is, c � (a /b)3.

APPENDIX 8.B

Detailed derivation of the three-phase composite cylinder model can be
found in Christensen and Lo (1979). The results are list below for the
effective transverse shear modulus.
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2
� �T TA � 2B � C � 0, (8.B.1)� � � �� �m m

where

� �ƒ ƒ2A � 3c(1 � c) � 1 � 	� �� �ƒ� �m m

� �ƒ ƒ 3� 	 � 	 	 � 	 � 	 c� � � �m ƒ m m ƒ� �m m

� �ƒ ƒ
� c	 � 1 � 	 � 1 , (8.B.2)� � � � ��m m� �m m

� �ƒ ƒ2B � �3c(1 � c) � 1 � 	� �� �ƒ� �m m

� �1 ƒ ƒ
� 	 � 1 � � 1 c� � � �m2 � �m m

� �ƒ ƒ 3� (	 � 1) � 	 � 2 	 � 	 c� � � � � �m ƒ m ƒ� �m m

� � �c ƒ ƒ ƒ 3� (	 � 1) � 1 	 � 	 � � 1 c ,� �� � � �m m ƒ2 � � �m m m

(8.B.3)

� �ƒ ƒ2C � 3c(1 � c) � 1 � 	� �� �ƒ� �m m

� �ƒ ƒ 3� � 	 � 	 � 	 c� � � �ƒ m ƒ� �m m

� �ƒ ƒ
� 	 � 1 � � 1 c , (8.B.4)� � � �m� �m m

and
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3a
c � , 	 � 3 � 4v , 	 � 3 � 4v . (8.B.5)� � m m ƒ ƒb

APPENDIX 8.C

The constants in (8.4.5) are given by

10 7 2A � 4R (1 � 2v )(7 � 10v )Z � 20R (7 � 12v � 8v )Zn n n 12 n n n 42
5 3 2� 12R (1 � 2v )(Z � 7Z ) � 20R (1 � 2v ) Zn n 14 23 n n 13

� 16(4 � 5v )(1 � 2v )Z ,n n 43

10 7B � 4R (1 � 2v )(15v � 7)Z � 60R (v � 3)v Zn n n 12 n n n 42
5 3 2� 24R (1 � 2v )(Z � 7Z ) � 40R (1 � 2v ) Zn n 14 23 n n 13

� 8(1 � 5v )(1 � 2v )Z ,n n 43

10 7 2C � �R (1 � 2v )(7 � 5v )Z � 10R (7 � v )Zn n n 12 n n 42
5 3 2� 12R (1 � 2v )(Z � 7Z ) � 20R (1 � 2v ) Zn n 14 23 n n 13

� 8(1 � 5v )(1 � 2v )Z ,n n 43

where

(n�1) (n�1) (n�1) (n�1)Z � P P � P P with 
 � [1,4] and � � [1,4],
� 
1 �2 �1 
2
n

(n) ( j)P � M .�
j�1

2c R (3b � 7c )k k k k

3 5(1 � 2v )k

(1 � 2v )bk�1 k0
1 7(1 � 2v )k(k)M � 5 7R 
 �R (2
 � 147
 )5(1 � v ) k k k k kk�1

2 70(1 � 2v )k
5�5 7(1 � 2v )
 Rk�1 k k3(1 � 2v )
 Rk�1 k k6 2(1 � 2v )k
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�12
 4(ƒ � 27
 )k k k
5 3R 15(1 � 2v )Rk k k

�20(1 � 2v )
 �12
 (1 � 2v )k�1 k k k�1
77R 7(1 � 2v)Rk . . . ,2d R (105(1 � v ) � 12
 (7 � 10v ) � 7e )k k k�1 k k k

7 35(1 � 2v )k

e (1 � 2v )k k

3(1 � 2v )k

with

�k
 � (7 � 5v )(7 � 10v ) � (7 � 10v )(7 � 5v ),� �k k k�1 k k�1�k�1

�kb � 4(7 � 10v ) � (7 � 5v ),� �k k k�k�1

�kc � (7 � 5v ) � 2 (4 � 5v ),� �k k�1 k�1�k�1

�kd � (7 � 5v ) � 4 (7 � 10v ),� �k k�1 k�1�k�1

�ke � 2(4 � 5v ) � (7 � 5v ),� �k k k�k�1

�kƒ � (4 � 5v )(7 � 5v ) � (4 � 5v )(7 � 5v ),� �k k k�1 k�1 k�k�1

�k
 � � 1.k �k�1
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9
EFFECTIVE PROPERTIES
OF FIBER-REINFORCED

COMPOSITE LAMINATES

A fiber-reinforced composite laminate is a special kind of heteroge-
neous material. It typically consists of multiple layers of plies, each
ply is thin sheet of matrix material reinforced by unidirectional fibers.
Glass fiber- and graphite fiber-reinforced epoxy matrix composites are
the most commonly used composite laminates. In this chapter, we will
apply some of the theories developed in previous chapters to determine
the effective properties for fiber-reinforced composite laminates.

9.1 UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES

Consider a matrix material reinforced by circular cross-section fibers
all aligned in the x1 direction, as schematically shown in Figure 9.1.
Let the volume fraction of the fiber be cƒ and volume fraction of the
matrix be cm. Obviously, we have

c � c � 1. (9.1.1)m ƒ

We further assume that both the fiber and the matrix are isotropic, and
their elastic properties are defined by the Young’s modulus Eƒ, Em and
Poisson’s ratio �ƒ, �m, respectively.

Because of the cylindrical nature of the composite, the effective elas-
tic properties are transversely isotropic. In the Voigt notation, this can
be written as

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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x1

x2

x3

Figure 9.1 Unidirectional fiber-reinforced composite.

1x

1x

1̂x2x̂

θ

Figure 9.2 Fibers not aligned with coordinate axis.

C C C 0 0 011 12 12

C C C 0 0 0 �� 12 22 23 1111

�� 2222 C C C 0 0 012 23 22 �� 3333 � (9.1.2)C � C22 23� 2�23 230 0 0 0 0
2� 2�� � � �13 13� �� 2�0 0 0 0 C 012 1266

0 0 0 0 0 C66

where Cij are the effective Voigt elastic constants of the unidirectional
fiber-reinforced composite. For convenience and without causing any
confusion, we have omitted the overbar for the effective Voigt elastic
constants, which are related to the effective elasticity tensor Lijkl

through the relationship described by Table 2.1.
Equation (9.1.2) is written in a coordinate system where the x1 axis

is in the direction of the fibers. In the coordinate system shown inx̂i

Figure 9.2, where the axis forms an angle � from the fiber direction,x̂1

the expressions for the components of the Voigt elastic matrix areĈij

different. They are related to Cij through a coordinate rotation; see
(2.4.13):
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4 2 2 4Ĉ � Q m � 2(C � 2C )m n � C n ,11 11 12 66 22

4 2 2 4Ĉ � C n � 2(C � 2C )m n � C m ,22 11 12 66 22

Ĉ � C ,33 33

2 2 4 4Ĉ � (C � C � 4C )m n � C (m � n ),12 11 22 66 12

3 2Ĉ � C m � C n ,13 13 23

3 2Ĉ � C n � C m ,23 13 23

Ĉ � (C � C )mn,36 23 13

3 2Ĉ � C m � C n ,44 44 55

3 2Ĉ � C m � C n ,55 55 44

2 2 2 2 2 2 2Ĉ � (C � C � 2C )m n � 2C mn(m � n ) � C (m � n ) ,66 11 22 12 22 66

Ĉ � (C � C )mn,45 44 55

3 3Ĉ � (C � C � 2C )mn � (C � C � 2C )m n,16 22 12 66 11 12 66

3 3Ĉ � (C � C � 2C )m n � (C � C � 2C )mn ,26 22 12 66 11 12 66

(9.1.3)

in which m � cos �, n � sin �. Therefore, in a coordinate system not
aligned with the fiber, the Voigt elasticity matrix has the following
form:

ˆ ˆ ˆ ˆC C C 0 0 C11 12 13 16
ˆ ˆ ˆ ˆC C C 0 0 C12 22 23 26
ˆ ˆ ˆ ˆC C C 0 0 C13 23 33 36Ĉ � . (9.1.4)ˆ ˆ0 0 0 C C 044 45

ˆ ˆ0 0 0 C C 0� �45 55
ˆ ˆ ˆ ˆC C C 0 0 C16 26 36 66

Now, let us go back to (9.1.2). Taking the inverse of the elasticity tensor
yields

� S S S 0 0 0 �11 11 12 12 11

� S S S 0 0 0 �22 12 22 23 22

� S S S 0 0 0 �33 12 23 22 33� , (9.1.5)2� 0 0 0 S 0 0 �23 44 23

2� 0 0 0 0 S 0 �� � � �� �13 66 13

2� 0 0 0 0 0 S �12 66 12
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where

C � C22 23S � , (9.1.6)11 2�2C � C (C � C )12 11 22 23

C12S � , (9.1.7)12 22C � C (C � C )12 11 22 23

2C � C C12 11 22S � , (9.1.8)22 2(C � C )[2C � C (C � C )]22 23 12 11 22 23

2C � C C12 11 23S � , (9.1.9)23 2(C � C )[�2C � C (C � C )]22 23 12 11 22 23

2 1
S � 2(S � S ) � , S � (9.1.10)44 22 23 66C � C C22 23 66

are the five elastic compliance constants. They can be related to the
engineering constants easily as follows.

Under a uniaxial loading in the x1 direction, we have

� � S � , � � � � S � . (9.1.11)11 11 11 22 33 12 11

The first of (9.1.11) defines the longitudinal Young modulus in the fiber
direction:

2� 1 2C11 12E � � � C � . (9.1.12)L 11� S C � C11 11 22 23

The contraction in the transverse direction that accompanies the uni-
axial stress in the fiber direction defines the corresponding Poisson ratio
through

� � S C22 33 12 12� � � � � � � � . (9.1.13)LT � � S C � C11 11 11 22 23

Similarly, when the uniaxial stress is in the x2 direction (transverse
to the fiber), we have
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� � S � , � � S � , � � S � . (9.1.14)11 12 22 22 22 22 33 23 22

The second of (9.1.14) defines the Young modulus in the transverse
direction:

2 2� 1 C (C � 2C ) � C C22 12 22 23 11 23E � � � C � . (9.1.15)T 22 2� S C C � C22 22 11 22 12

In this case, the contraction in the fiber direction that accompanies the
uniaxial stress in the transverse direction defines the corresponding
Poisson ratio through

� S C (C � C )11 12 12 22 23� � � � � � . (9.1.16)TL 2� S C C � C22 22 11 22 12

Analogously, the contraction in the other transverse direction that ac-
companies the uniaxial stress in one transverse direction defines an-
other Poisson ratio,

2� S C C � C33 23 11 23 12� � � � � � . (9.1.17)TT 2� S C C � C22 22 11 22 12

As a convention in labeling the Poisson ratios in this text, the first
subscript indicates the direction of the uniaxial stress, and the second
subscript indicates the direction normal to the loading direction in
which the contraction takes place. It is clear from the above or simply
from the material asymmetry that �TL � �LT. However, it can be easily
verified by direction substitution of their definitions that

� �LT TL� . (9.1.18)
E EL T

If a simple shear �12 � �21 is applied, we will have 2�12 � S66�12.
Thus the longitudinal shear modulus is defined as

� 112� � � � C . (9.1.19)L 662� S12 66
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Similarly, when the material is subjected to the simple shear �23, the
corresponding shear strain is 2�23 � S44�23. Thus, the corresponding
shear modulus is defined by

� 1 123� � � � (C � C ). (9.1.20)T 22 232� S 223 44

It is clear from the above definitions that �L is the shear modulus when
the fibers are shifted relative to each other in the longitudinal direction,
while �T is the shear modulus when the fibers are shifted relative to
each other in the transverse directions.

Finally, a plane strain bulk modulus can be introduced by applying
biaxial stresses �22 � �33 � �. Since the elastic properties are isotropic
in the x2x3 plane, the corresponding strain field is given by �22 � �33

� �. We thus have

� � 2K �, (9.1.21)T

where KT is the plane strain bulk modulus within the isotropic plane
given by

1–K � (C � C ). (9.1.22)T 2 22 23

So far, we have introduced two Young moduli, two shear moduli,
one bulk modulus, and three Poisson ratios. Not all the eight engi-
neering constants are independent. Since they are defined based on the
five stiffness constants Cij as shown in (9.1.2), it can be easily con-
cluded that there are only five independent engineering constants. In
addition to (9.1.18), the following relationships among these engineer-
ing constants can also be verified by direct substitution:

4� KT TE � , (9.1.23)T 2K � � � 4� � K /ET T LT T T L

2K � � � 4� � K /ET T LT T T L� � , (9.1.24)TT 2K � � � 4� � K /ET T LT T T L

1 E 1 E ET T L2� � �� � � . (9.1.25)� �LT TT 4 K 4 � ET T T
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Making use of the definitions of the engineering elastic constants,
the Voigt elasticity matrix for transversely isotropic solids with the x1

direction being the axis of symmetry can be rewritten as

2E � 4� K 2� K 2� K 0 0 0L LT T LT T LT T

2� K K � � K � � 0 0 0LT T T T T T

2� K K � � K � � 0 0 0LT T T T T TC � . (9.1.26)0 0 0 � 0 0T

0 0 0 0 � 0� �L

0 0 0 0 0 �L

It is interesting to investigate the bounds on the various Poisson
ratios. For example, If a material has a very large transverse shear
modulus, that is, �T → �, then it follows from (9.1.24) that �TT → �1.
On the other hand, if a material has very large plane strain bulk mod-
ulus and very large longitudinal Young’s modulus, that is, KT → � and
EL → �, then it follows from (9.1.24) that �TT → 1. Therefore, we can
conclude that

�1 � � � 1. (9.1.27)TT

Next, consider (9.1.23). Solving for gives2�LT

E E 1 2L L2� � � � . (9.1.28)� �LT E 4 K �T T T

Since the second term on the right-hand side of (9.1.28) is positive, we
arrive at

EL�� � � . (9.1.29)LT �ET

Making use of (9.1.18) also yields

ET�� � � . (9.1.30)TL �EL

Let us now consider how the effective properties Cij are related to
the elastic properties of the fiber and the matrix. Several methods can
be used for this purpose. We first consider a very simple approach.
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Recall that in Chapter 6, we discussed the Reuss lower and Voigt
upper bounds for the effective modulus of heterogeneous materials.
In what follows, we will apply these bounds to unidirectional fiber-
reinforced composite materials. Assume that both the fibers and the
matrix are isotropic and linearly elastic materials. It then follows from
(6.2.10) that the Voigt upper bound of the elasticity tensor is given by

VL � c L � c L , (9.1.31)m m ƒ ƒ

where Lƒ and Lm are the elasticity tensors of the fiber and the matrix,
respectively. In terms of the Voigt notation, (9.1.31) implies that the
nonzero components of the elasticity tensor can be written as

c E (1 � � ) c E (1 � � )ƒ ƒ ƒ m m mV V VC � C � C � � ,11 22 33 (1 � � )(1 � 2� ) (1 � � )(1 � 2� )ƒ ƒ m m

(9.1.32)

c E �ƒ ƒ ƒV V V V V VC � C � C � C � C � C �12 21 13 31 23 32 (1 � � )(1 � 2� )ƒ ƒ

c E �m m m� , (9.1.33)
(1 � � )(1 � 2� )m m

c E c Eƒ ƒ m mV V VC � C � C � � , (9.1.34)44 55 66 2(1 � � ) 2(1 �� )ƒ m

where Eƒ, �ƒ and Em, �m are the Young moldulus and the Poisson ratio
of the fiber and matrix, respectively. The corresponding upper bound
for the effective Young’s modulus is thus given by

V V2C C12 12V VE � C � � c E � c E11 ƒ ƒ m mV VC � C22 12
22c c E E (� � � )ƒ m ƒ m ƒ m

� .
c E (1 � � )(1 � 2� ) � c E (1 � � )(1 � 2� )ƒ ƒ m m m m ƒ ƒ

(9.1.35)

The corresponding upper bound for the effective Poisson’s ratio is
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V V VC (C � C )12 11 12V� � V V V VC C � C C11 11 12 12

c � E (1 � � )(1 � 2� ) � c � E (1 � � )(1 � 2� )ƒ ƒ ƒ m m m m m ƒ ƒ
� .

c E (1 � � )(1 � 2� ) � c E (1 � � )(1 � 2� )ƒ ƒ m m m m ƒ ƒ

(9.1.36)

If the Poisson ratios of the fiber and the matrix are the same, that is,
�ƒ � �m � �, we have

V VE � c E � c E , � � �. (9.1.37)ƒ ƒ m m

On the other hand, the Reuss lower bound (6.2.13) gives

R �1L � [c M � c M ] . (9.1.38)ƒ ƒ m m

In terms the Voigt notation, this means

E E [(c E (1 � � ) � c E (1 � � )]ƒ m ƒ m ƒ m ƒ mR R RC � C � C � , (9.1.39)11 22 33 D

E E [(c E � � c E � )ƒ m ƒ m ƒ m ƒ mR R R R R RC � C � C � C � C � C � ,12 21 13 31 23 32 D

(9.1.40)

E E [(c E (1 � 2� ) � c E (1 � 2� )]ƒ m ƒ m ƒ m ƒ mR R RC � C � C � ,44 55 66 2D
(9.1.41)

where

D � [(c E (1 � � ) � c E (1 � � )]ƒ m ƒ m ƒ m

� [(c E (1 � 2� ) � c E (1 � 2� )]. (9.1.42)ƒ m ƒ m ƒ m

Following the procedures similar to (9.1.35) and (9.1.36), we obtain
the lower bounds for the effective Young modulus and the effective
Poisson ratio corresponding to (9.1.38),
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E E c � E � c � Eƒ m ƒ ƒ m m m ƒR RE � , � � . (9.1.43)
c E � c E c E � c Eƒ m m ƒ m ƒ ƒ m

Again, if the Poisson ratios of the fiber and the matrix are the same,
that is, �ƒ � �m � �, we have

E Eƒ mR RE � , � � �. (9.1.44)
c E � c Eƒ m m ƒ

It can be shown (see Problem 9.1) that the Voigt upper bound gives
a better approximation in the fiber direction, while the Reuss lower
bound gives a better approximation in the direction perpendicular
(transverse) to the fiber. Therefore, by neglecting the difference in Pois-
son’s ratio, one may take the Young modulus in the fiber direction to
be

VE � E � c E � c E , (9.1.45)L ƒ ƒ m m

and the Young modulus in the transverse direction to be

E Eƒ mE � . (9.1.46)T c E � c Eƒ m m ƒ

Equations (9.1.45) and (9.1.46) are the well-known rule of mixture
formulas used commonly in engineering practice. Based on the deri-
vations above, it is clear that these are actually the upper and lower
bounds when the Poisson ratios are the same for the matrix and the
fibers.

More accurate estimate of the unidirectional fiber-reinforced com-
posite can be obtained by using the techniques developed in Chapters
7 and 8. To this end, we first evaluate the Eshelby tensor for an infi-
nitely long cylindrical inclusion of circular cross section. It follows
from Appendix 4.B that in the limit of a2 � a3 � a and a1 → �, we
obtain the nonzero components of the Eshelby tensor:

5 � 4� 4� � 1
S � S � , S � S � , (9.1.47)2222 3333 2233 33228(1 � �) 8(1 � �)

�
S � S � , (9.1.48)2211 3311 2(1 � �)
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3 � 4�
S � S � S � S � , (9.1.49)2323 3223 2332 3232 8(1 � �)

1–S � S � S � S � S � S � S � S � .3131 1331 3113 1313 1212 2112 1221 2121 4

(9.1.50)

Making use of the Eshelby tensor in, for example, the Mori–Tanaka
estimate (7.3.8), we have the effective elasticity tensor of the unidirec-
tional fiber-reinforced composite given by

�1L � (c L � c L T )[c I � c T ] , (9.1.51)m m ƒ ƒ ƒ m ƒ ƒ

where

�1T � [I � S(M L � I)] (9.1.52)ƒ m ƒ

is the strain concentration tensor (7.2.4). In conjunction with the defi-
nitions of the engineering constants, (9.1.51) leads to

E � [�c � (1 � c)]EL m
22c(1 � c)(� � � ) �Eƒ m m

� ,
(1 � c)(1 � � )(1 � 2� ) � �(1 � � )[1 � c(1 � 2� )]ƒ ƒ m m

(9.1.53)

{(1 � c)(1 � � )(1 � 2� ) � �(1 � � )[1 � c(1 � 2� )]}Eƒ ƒ m m mK � ,T 2(1 �� )[(1 � � )(1 � 2� )(c � 1 � 2� )m ƒ ƒ m

� �(1 � c)(1 � � )(1 � 2� )]m m

(9.1.54)

[(1 � c)(1 � � ) � �(1 � � )[c � (3 � 4� )]Eƒ m m m
� � ,T 2(1 � � ){(1 � c)(1 � � )(3 � 4� )�m m m

� (1 � � )[1 � c(3 � 4� )]}ƒ m

(9.1.55)

[�(1 � c)(1 � � ) � (1 � c)(1 � � )]Em ƒ m� � , (9.1.56)L 2(1 � � )[�(1 � c)(1 � � ) � (1 � c)(1 � � )]m m ƒ
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22c�(1 � � )� � (1 � c)[(1 � � )(1 � 2� ) � �(1 � � )]�m ƒ ƒ ƒ m m� � ,LT 22c�(1 � � ) � (1 � c)[(1 � � )(1 � 2� ) � �(1 � � )]m ƒ ƒ m

(9.1.57)

where c � cƒ is the fiber volume fraction, and

Eƒ
� � .

Em

The other engineering constants can be obtained through their relation-
ships discussed earlier. For example, the transverse Young modulus ET

can be obtained from (9.1.23) based on the above equations. Unfortu-
nately, the expression for ET is extremely complex. We will not repro-
duce it here.

By neglecting the difference in Poisson’s ratio between the fiber and
the matrix, that is, �m � �ƒ � �, we have

E � [�c � (1 � c)]E , (9.1.58)L m

[1 � � � 2� � c(1 � 2�)(1 � �)]EmK � , (9.1.59)T 2(1 � �)(1 � 2�)[1 � c(� � 1) � � � 2�]

[1 � c(1 � �) � �(3 � 4�)]Em� � , (9.1.60)T 2(1 � �)[1 � (3 � 4�)(c � (1 � c)�)]

E [(1 � c) � �(1 � c)]m� � , (9.1.61)L 2(1 � �)[(1 � c) � �(1 � c)]

� � �. (9.1.62)LT

Even in this case, the expression for ET is still too long to be recorded
here. However, the following expression seems to give a pretty good
approximation for most of the materials of practical interest:

2(1 � c) � �(1 � 2c)
E � E . (9.1.63)T m�(1 � c) � (2 � c)

For the dilute case (c �� 1), the following expression for ET can be
derived:
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�EmE �T c � (1 � c)�
2 2 2c(1 � �) [1 � 2� � � � (3 � 4�)

2 3� 2�(1 � 3� � 5� � 2� ]Em� , (9.1.64)
�(1 � � � 2�)(1 � 3� � 4��)

Generally speaking, the solutions from upper and lower bounds, as
well as the ones from the Mori–Tanaka methods are approximate. Us-
ing the composite cylinder model, see Section 8.1, the exact relation-
ships between the effective engineering constants and the moduli of
the fibers and the matrix can be obtained (Christensen, 1979); see
(8.1.8)–(8.1.11). Note that the composite cylinder model does not yield
the exact solution for the transverse shear modulus �T .

In the event that �m � �ƒ � �, (8.1.8)–(8.1.11) reduce to (9.1.58)–
(9.1.62). In other words, the Mori–Tanaka estimate gives the exact
solution when �m � �ƒ � �.

9.2 EFFECTIVE PROPERTIES OF MULTILAYER COMPOSITES

In this section, we consider a fiber-reinforced composite material con-
sisting of multiple layers. Each layer is assumed to be a unidirectional
fiber-reinforced composite. The bonding between the layers is assumed
perfect, that is, the displacement and tractions across the interfaces are
continuous.

We further assume that the thickness of the layers is much greater
than the fiber diameter. As discussed in Chapter 5, the effective prop-
erties of the layered composite can be obtained through a hierarchical
approach. First, the effective properties of each layer are evaluated
based on the method discussed in the previous section. Once this is
done, the effective properties of the layered composite will be estimated
by assuming that each layer is a homogeneous, transversely isotropic
solid. In other words, the individual fibers are not explicitly accounted
for in the second level of homogenization. Instead, only the collective
effect of all the fibers in each layer is explicitly included in the effective
properties of the laminate. Therefore, when we consider the effective
properties of a multilayered composite, we may assume that each later
is homogeneous.

To facilitate the discussions below, let us first define the following:
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� � � �33 11 33 11

� � � , � � � , � � 2� , � � � .n 23 t 22 n 23 t 22� � � � � � � �� � 2� 2�13 12 13 12

(9.2.1)

For the rest of this section, the summation convention is temporarily
suspended. Sums will be explicitly indicated by the summation sign.
This way, we can rewrite Hooke’s law using the Voigt notation as

� � C � � C � , � � C � � C � , (9.2.2)n nn n nt t t tn n tt t

where

C C C C C C33 34 35 13 23 36

C � C C C , C � C C C , (9.2.3)nn 34 44 45 nt 14 24 46� � � �C C C C C C35 45 55 15 25 56

C C C C C C13 14 15 11 12 16

C � C C C , C � C C C . (9.2.4)tn 23 24 25 tt 12 22 26� � � �C C C C C C36 46 56 16 26 66

Obviously,

T T TC � (C ) , C � (C ) , C � (C ) . (9.2.5)nn nn tt tt tn nt

Also, because of the positive definiteness of the Voigt elasticity matrix,
we know that Cnn and Ctt are positive definite matrices.

Now, consider a multilayer composite consisting of N layers of ho-
mogeneous materials as shown in Figure 9.3. We assume that each
layer is homogeneous with its Voigt elastic matrix given by C(k), k �
1, 2, . . . , N. Therefore, for the kth layer, it follows from (9.2.2) that

(k) (k) (k) (k) (k) (k) (k) (k) (k) (k)� � C � � C � , � � C � � C � , (9.2.6)n nn n nt t t tn n tt t

where the superscript (k) indicates that the base letter is associated with
the kth layer. It is assumed that the representative volume element being
considered is under a uniform state of deformation, even though the
actual composite may be subjected to arbitrary loading. We further
assume that the layers are perfectly bonded together, meaning that the
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Figure 9.3 Multilayer composite.

traction and displacements are continuous across the layer interfaces.
This immediately leads to

(k) (k)� � � , � � � , for k � 1, 2, . . . , N (9.2.7)n n t t

Making use of (9.2.7) in the first of (9.2.6) yields

(k) (k) �1 (k)� � (C ) (� � C � ). (9.2.8)n nn n nt t

Taking the average of over the representative volume element leads(k)�n

to

N N N
(k) (k) �1 (k) �1 (k)� � c � � c (C ) � � c (C ) C � , (9.2.9)� � �n k n k nn n k nn nt t

k�1 k�1 k�1

where ck � hk /h is the volume fraction of the kth layer. By rearranging
the terms in (9.2.9), we have

� � C � � C � , (9.2.10)n nn n nt t

where

�1N
(k) �1C � c (C ) , (9.2.11)�	 
nn k nn

k�1
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N
(k) �1 (k)C � C c (C ) C . (9.2.12)�	 
nt nn k nn n

k�1

We next substitute (9.2.8) into the second of (9.2.6). This gives us

(k) (k) (k) �1 (k) (k)� � C (C ) (� � C � ) � C �t tn nn n nt t tt t

(k) (k) �1 (k) (k) (k) �1 (k)� C (C ) � � [C � C (C ) C2 ]� . (9.2.13)tn nn n tt tn nn nt t

Taking the average of over the representative volume element leads(k)�t

to

N N
(k) (k) (k) �1� � c � � c C (C ) �� �t k t k tn nn n

k�1 k�1

N
(k) (k) (k) �1 (k)� c [C � C (C ) C ]� . (9.2.14)� k tt tn nn nt t

k�1

Substitution of (9.2.10) into the above yields

� � C � � C � , (9.2.15)t tn n tt t

where

N
(k) (k) �1C � c C (C ) C , (9.2.16)�	 
tn k tn nn nn

k�1

N N
(k) (k) (k) �1 (k)C � c C � c C (C ) (C � C ). (9.2.17)� �tt k tt k tn nn nt nt

k�1 k�1

Clearly, and provide the complete effective Voigt elas-C , C , C , Cnn nt tn tt

tic matrix of the layered composite. Taking advantage of the symmetry
properties (9.2.5), it can be shown that

T T TC � (C ) , C � (C ) , C � (C ) .nn nn tt tt tn nt

Next, we assume that each layer is a monoclinic material with its
plane of symmetry in the x1x2 plane. In this case, the Voigt elastic
matrix has the following form:
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(k) (k) (k) (k)C 0 0 C C C33 13 23 36
(k) (k) (k) (k)C � 0 C C , C � 0 0 0 , (9.2.18)nn 44 45 nt� � � �(k) (k)0 C C 0 0 045 55

(k) (k) (k)C C C11 12 16
(k) (k) T (k) (k) (k) (k)C � (C ) , C � C C C . (9.2.19)tn nt tt 12 22 26� �(k) (k) (k)C C C16 26 66

Substituting these into (9.2.11) and (9.2.12) yields

N �1ck 0 0� (k)Ck�1 33
N N(k) (k)c C c Ck 55 k 45C � 0 �� �nn (k) (k)� �k�1 k�1

N N(k) (k)� �c C c Ck 45 k 440 �� �(k) (k)� �k�1 k�1

N ck 0 0�� �(k)Ck�1 33
N N(k) (k)1 c C 1 c Ck 44 k 45� 0 , (9.2.20)� �(k) (k)D � D �k�1 k�1

N N(k) (k)� �1 c C 1 c Ck 45 k 550 � �(k) (k)D � D �k�1 k�1

where

2N N N(k) (k) (k)c C c C c Ck 55 k 44 k 45D � � , (9.2.21)� � �	 
(k) (k) (k)� � �k�1 k�1 k�1

(k) (k) (k) (k) 2� � C C � (C ) � 0. (9.2.22)44 55 45

Next, making use of (9.2.20) in (9.2.16) yields

(k)�1 C 0 0N N 13c ck k (k)C � C 0 0 . (9.2.23)� �� �tn 23(k) (k)C C � �(k)k�1 k�133 33 C 0 036

Finally, (9.2.17) leads to
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(k) (k) (k)C C CN 11 12 16
(k) (k) (k)C � c C C C�tt k 12 22 26� �(k) (k) (k)k�1 C C C16 26 66

(k) (k) (k) (k) (k) (k)C C C C C CN 13 13 23 13 36 13ck (k) (k) (k) (k) (k) (k)� C C C C C C� 13 23 23 23 36 23(k)C � �(k) (k) (k) (k) (k) (k)k�1 33 C C C C C C13 36 23 36 36 36

�1N N Nc c cr m k� � � �� �(r) (m) (k)C C Cr�1 k�1 m�133 33 33

(m) (k) (m) (k) (m) (k)C C C C C C13 13 23 13 36 13
(m) (k) (m) (k) (m) (k)� C C C C C C . (9.2.24)13 23 23 23 36 23� �(m) (k) (m) (k) (m) (k)C C C C C C13 36 23 36 36 36

If we let be the elements of the 6 � 6 Voigt effective elastic matrixCij

results from (9.2.20), (9.2.23), and (9.2.24) can be summarized asC,
follows:

�1N N N(k) (k) (m)(k)C C c CC ci3 j3 m 3ji3 r(k)C � c C � �� � �	 � � 	 

ij k ij (k) (k) (r) (m)C C C Ck�1 r�1 m�133 33 33 33

(9.2.25)

for i, j � 1, 2, 3, 6:

N (k)c C1 k ijC � for i, j � 4, 5, (9.2.26)�ij (k)D �k�1

� 0 for i � 1, 2, 3, 6; j � 4, 5. (9.2.27)

Similarly, the compliance matrix can be partitioned as

S S S S S S33 34 35 13 23 36

S � S S S , S � S S S , (9.2.28)nn 34 44 45 nt 14 24 46� � � �S S S S S S35 45 55 15 25 56

S S S S S S13 14 15 11 12 16

S � S S S , S � S S S , (9.2.29)tn 23 24 25 tt 12 22 26� � � �S S S S S S36 46 56 16 26 66



232 EFFECTIVE PROPERTIES OF FIBER-REINFORCED COMPOSITE LAMINATES

Following the same procedure, elements of the effective compliance
matrix are given by (see Appendix 9.A)

�1S S S N11 12 16
(k) �1S � S S S � c (S ) , (9.2.30)�	 
tt 12 22 26 k tt� � k�1S S S16 26 66

S S S N13 14 15
(k) �1 (k)S � S S S � S c (S ) S , (9.2.31)�	 
tn 23 24 25 tt k tt tn� � k�1S S S36 46 56

S S S N13 23 36
(k) (k) �1S � S S S � c S (S ) S , (9.2.32)�	 
nt 14 24 46 k nt tt tt� � k�1S S S15 25 56

S S S N N33 34 35
(k) (k) (k) �1 (k)S � S S S � c S � c S (S ) (S � S ).� �nn 34 44 45 k nn k nt tt tn tn� � k�1 k�1S S S35 45 55

(9.2.33)

Example 9.1 Consider a layered material consisting of two alternat-
ing layers. The layers are identical, except that the fiber directions are
perpendicular to each other between adjacent layers. We are to find the
effective elastic constants for this layered composite.

To this end, let us denote the Voigt elasticity matrix for the layer
whose fiber direction is in the x1 direction by

C C C 0 0 011 12 12

C C C 0 0 012 22 23

C C C 0 0 012 23 22
(1)C � . (9.2.34)C � C22 230 0 0 0 0

2� �0 0 0 0 C 066

0 0 0 0 0 C66

A 90	 rotation about the x3 axis yields the Voigt elasticity matrix for
the adjacent layer:
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C C C 0 0 022 12 23

C C C 0 0 012 11 12

C C C 0 0 023 23 22
(2)C � . (9.2.35)

0 0 0 C 0 066

C � C22 23� �0 0 0 0 0
2

0 0 0 0 0 C66

Making use of these in (9.2.25)–(9.2.27) with N � 2, c1 � c2 � , we1–2
arrive at

2(C � C )C 1 2 122 23 66(k) (k) (k)� � C C � , D � � .� �44 55 2 4 C � C C22 23 66

(9.2.36)

Thus, the nonzero components of the effective Voigt elasticity matrix
of the layered composite are

21 (C � C )12 23C � C � C � C � , (9.2.37)	 
11 22 11 222 2C22

2(C � C )12 23C � C , C � C � ,33 22 12 12 4C22

C � C12 23C � C � , (9.2.38)13 23 2

2C (C � C )66 22 23C � C � , C � C . (9.2.39)44 55 66 662C � (C � C )66 22 23

Making use of (9.2.30), the in-plane Young modulus and shear modulus
can be written in terms of the engineering constants of the individual
layer:

2 2 2(E � E ) � 4E � 2EL T L TL LE � , � � � . (9.2.40)0 0 TL2(E � E )(1 � � � ) E � EL T LT TL L T
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1x

3x

2x

Figure 9.4 Thin lamina.

9.3 EFFECTIVE PROPERTIES OF A LAMINA

In the composite material literature, a lamina is a thin layer of unidi-
rectional fiber-reinforced composite material; see Figure 9.4. Because
the thickness is much smaller relative to the in-plane dimensions, the
deformation of a lamina can be approximated by a state of plane stress.
This means

� � � � � � 0. (9.3.1)13 23 33

It thus follows from Hooke’s law that

L � � L � � L � � 0. (9.3.2)13kl kl 23kl kl 33kl kl

For a lamina, the effective elasticity tensor is transversely isotropic with
the axis of symmetry being the x1 axis, as shown in Figure 9.3, the
above equation yields

L l1311 1322� � � � 0 and � � � � � � . (9.3.3)13 23 33 11 22L L3333 3333

Substituting the above into Hooke’s law again, we arrive at

L L1311 1322� � L � � � L � � , (9.3.4)� � � �11 1111 11 1122 22L L3333 3333

L L1311 1322� � L � � � L � � . (9.3.5)� � � �22 2211 11 2222 22L L3333 3333

Therefore, in the reduced form of the Voigt notation, the stress–strain
relationship for a thin lamina can be written as
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� Q Q 0 �1 11 12 1

� � Q Q 0 � , (9.3.6)2 12 22 2� � � �� �� 0 0 Q �6 66 6

where

� � � �1 11 1 11

� � � , � � � , (9.3.7)2 22 2 22� � � � � � � �� � � 2�6 12 6 12

and

C Ci3 j3Q � C � , i, j � 1, 2, 6 (9.3.8)ij ij C33

with Cij being the Voigt elastic constants of the lamina. Note that Cij

is transversely isotropic so that C63 � 0. Thus, Q66 � C66. The matrix
Q in (9.3.6) is called the reduced stiffness matrix of the lamina. The
reduced compliance matrix S (not to be confused with the Eshelby
tensor) for the lamina is obtained by inverting (9.3.6),

� S S 0 �1 11 12 1

� � S S 0 � , (9.3.9)2 12 22 2� � � �� �� 0 0 S �6 66 6

where

Q Q22 11S � , S � , (9.3.10)11 222 2Q Q � Q Q Q � Q11 22 12 11 22 12

Q 112S � � , S � . (9.3.11)12 662Q Q � Q Q11 22 12 66

The Young moduli in the fiber and transverse to the fiber directions
can thus be defined, respectively, as

2 21 Q Q � Q 1 Q Q � Q11 22 12 11 22 12E � � , E � � . (9.3.12)L TS Q S Q11 22 22 11

The shear modulus in the plane of the lamina is
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� � Q . (9.3.13)L 66

The corresponding Poisson ratios are

S Q S Q12 12 12 12� � � � , � � � � . (9.3.14)LT TLS Q S Q11 22 22 11

Note that �LT represents the contraction in the transverse direction when
the lamina is stretched in the fiber direction, while �TL represents the
contraction in the fiber direction when the lamina is stretched in the
transverse direction. These are exactly the same engineering elastic
constants as introduced in Section 9.1. As discussed in Section 9.1,
only four of these engineering elastic constants are independent be-
cause

2Q (Q Q � Q )12 11 22 12� E � � � E . (9.3.15)LT T TL LQ Q11 22

Therefore, (9.3.12)–(9.3.14) can be inverted to obtain

E EL TQ � , Q � , Q � � , (9.3.16)11 22 66 L1 � � � 1 � � �LT TL LT TL

� E � ELT T TL LQ � � . (9.3.17)12 1 � � � 1 � � �LT TL LT TL

The corresponding components of the reduced compliance tensor are

1 1 1
S � , S � , S � , (9.3.18)11 22 66E E �L T L

� �LT TLS � � � � . (9.3.19)12 E EL T

Equations (9.3.6) and (9.3.9) are written in a coordinate system
where the x1 axis is in the direction of the fibers. In the coordinate
system shown in Figure 9.2, where the axis forms an angle � fromx̂ x̂i 1

the fiber direction, the stress–strain relationship becomes
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ˆ ˆ ˆ� Q Q Q �x 11 12 13 x
ˆ ˆ ˆ� � Q Q Q � , (9.3.20)y 12 22 23 y� � � �� �ˆ ˆ ˆ� Q Q Q 
xy 13 23 66 xy

where

4 2 2 4Q̂ � Q m � 2(Q � 2Q )m n � Q n , (9.3.21)11 11 12 66 22

4 2 2 4Q̂ � Q n � 2(Q � 2Q )m n � Q m , (9.3.22)22 11 12 66 22

2 2 4 4Q̂ � (Q � Q � 4Q )m n � Q (m � n ), (9.2.23)12 11 22 66 12

3 3Q̂ � (Q � Q � 2Q )m n � (Q � Q � 2Q )mn , (9.3.24)16 11 12 66 12 22 66

3 3Q̂ � (Q � Q � 2Q )mn � (Q � Q � 2Q )m n, (9.3.25)26 11 12 66 12 22 66

2 2 4 4Q̂ � (Q � Q � 2Q � 2Q )m n � Q (m � n ), (9.3.26)66 11 22 12 66 66

in which m � cos �, n � sin �.
Since the lamina is very thin, its deformation can be represented by

the deformation of its midplane using the Kirchhoff assumption, that
is, a cross-section plane perpendicular to the midplane prior to the
deformation remains perpendicular to the midplane after deformation.
Mathematically, this means

2 2�u � w �� � w0 0 0 0� � � z , � � � z , (9.3.27)x y2 2�x �x �y �y

2�u �� � w0 0 0
 � 2� � � � 2z , (9.3.28)xy xy �y �x �x�y

where u0 and �0 are the in-plane displacement of the midplane and w0

is the out-of-plane displacement (deflection) of the midplane of the
lamina. The coordinate z indicates the location relative to the middle
plane.

Substitution of (9.3.27) and (9.3.28) into (9.3.20) yields
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0ˆ ˆ ˆ ˆ ˆ ˆ� Q Q Q � Q Q Q kx 11 12 13 x 11 12 13 x
0ˆ ˆ ˆ ˆ ˆ ˆ� � Q Q Q � � z Q Q Q k ,y 12 22 23 y 12 22 23 y� � � �� � � �� �0ˆ ˆ ˆ ˆ ˆ ˆ� Q Q Q 
 Q Q Q kxy 13 23 66 xy 13 23 66 xy

(9.3.29)

where

�u0

�x
0�x ��00� � (9.3.30)y �y� �0
xy � ��u ��0 0�

�y �x

is the midplane strain and

2� w0
2�y

k 2x � w0k � � (9.3.31)y 2�y� �kxy
2� �� w02

�x�y

is the midplane curvature.

9.4 EFFECTIVE PROPERTIES OF A LAMINATED
COMPOSITE PLATE

Composite laminates in engineering applications typically consist of
multiple unidirectional fiber-reinforced laminas (or plies) stacked up
together. The stacking sequence of a laminate can be designated by a
standard notation. For example, [02/902/�453/453]s is used to desig-
nate a laminate that starting from the bottom, that is, at z � �h /2 (h
is the total thickness of the laminate), there are two plies at 0	 orien-
tation (� � 0	), two plies at 90	 orientation, followed by three plies at
�45	, and last three plies at �45	 orientation. The subscript s indicates
that the laminate is symmetrical with respect to the midplane (z � 0),
that is, the top half of the laminate is a mirror image of the bottom
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half. For nonsymmetrical laminates, the total stacking sequence needs
to be explicitly indicated. In this case, a subscript T will be used.

For most engineering laminates of practical interest, the thickness of
each ply is in the order of millimeters. The diameter of the fiber is
typically in the order of micrometers. To bridge these two length scales,
we will take a hierarchical approach in order to estimate the effective
properties of the laminate. First, the effective properties of the unidi-
rectional ply are evaluated based on the method discussed in the pre-
vious chapter. Once this is done, the effective properties of the laminate
will be estimated by assuming each ply as a homogeneous, transversely
isotropic layer.

Now consider a generic laminate shown in Figure 9.3. We assume
that the bonding between the plies is perfect, that is, displacements and
tractions are continuous across the ply interfaces. Since the stresses in
a laminate vary from layer to layer, it is convenient to introduce the
resultant forces and moments:

N � M �h / 2 h / 2x x x x

N � � � dz, M � � � z dz. (9.4.1)y y y y
�h / 2 �h / 2� � � � � � � �N � M �xy xy xy xy

In terms of the resultants, (9.3.29) can be rewritten as

0N A A A � B B B kx 11 12 13 x 11 12 13 x
0N � A A A � � z B B B k ,y 12 22 23 y 12 22 23 y� � � �� � � �� �0N A A A 
 B B B kxy 13 23 66 xy 13 23 66 xy

(9.4.2)

0M B B B � D D D kx 11 12 13 x 11 12 13 x
0M � B B B � � z D D D k ,y 12 22 23 y 12 22 23 y� � � �� � � �� �0M B B B 
 D D D kxy 13 23 66 xy 13 23 66 xy

(9.4.3)

where

n

ˆA � (Q ) (h � h ), (9.4.4)�ij ij k k k�1
k�1

n1 2 2ˆB � (Q ) (h � h ), (9.4.5)�ij ij k k k�12 k�1
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1x

3x

2x

Figure 9.5

n1 3 3ˆD � (Q ) (h � h ) (9.4.6)�ij ij k k k�13 k�1

are called the extensional stiffness matrix, coupling stiffness matrix,
and bending stiffness matrix of the laminate, respectively.

PROBLEMS

9.1 Consider a unidirectional fiber-reinforced composite plate as
shown in Figure 9.5 (fibers are in the x1 direction). Find the lower
and upper bounds for the effective Young modulus and byE E11 22

using the minimum potential and minimum complementary energy
theorems, respectively. Compare your results with the rule of mix-
ture predictions.

(Hint: Use � �0�i1�j1 and � �0�i1�j1 for Use �0 0 0� � E . �ij ij 11 ij

�0�i2�j2 and � �0�i2�j2 for0� E .)ij 22

9.2 Derive the extensional stiffness matrix, the coupling stiffness ma-
trix, and the bending stiffness matrix of a generic laminate.

9.3 Prove (9.2.29)–(9.2.32).

9.4 Consider a fiber-reinforced cross-ply laminate as shown in Figure
9.4. Further, assume that all the layers have the same thickness
and their elastic constants are given by EL, ET, �L, �LT, and �TL.
They are related to the elastic properties of the fiber, the matrix,
and the fiber volume fraction through the micromechanics schemes
discussed in Section 9.1. Find the matrices A, B, and D as defined
in (9.4.6)–(9.4.8).

APPENDIX 9.A

To facilitate the discussions below, let us first define the following:
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� � � �33 11 33 11

� � � , � � � , � � 2� , � � � .n 23 t 22 n 23 t 22� � � � � � � �� � 2� 2�13 12 13 12

(9.A.1)

Thus, we have

� � S � � S � , � � S � � S � , (9.A.2)n nt t nn n t tt t tn n

where

S S S S S S33 34 35 13 23 36

S � S S S , S � S S S , (9.A.3)nn 34 44 45 nt 14 24 46� � � �S S S S S S35 45 55 15 25 56

S S S S S S13 14 15 11 12 16

S � S S S , S � S S S . (9.A.4)tn 23 24 25 tt 12 22 26� � � �S S S S S S36 46 56 16 26 66

Obviously,

T T TS � (S ) , S � (S ) , S � (S ) . (9.A.5)nn nn tt tt tn nt

Also, because of the positive definiteness of the Voigt compliance ma-
trix, we know that Snn and Stt are positive definite matrices.

Now, consider a multilayered composite consisting of N layers of
homogeneous materials as shown in Figure 9.3. We assume that each
layer is homogeneous with its Voigt elastic matrix given by S(k), k �
1, 2, . . . , N. Therefore, for the kth layer, it follows from (9.A.2) that

(k) (k) (k) (k) (k) (k) (k) (k) (k) (k)� � S � � S � , � � S � � S � , (9.A.6)n nn n nt t t tn n tt t

where the superscript (k) indicates the quantity associated with the kth
layer. It is assumed that the representative element being considered is
under a uniform state of deformation, even though the actual composite
may be subjected to arbitrary loading. We further assume that the layers
are perfectly bonded together, meaning that the traction and displace-
ments are continuous across the layer interfaces. This immediately
leads to
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(k) (k)� � � , � � � , for k � 1, 2, . . . , N. (9.A.7)n n t t

Making use of the above in the second of (9.A.6) yields

(k) (k) �1 (k)� � (S ) (� � S � ). (9.A.8)t tt n tn n

Taking the average of over the representative volume element leads(k)�t

to

N N N
(k) (k) �1 (k) �1 (k)� � c � � c (S ) � � c (S ) S � , (9.A.9)� � �n k t k tt t k tt tn n

k�1 k�1 k�1

where ck � hk /h is the volume fraction of the kth layer. By rearranging
the terms in (9.A.9), we have

� � S � � S � , (9.A.10)t tt t tn n

where

�1S S S N11 12 16
(k) �1S � S S S � c (S ) , (9.A.11)�	 
tt 12 22 26 k tt� � k�1S S S16 26 66

S S S N13 14 15
(k) �1 (k)S � S S S � S c (S ) S . (9.A.12)�	 
tn 23 24 25 tt k tt tn� � k�1S S S36 46 56

We next substitute (9.A.8) into the first of (9.A.6). This gives us

(k) (k) (k) (k) �1 (k) (k) (k) �1� � [S � S (S ) S ]� � S (S ) � . (9.A.13)n nn nt tt tn n nt tt t

Taking the average of over the representative volume element leads(k)�t

to

N N N
(k) (k) (k) (k) �1 (k) (k) (k) �1� � c � � c [S � S (S ) S ]� � c S (S ) � .� � �n k n k nn nt tt tn n k nt tt t

k�1 k�1 k�1

Substitution of (9.A.10) into the above yields
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� � S � � S � , (9.A.14)n nn n nt t

where

S S S N13 23 36
(k) (k) �1S � S S S � c S (S ) S , (9.A.15)�	 
nt 14 24 46 k nt tt tt� � k�1S S S15 25 56

S S S N N33 34 35
(k) (k) (k) �1 (k)S � S S S � c S � c S (S ) (S � S ).� �nn 34 44 45 k nn k nt tt tn tn� � k�1 k�1S S S35 45 55

(9.A.16)

Clearly, and provide the complete effective Voigt com-S , S , S , Snn nt tn tt

pliant matrix of the layered composite. Taking advantage of the sym-
metry properties (9.A.5), it can be shown that

T T TS � (S ) , S � (S ) , S � (S ) .nn nn tt tt tn nt

Next, we assume that each layer is a monoclinic material with its
plane of symmetry in the x1x2 plane. In this case, the Voigt elastic
matrix has the following forms:

(k) (k) (k) (k)S 0 0 S S S33 13 23 36
(k) (k) (k) (k)S � 0 S S , S � 0 0 0 , (9.A.17)nn 44 45 nt� � � �(k) (k)0 S S 0 0 045 55

(k) (k) (k)S S S11 12 16
(k) (k) T (k) (k) (k) (k)S � (S ) , S � S S S . (9.A.18)tn nt tt 12 22 26� �(k) (k) (k)S S S16 26 66
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10
BRITTLE DAMAGE AND

FAILURE OF
ENGINEERING
COMPOSITES

Micromechanics has been used extensively in the study of damage and
failure of engineering materials. There is a large body of literature in
this area. It is certainly not possible, nor the intent of this chapter, to
provide an extensive summary of existing results. The objective here
is to take a few examples that are illustrative of how the microme-
chanics methods and techniques are being used to understand and
model certain commonly seen damage and failure modes in engineering
composite materials. We will discuss one example in each of the three
areas; interfaces, fiber, and matrix.

10.1 IMPERFECT INTERFACES

Let the interface between two media be denoted by S. As discussed in
Section 4.2, we call an interface S a perfect interface if the two media
are mechanically coherent, that is, the displacement and traction fields
are continuous across this interface. The continuity of displacement and
traction across a perfect interface can be written as

� ��u � u (S ) � u (S ) � 0, (10.1.1)i i i

� ��� n � [� (S ) � � (S )]n � 0, (10.1.2)ij j ij ij j

where nj is the unit normal vector of the interface S, and ui(S�) and
�ij(S�) are the values of ui(x) and �ij(x) evaluated at the positive side

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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of S, while ui(S�) and �ij(S�) are the values of ui(x) and �ij(x) evaluated
at the negative side of S. It is assumed that nj points to the positive
side of S; see Figure 4.3.

In many engineering applications, the interfaces in a composite ma-
terial may not be perfect. In this section, we will discuss one of the
simplest models used to model the imperfect interfaces. For quasi-static
problems, the imperfection of interfaces is reflected mainly by the dis-
continuity of displacement field across the interface. The interfacial
spring model therefore postulates that the traction is continuous across
the interface

� ��� n � [� (S ) � � (S )]n � 0, (10.1.3)ij j ij ij j

but the displacement field is discontinuous. The jump in the displace-
ment field across the interface is proportional to the traction vector on
the interface, that is,

� ��u � u (S ) � u (S ) � � � n , (10.1.4)i i i ij ik k

where the second-order tensor �ij represents the compliance of the in-
terface. For simplicity, we assume that �ij is symmetric and positive
definite. It is clear from (10.1.4) that �ij � 0 corresponds to a perfect
interface, while �ij → � represents complete debond (�iknk � 0). From
this point of view, a slight deviation from the perfect interface case can
be modeled by the limit of �ij → 0.

A special form of �ij that has some physical significance is given by

� � �� � (� � �)n n . (10.1.5)ij ij i j

It can be easily shown that � and � represent the compliance in the
tangential and normal directions of the interfaces, respectively, that is,

�u (� � n n ) � �� n (� � n n ), (10.1.6)i ik i k ij j ik i k

�u n � �� n n . (10.1.7)i i ij j i

When � � 0, such constitutive characterization of the interfaces allows
for relative sliding between the two surfaces, but not separation. Fur-
thermore, the free-sliding case studied by Mura (1987) can be achieved
by setting � → � with � � 0. Therefore, solutions to the case of small
� with � � 0 provide the approximations in contrast to the sliding
interface. It also should be mentioned that material interpenetration
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may take place when � � 0, which is a violation of the compatibility
requirement. Further discussions on this may be found in Achenbach
and Zhu (1989).

For the remainder of this section, we focus on the effective elastic
properties of composite materials with imperfect interfaces. First, we
will solve the Eshelby inclusion problem with imperfect interface.
Then, we will use the Mori–Tanaka approach to estimate the effective
elastic properties. Finally, the bounds of the effective properties for
such composite will be developed based on the classical variational
principles.

Consider an elastic solid of infinite extent containing an ellipsoidal
inclusion � with eigenstrain distribution Assume that the interface�*.ij

between the inclusion and the surrounding medium is imperfect and
the displacement jump across the interface is governed by (10.1.6) and
(10.1.7). We will call this eigenstrain problem the modified Eshelby
inclusion problem. In what follows, we would like to develop a solution
to this modified Eshelby inclusion problem.

It follows from (3.3.5) that the displacement field should satisfy the
following equations of equilibrium:

L u (x) � L �* (x) � 0 in �. (10.1.8)ijkl k,lj ijkl kl, j

u (x) → 0 as �x� → �. (10.1.9)i

Furthermore, it follows from (2.6.23) and (2.6.24) that the Green func-
tion (x, y) satisfies�Gij

2 �	 G (x, y)kmL � � �(x � y) � 0, (10.1.10)ijkl im	x 	xl j

�G (x, y) → 0 as �x� → �, (10.1.11)ij

where �(x) is the three-dimensional Dirac delta function.
Now, let us multiply (10.1.10) by ui(x) and integrate the resulting

equation over a volume V. This leads to

2 �	 G (x, y) �u (y) y � Vkm m� u (x)L dV(x) � . (10.1.12)�i ijkl 0 y � VV 	x 	xl j

By using the divergence theorem, we can rewrite the volume integral
in (10.1.12) as
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2	 G (x, y)km� u (x)L dV(x)i ijkl
V 	x 	xl j

	G (x, y) 	G (x, y)km km� � u (x)L n dS(x) � � u (x)L dV(x),i ijkl j i, j ijkl
S V	x 	xl l

(10.1.13)

where S is the surface of V, and ni is the unit outward normal of S.
Next, multiplying (10.1.8) by Gim(x, y) and integrating the result over

the volume V lead to

� �� G (x, y)L u (x) dV(x) � � G (x, y)L �* (x) dV(x) � 0.im ijkl k,lj im ijkl kl, j
V V

(10.1.14)

Following the procedures that led to (10.1.13), the first volume integral
in the above equation can be written as

�� G (x, y)L u (x) dV(x)im ijkl k,lj
V

�	G (x, y)im�� � G (x, y)L u (x)n dS(x) � � L u (x) dV(x).im ijkl k,l j ijkl k,l
S V 	xj

(10.1.15)

Note that the last volume integral on the right-hand side of (10.1.13)
is the same as that of (10.1.15). Therefore, by subtracting (10.1.12)
from (10.1.14), we arrive at

�	G (x, y)im�� L G (x, y)u (x) � u (x) n dS(x)� �ijkl im k,l i j
S 	xl

u (y) y � V� m� � G (x, y)L �* (x) dV(x) � . (10.1.16)�im ijkl kl, j 0 y � VV

Finally, making use of the divergence theorem on the volume integral,
we arrive at
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�	G (x, y)im�� L G (x, y)[u (x) � �*(x)] � u (x) n dS(x)� �ijkl im k,l kl i j
S 	xl

�	G (x, y) u (y) y � Vim m� � L �*(x) dV(x) � .�ijkl kl 0 y � VV 	xl

(10.1.17)

Now, taking the region V to be the inclusion �, and letting y � �
where the eigenstrain is given, the above integral representation yields

u (y)m

�	G (x, y)im�� � L G (x, y)[u (x) � �*(x)] � u (x) n dS(x)� �ijkl im k,l kl i j
�S 	xl

�	G (x, y)im� � L �*(x) dV(x).ijkl kl
V 	xl

(10.1.18)

Note that for y � S�, Hooke’s law (3.3.2) yields

L [u (x) � �*(x)] � � (x). (10.1.19)ijkl k,l kl ij

Therefore, (10.1.18) can be rewritten as

�	G (x, y)im�u (y) � � G (x, y)� (x) � u (x)L n dS(x)� �m im kl i ijkl j
�S 	xl

�	G (x, y)im� � L �*(x) dV(x).ijkl kl
V 	xl

(10.1.20)

Next, take V to be the region exterior to �. Then, for y inside �, or
equivalently, for y outside V where the eigenstrain is zero, (10.1.17)
yields

�	G (x, y)im�� L G (x, y)u (x) � u (x) n dS(x) � 0, (10.1.21)� �ijkl im k,l i j
�S 	xl

or, make use of Hooke’s law,
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�	G (x, y)im�� G (x, y)� (x) � u (x)L n dS(x) � 0. (10.1.22)� �im kl i ijkl j
�S 	xl

Note that both (10.1.20) and (10.1.22) are valid for y inside �. Thus,
it follows from subtracting (10.1.21) from (10.1.18) that

�	G (x, y)imu (x) � � L �*(y) dV(y)m ijkl kl
V 	yl

�	G (x, y)im� � �u (y)L n dS(y), (10.1.23)i ijkl j
S 	yl

where we have used the traction continuity condition (10.1.3). For con-
venience, we have also switched the variables x and y and made use
of the symmetry properties of the infinite domain Green’s function
(2.6.26). The above equation is an integral representation of the dis-
placement field within the inclusion. An integral equation can be de-
rived by letting the point x approach the boundary S. Solving such
integral equations typically requires numerical methods. In what fol-
lows, we will discuss some special cases of (10.1.23) and develop
approximate and asymptotic solutions.

First, we assume that the eigenstrain is uniform on �. Then,
(10.1.23) leads to

�	G (x, y)imu (x) � � L �* dV(y)m,n ijkl kl
V 	y 	xl n

�	G (x, y)im� � �u (y)L n dS(y), (10.1.24)i ijkl j
S 	y 	xl n

or

�� (x) � L �* � 
 (y, x) dV(y)ij klmn kl ijmn
�

�� � L �u (y)
 (y, x)n dS(y), (10.1.25)klmn k ijmn l
S

where (y, x) is defined by (4.3.6). It then follows from (4.3.8) that�
ijmn

�� (x) � �*S � � L �u (y)
 (y, x) n dS(y), (10.1.26)ij kl ijkl klmn k ijmn l
S
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where Sijkl is the Eshelby inclusion tensor. Making use of (10.1.4) in
(10.1.26) gives

�� (x) � S �* � � L � � (y)
 (y, x)n n dS(y). (10.1.27)ij ijkl kl klmn kp pq ijmn q l
S

Clearly, the first term in (10.1.27) is identical to the original Eshelby
solution. The effect of imperfect interface comes through the surface
integral involving the displacement jump at the interface. Since perfect
interface corresponds to �ij � 0, a weakly imperfect interface may be
modeled by a very small �ij. Thus, (10.1.27) provides a convenient
basis for constructing asymptotic solutions for the imperfect interface
problem.

To this end, we make use of Hooke’s law (3.3.2) in (10.1.27) to
obtain

�� (x) � �*S � � L L � �*
 (y, x)n n dS(y)ij kl ijkl klmn pqst kp st ijmn q i
S

�� � L L � � (y)
 (y, x)n n dS(y). (10.1.28)klmn pqst kp st ijmn q l
S

An iteration procedure can now be formulated,

(n) �� (x) � �*S � � L L � �*
 (y, x)n n dS(y)ij kl ijkl klmn pqst kp st ijmn q l
S

(n�1) �� � L L � � (y)
 (y, x)n n dS(y)klmn pqst kp st ijmn q l
S

for n � 1, 2, . . . . The initial value can be set to

(0)� � S �*. (10.1.29)ij ijkl ij

The leading order solution for small �ij can now be obtained as

(1)� (x) � � (x) � S �* � Z (x)(I � S )�*, (10.1.30)ij ij ijkl kl ijst stkl stkl kl

where

�Z (x) � L L � � 
 (y, x)n n dS(y). (10.1.31)ijst klmn stpq kp ijmn q l
S
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Alternatively, (10.1.30) can also be written as

M� (x) � S (x)�*, (10.1.32)ij ijkl kl

where

MS (x) � S � Z (x)(I � S ) (10.1.33)ijkl ijkl ijst stkl stkl

can be viewed as the modified Eshelby inclusion tensor for an ellip-
soidal inclusion with weakly imperfect interface. One significant dif-
ference of the modified Eshelby inclusion problem is that the strain
within the ellipsoidal inclusion is no longer uniform even though the
eigenstrain is. A quantity that will be needed later is the average of the
modified Eshelby tensor

1M MS (x) � � S (x) dV. (10.1.34)ijkl ijkl
��

To carry out the integral, consider

�� Z (x) dV � L L � � � 
 (y, x) dV(x)]n n dS(y)�ijst klmn stpq kp ijmn q l
� S �

�� L L � � P n n dS(y)klmn stpq kp ijmn q l
S

� S L � � n n dS(y),ijmn stpq mp q n
S

(10.1.35)

where (4.3.7) has been used. Making use of the above, the integral in
(10.1.34) can be carried out to yield

MS � S � S R L (I � S ), (10.1.36)ijkl ijkl ijmn mnpq pqst stkl stkl

where

1
R � � (� n n � � n n � � n n � � n n ) dS(y).mnpq mp q n mq p n np q m nq p m

S4�

(10.1.37)

Clearly, we have Rmnpq � Rnmpq � Rnmqp � Rmnqp. Note that Rmnpq de-
pends on the interface properties through �ij and the geometry of the
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inclusion. Expressions of Rmnpq for ellipsoids, cylinders, and spheres
are given in Appendix 10.A.

Now, we are ready to consider a composite material consisting of
randomly oriented and shaped inhomogeneities embedded in a matrix
with stiffness tensor L0. Let the stiffness tenors of the inhomogeneities
be L1, L2, L3, . . . , LN, as shown in Figure 7.1. We further assume
that interfaces between the inhomogeneities and the matrix are not
perfect. The interfacial jump condition is given by (10.1.4).

We first consider the average stress and average strain fields in the
composite. It follows from (5.4.1) and (5.4.2) that the average stress
over the entire representative volume element of the composite is

N1
� � � � dV � c � , (10.1.38)� r r

DD r�0

where

1
� � � � dVr

�� rr

is the average stress on the r th inhomogeneity, while the average strain
over the entire representative volume element of the composite is given
by

N N1 1
� � � � dV � c � � � (�u � n � n � �u) dS,� �r r

D SD 2D rr�0 r�1

(10.1.39)

where Sr is the surface of �r, is the average stain in the r th inhomo-�r

geneity

1
� � � � dV, (10.1.40)r

�� rr

and the symbol � indicates a dyad, see Section 1.4. By using the
displacement jump condition (10.1.4), the surface integral in (10.1.39)
can be written as

� (�u � n � n � �u) dS
Sr

� � [(� � � � n) � n � n � (� � � � n)] dS. (10.1.41)
Sr
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The integral is rather difficult to evaluate. So, we will make an ad hoc
approximation (Qu, 1993a),

� [(� � � � n) � n � n � (� � � � n)] dS
Sr

� � [(� � � � n) � n � n � (� � � � n)] dS, (10.1.42)r r
Sr

that is, replacing the stress distribution along Sr by the average stress
on �r. Clearly, (10.1.42) would be exact if the stress is uniform on �r.
The right-hand side of (10.1.42) can be further written as

� [(� � � � n) � n � n � (� � � � n)] dS � 2� R � , (10.1.43)r r r r r
Sr

where the fourth-order tensor Rr is defined by (10.1.37). Finally, we
can write the average strain on the composite as

N N

� � c � � c R � . (10.1.44)� �r r r r r
r�0 r�1

Let us now consider the effective elastic properties of the composite.
To this end, let the representative volume element of the composite be
subjected to the following traction boundary condition:

� � n� � � � n, (10.1.45)S

where is the average stress over the representative volume element�
of the composite, according to the average stress theorem introduced
in Section 5.4 (It can be easily shown that the average stress theorem
is still valid in this case). The Mori–Tanaka method assumes that the
average strain in the r th inhomogeneity can be written as [see (7.3.5)]

pt� � � � � , r � 1, 2, . . . , N, (10.1.46)r 0 r

where is the average perturbance of the strain field in the r thpt pt� �r r

inhomogeneity. The corresponding average stress is

pt� � L � � L (� � � ), r � 1, 2, . . . , N. (10.1.47)r r r r 0 r
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The Mori–Tanaka method further assumes that each inhomogeneity �r

(r � 0) is embedded, in the absence of other inhomogeneities, in a
uniform material of stiffness L0, which was prestressed by When� .0

the inhomogeneity is simulated by an inclusion with eigenstrain �*,r

the equivalent inclusion equation becomes (see Section 4.4)

pt pt� � L (� � � ) � L (� � � � �*). (10.1.48)r r 0 r 0 0 r r

It is further assumed that

pt M� � S �*, (10.1.49)r r r

where is the modified Eshelby tensor averaged over �r as given byMS r

(10.1.36). Substituting (10.1.49) into (10.1.48) yields an equation for
which can be solved to obtain�*,r

M �1�* � [(L � L )S � L ] (L � L )� . (10.1.50)r r 0 r 0 r 0 0

The total strain in the r th inhomogeneity can then be written as

pt M M� � � � � � � � S �* � T � , (10.1.51)r 0 r 0 r r r 0

where

M M �1 �1T � [I � S L (L � L )] . (10.1.52)r r 0 r 0

The above derivation is very similar to the steps leading to (7.1.6). The
average stress on the r th inhomogeneity then follows from substituting
(10.1.51) into (10.1.47),

M M� � L T � � H � , (10.1.53)r r r 0 r 0

where

M MH � L T Mr r r 0

is the local stress concentration tensor; see (7.3.11). Note that, although
(10.1.53) was derived for r � 0, it can be easily see that it is also valid
for r � 0. Making use of (10.1.53) in the average stress leads to



256 BRITTLE DAMAGE AND FAILURE OF ENGINEERING COMPOSITES

N N
M� � c � � c H � . (10.1.54)� �r r r r 0

r�0 r�0

Consequently,

�1N
M� � c H �. (10.1.55)�	 
0 r r

r�0

Introducing (10.1.55) back to (10.1.53) yields

M� � B �, (10.1.56)r r

where

�1N
M M MB � H c H (10.1.57)�	 
r r r r

r�0

is the global stress concentration tensor; see (7.3.12). It then follows
from (10.1.56) that the average strain in the r th inhomogeneity is

M� � M B �. (10.1.58)r r r

Making use of (10.1.56) and (10.1.58) in (10.1.44) yields

N N
M M� � c M B � � c R B �.� �r r r r r r

r�0 r�1

This immediately leads to

N N
M MM � c M B � c R B� �r r r r r r

r�0 r�1

N
M M� c M B � c (M � R )B�0 0 0 r r r r

r�1

�1N N
M M� c M � c (M � R )L T M c L T M� �� �	 
0 0 r r r r r 0 r r r 0

r�1 r�0

�1N N
M M� c I � c (M � R )L T c L T .� �� �	 
0 r r r r r r r r

r�1 r�0
(10.1.59)
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This gives the Mori–Tanaka estimate of the effective compliance of the
composite material with imperfect interfaces:

�1N N
M MM � c I � c (M � R )L T c L T . (10.1.60)� �� �	 
0 r r r r r r r r

r�1 r�0

By specifying displacement boundary conditions, one can obtain the
effective stiffness tensor; see Problem 10.1:

�1N N
M ML � c L T c I � c (M � R )L T . (10.1.61)� �	 
� �r r r 0 r r r r r

r�0 r�1

Obviously, we have

LM � ML � I. (10.1.62)

Furthermore, it can be easily verified that when � → 0, we have Rr →
0 and → Tr. Therefore, the effective elastic properties (10.1.59)MT r

and (10.1.61) reduce to those of the perfect interface cases (7.3.14) and
(7.3.8), respectively.

Example 10.1 Consider a composite consisting of an isotropic matrix
with L0 and isotropic, spherical particles of L1. The interface between
the particles and the matrix is described by the displacement jump
condition (10.1.4) where

� � �(� � n n ). (10.1.63)ij ij i j

We are to find the effective elastic properties of the composite.
Since the materials are isotropic, we may represent them as

L � (3K , 2� ), L � (3K , 2� ). (10.1.64)0 0 0 1 1 1

The composite should also be isotropic, that is, � It fol-L (3K, 2�).
lows from Appendix 10.A that

2�
R � (0, 3), (10.1.65)1 5d

where d is the diameter of the particles. The modified Eshelby tensor
is thus given by
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M M MS � S � S R L (I � S ) � (3� , 2� ), (10.1.66)1 1 1 1 0 1 0 0

where

24�� �0 0M M(3� , 2� ) � 3� , 2� � (1 � 2� ) . (10.1.67)	 
0 0 0 0 05d

Thus,

M M �1 �1T � [I � S L (L � L )]1 1 0 1 0

K �0 0� , . (10.1.68)	 
M MK � 3� (K � K ) � � 2� (� � � )0 0 1 0 0 0 1 0

The effective stiffness tensor is obtained from

M M �1L � (c L � c L T )(c I � c (M � R )L T ) . (10.1.69)0 0 1 1 1 0 1 1 1 1 1

Carrying out the matrix algebra, we finally arrive at

c K (K � K )1 0 1 0K � K � , (10.1.70)0 K � 3� (1 � c )(K � K )0 0 1 1 0

c � [5d(� � � ) � 12�� � ]1 0 1 0 0 1� � � � . (10.1.71)0 M5d� � 10d� (1 � c )(� � � ) � 12c �� �0 0 1 1 0 1 0 1

It is seen that the effective bulk modulus is the same as that of the
perfect interface case. Only the effective shear modulus is affected by
the imperfect interface. It is also noticed that the effective shear mod-
ulus depends not only on the volume fraction of the particles but also
on the particle size. This is very different from the perfect interface
case where only the volume fraction of the particles matters.

To close this section, we state two variation principles for composites
with imperfect interfaces (Qu, 1993b). The proof of them is straight-
forward; see Problem 10.2.

Principle of Minimum Potential Energy Among all kinematically
admissible displacement fields, the true one makes the following func-
tional minimum:
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1 1 �1
(u) � � �:L:� dV � � u � � � n dS � � �u � � � �u dS,
D S 
2 2�

(10.1.72)

where S� is the portion of the external boundary where traction is pre-
scribed, and 
 is the union of all internal interfaces.

Principle of Minimum Complimentary Energy Among all stati-
cally admissible stress fields, the true one makes the following func-
tional minimum:

1

 (�) � � �:M:� dV � � u � � � n dSc

D S2 u

1
� � n � � � � � � � n dS, (10.1.73)


2

where Su is the portion of the external boundary where displacement
is prescribed, and 
 is the union of all internal interfaces.

10.2 FIBER BRIDGING

Fibers in engineering composites typically have higher elastic modulus
than the matrix. Because of this, the effective elastic modulus of the
composite is higher than that of the matrix material. In addition to the
enhancement of elastic stiffness, fibers can also enhance the fracture
toughness of the matrix material. In this section, we will consider a
very simple example to illustrate how the fibers in a composite affect
the composite’s fracture behavior.

Let us consider a unidirectional fiber-reinforced composite material.
Assume that the matrix has a crack perpendicular to the fiber direction,
as shown in Figure 10.1. When the composite is subjected to a uniform
tensile load �� in the fiber direction at infinity, a mode I stress intensity
is created at the crack tips, which is characterized by the stress intensity
factor KI. According to linear elastic fracture mechanics, the crack may
start growing leading to the fracture of the material if the stress inten-
sity factor KI becomes greater than the fracture toughness of the matrix
material KIc, that is,
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2a

Figure 10.1 Unidirectional fiber-reinforced composite with Griffith crack.

K � K . (10.2.1)I Ic

If, under the same given load, KI can be reduced, it effectively improves
the fracture toughness of the material. We will see from the following
analysis that fibers that bridge the crack surfaces can effectively reduce
KI, thus improving the fracture strength of the composite.

For simplicity, we will limit ourselves to plane strain deformation,
so the crack can be considered as a two-dimensional slit, which is
referred to as the Griffith crack in fracture mechanics literature. We
further assume that the size of the existing crack in the composite is
much greater than the fiber diameter. This assumption is valid for most
engineering applications where the fiber diameter is in the order of
micrometers, while the flaw size is typically several hundred microm-
eters, or millimeters. Under this assumption, the unidirectional fiber-
reinforced composite can be viewed as a homogeneous, transversely
isotropic solid as discussed in Section 9.1.

To proceed, we first transfer the externally applied load �� to the
crack surface. A simple linear superposition argument would show that
loading on the crack surfaces is equivalent to loading at infinity in that
they produce the same stress intensity factors. So, in what follows, we
will consider �� being applied on the cracks surface instead of at in-
finity.

If there were no fibers bridging the crack faces, the stress intensity
factor of a Griffith crack of length 2a in a homogeneous, transversely
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isotropic elastic solid subject to normal loading �� on the crack sur-
faces is given by (see Tada et al., 1985; Qu and Bassani, 1993)

aa � dx�K � 2 � . (10.2.2)I 2 2� 0� �a � x

However, the bridging fibers limit the opening of the crack faces, so
the actual (or effective) stress intensity factor at the crack tip is rather
different from (10.2.2). In other words, not all the applied stress �� is
working to open the crack surfaces. Instead, a portion of the applied
stress �� has to stretch the bridging fibers. Or, one may view this in a
different way. The bridging fibers exert a stress p(x) on the crack sur-
faces, which works against the applied stress �� by trying to close the
crack. Thus, effectively, the problem at hand is equivalent to a crack
without bridging fibers, but the externally applied load is �� � p(x).
Therefore, the actual stress intensity factor should be, following
(10.2.2),

aa [� � p(x)] dx�K � 2 � . (10.2.3)I 2 2� 0� �a � x

What we need to do next is to find p(x).
Since the total load is shared between the fibers and the matrix, we

have

� �� � c � � c � , (10.2.4)� ƒ ƒ m m

where, as defined before, cƒ and cm are the volume fractions of the fiber
and the matrix, respectively. Away from the crack, the axial stresses in
the fiber and in the matrix are denoted by and respectively.� �� � ,ƒ m

Since the axial strain is the same for both fiber and matrix (no gross
fiber pull-out), one must have

� �� � �ƒ m �� � , (10.2.5)
E E Eƒ m L

where, again, Eƒ and Em are the Young moduli of the fiber and matrix,
respectively, while EL is the effective Young modulus of the unidirec-
tional fiber-reinforced composite in the fiber direction. Combining
(10.2.4) and (10.2.5) yields the stress in the fiber
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Figure 10.2 Representative element of crack surfaces r distance from crack center.

� E� ƒ�� � , (10.2.6)ƒ c E (1 � �)m m

where

E cƒ ƒ
� � . (10.2.7)

E cm m

This is the axial stress in the fiber far away from the crack (or when
the crack is absent). We now consider the axial stress in the fiber near
the crack faces. Shown in Figure 10.2 is a representative element near
the crack faces containing one fiber. The center of the fiber is x distance
away from the center of the crack. Due to geometric singularities, the
stresses near the intersection of the fiber and crack surfaces are very
high. It is perceivable that certain portions of the fiber–matrix interface
had failed and sliding between the fiber and matrix had occurred. We
assume that the length of the sliding region is l and the shear stress on
the interface due to friction is denoted by � (assume it is a constant).
Outside the sliding area, the axial stress in the fiber is given by (10.2.6).
Within the sliding area, the axial stress in the fiber can be obtained by
balancing the axial stress in the fiber and the shear stress on the fiber
surface due to friction,

2�b� 2�� �� (z) � � � z � � � z, (10.2.8)ƒ ƒ ƒ2�b b

where b is the fiber radius. According to Hooke’s law, the strain in the
fiber follows from (10.2.8),
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�� 2�ƒ
� (z) � � z. (10.2.9)ƒ E bEƒ ƒ

Integration of (10.2.9) with respect to z leads to the total elongation of
the fiber within the sliding area

�l(x) � �l(x)ƒ2� (x) � 2 � � (z) dz � 2 � l(x). (10.2.10)	 
ƒ ƒ
0 E bEƒ ƒ

The factor 2 in the above equation comes from the fact that the sliding
area is symmetric with respect to the crack plane.

We now consider the matrix surrounding the fiber. Analogous to
(10.2.8), we assume that the stress in the matrix within the sliding area
is also a linear function of z. Further, the axial stress in the matrix must
be zero on the crack surfaces. Thus, we write

z �� (z) � 1 � � . (10.2.11)� �m ml(x)

The corresponding strain thus follows:

�� zm� (z) � 1 � . (10.2.12)� �m E l(x)m

Consequently, integration of (10.2.12) gives the axial elongation of the
matrix within the sliding area

l(x) �� l(x)m2� (x) � 2 � � (z) dz � . (10.2.13)m m
0 Em

Comparing (10.2.10) and (10.2.13), we have the total crack opening
displacement

� �� �l(x) � l(x)ƒ m2v(x) � 2� (x) � 2� (x) � 2 � l(x) � . (10.2.14)� �ƒ m E bE Eƒ ƒ m

Substituting (10.2.6) into (10.2.14) yields the following crack opening
displacement:
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�l(x) ��v(x) � � l(x). (10.2.15)� �bE 2(E c � E c )ƒ ƒ ƒ m m

This can also be solved to obtain the length of the sliding zone,

2 216(1 � �) E c �v(x)�� b ƒ ƒ�l(x) � 1 � � 1 . (10.2.16)� �2 2�4(1 � �)c � � � bƒ �

Clearly, for the fiber at the crack tip, the crack opening displacement
is zero, that is, v(a) � 0. It thus follows from (10.2.16) that l(a) � 0.
That means that the fibers outside the cracked area do no show any
pull-out, which is consistent with our intuition.

If we now substitute (10.2.16) back to (10.2.8), we can calculate the
stress exerted on the crack surface by the bridging fibers:

2 216(1 � �) E c �v(x)�� ƒ ƒ�p(x) � c � (l) � 1 � � 1 .� �ƒ ƒ 2 2�2(1 � �) � � b�

(10.2.17)

Note that p(x) is positive. It represents the stress carried by the bridging
fibers over the cracked area. One may also view p(x) as the stress acting
on the crack surface trying to close the crack opening by working
against the externally applied load ��. Equation (10.2.17) is a relation-
ship between p(x) and v(x).

For convenience, let us recast (10.2.17) into a nondimensional form:

p(x) � 4(1 � �)�(x)
� 1 � � 1 , (10.2.18)� �2�� 2(1 � �) � �� 0

where

2� b�� � . (10.2.19)0 24(1 � �)E c �ƒ ƒ

Since p(x) � ��, it can be easily shown from (10.2.18) that �(x) � �0.
Shown in Figure 10.3 is the relationship between the bridging force
p(x) and the parameter � � Eƒcƒ/Emcm for various crack opening dis-
placement values. It is seen that as � increases (either higher fiber
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Figure 10.3 Relationship between bridging force and � � Eƒcƒ /Emcm.

modulus, or more fibers, or both), the bridge forces increase as well.
Higher crack opening displacement also causes higher bridging forces.
For a given crack, the crack opening displacement is typically highest
near the center of the crack. Therefore, that is where the bridging force
is the highest. Higher bridging means higher stress in the bridging fiber.
So, conceivably, some of the fibers near the center of the crack may
break. Such a situation has been studied by a number of investigators
(e.g., Cui, 1992; Xia et al., 1994; Budiansky and Cui, 1995).

As discussed earlier, the problem at hand is equivalent to a crack in
a homogeneous, transversely isotropic solid subject to normal pressure
�� � p(x). The crack opening displacement in this case is given by
(see, e.g., Qu and Bassani, 1993)

2 2 2 2a �a � x � �a � t2D
�(r) � � [� � p(t)]log dt
 
� 2 2 2 20� �a � x � �a � t

2 2 2 2a �a � x � �a � t2D2 2� 2D� �a � x � � p(t)log dt,
 
� 2 2 2 20� �a � x � �a � t

(10.2.20)

where
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A A 2A � A A11 22 12 66 22D � � , (10.2.21)	 
	 
�� 2 2A A11 11

2 21 � � E � � EL TA � , A � ,11 22 2E ET L

� (1 � �) 1TTA � � , A � . (10.2.22)12 66E �L L

In deriving the above expressions, it has been assumed that �ƒ � �m �
�. The other engineering constants EL, ET, and �L, and �TT are defined
in Section 9.1. They are related to the elastic properties of the fiber
and matrix through the formulas discussed in the same section.

Substituting (10.2.17) into (10.2.20) yields an integral equation for
the crack opening displacement. Numerical methods are needed to ob-
tain the solution to the integral equation. Once the crack opening dis-
placement �(x) is solved, the pressure p(x) can be evaluated from
(10.2.17). Once p(x) is known, linear elastic fracture mechanics dictates
that fracture may occur when

aa [� � p(x)] dx�K � 2 � � K . (10.2.23)I Ic2 2� 0� �a � x

Since p(x) is positive, the stress intensity factor calculated from
(10.2.23) is lower than the case without fiber bridging. Therefore, the
bridge fiber effectively increases the fracture toughness of the com-
posite.

10.3 TRANSVERSE MATRIX CRACKS

Transverse matrix cracking is one of the most common damage mode
in cross-ply laminates. It has been observed in both ceramic matrix and
polymer matrix composites that the evolution of transverse matrix
cracking shows two distinct stages. When tensile stress is applied in
the fiber direction of the 0� ply, cracks are formed in the 90� ply at a
load level much lower than the ultimate strength of the laminate. These
transverse matrix cracks are tunneling cracks in that they almost in-
stantaneously run through the entire specimen width and the thickness
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Figure 10.4 Cross section of cross-ply laminate.

of the 90� ply but arrest at the 0� /90� ply interfaces. As the load further
increases, more transverse cracks are initiated. At some critical load,
the number of cracks ceases to increase; instead, the existing cracks
may penetrate into the adjacent 0� layers and eventually fracture the 0�
fibers (for ceramic matrix composite CMCs), or divert into the 0� /90�
ply interfaces (for polymer matrix composite PMCs). Catastrophic fail-
ure becomes imminent when the 0� fibers are broken.

In what follows, we will develop a micromechanics model for the
onset and subsequent multiplication of transverse cracks in the 90�
layers at the first stage of damage evolution based on the Griffith frac-
ture criterion. The cross section of a typical fiber-reinforced cross-ply
laminate is schematically shown in Figure 10.4. For convenience, the
following convention is adopted here. The layers with vertical fibers in
the y direction are called 0� layers (or plies) and the layers with fibers
perpendicular to the page (in the z direction) are called 90� layers (or
plies). It is assumed that the cross-ply laminates have equal distribution
of 0� and 90� plies.

The effective modulus of the fiber-reinforced cross-ply laminate
shown in Figure 10.4 has been studied in Section 9.2. What we will
need here is the plane-strain Young modulus in the y direction of the
uncracked cross-ply laminate; see (9.2.40):

2 2 2(E � E ) � 4E � 2EL T L TL LE � , � � � , (10.3.1)0 0 TL2(E � E )(1 � � � ) E � EL T LT TL L T
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where �TL �LT, EL, and ET are the effective engineering elastic constants
of the unidirectional fiber-reinforced composite. These engineering
elastic constants can be related to the Young moduli of the fiber and
the matrix materials as discussed in Chapter 9. If we assume further
that the Poisson ratios for the fiber and the matrix are the same, that
is, �m � �ƒ � �, the above equations reduce to

2 2 2(E /E � 1) � 4� (E /E )L T L TE � E , � � �. (10.3.2)0 T 022(E /E � 1)(1 � � )L T

It is obvious from (9.1.58) to (9.1.64) that the ratio EL /ET depends only
on the fiber volume fraction c and the ratio � � Eƒ/Em. Therefore, one
can conclude that, besides a common factor Em, for a cross-ply laminate
with equal number of 0� and 90� plies of equal thickness, the effective
elastic properties depend only on �, �, and c.

As the matrix cracks multiply, the effective stiffness of the composite
decreases. We will use a differential scheme to estimate the effective
modulus as a function of the crack density. The idea is based on the
notion of incremental construction of the strain energy by introducing
one crack at a time in the 90� layer. Suppose that at a given crack
density ƒ in the 90� layer, the composite is homogenized with effective
Young’s modulus where the dependence of on the crack den-E (ƒ), Ec c

sity is explicitly indicated. The fundamental assumption of the differ-
ential method is that when an additional crack is introduced in the 90�
layer, the change of strain energy due to this addition is the energy
released from the formation of the new crack.

To this end, consider a pair of 0� and 90� layers in the cross-ply
laminate as shown in Figure 10.5. Assume that there are N cracks in
the 90� layer (material 1) within the height L. Let the representative
element be subjected to an applied strain in the y direction. Then, at�
this given crack density, the total strain energy in this pair of layers
can be written as

1 2–U(ƒ) � E (ƒ)� (4t)L, (10.3.3)2 c

where

L
h � . (10.3.4)

2N

When an additional crack is introduced, the crack density becomes
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Figure 10.5 Transverse matrix cracks in cross-ply laminate under uniaxial loading.

t L
ƒ � , h � . (10.3.5)1 1h 2(N � 1)1

The total strain energy at this crack density becomes

1 2–U(ƒ ) � E (ƒ )� (4t)L. (10.3.6)1 2 c 1

Based on the differential scheme, the difference between (10.3.3) and
(10.3.6) is the energy released due to one transverse crack given by

t1
U(ƒ ) � U(ƒ) � � 2 � �(x)�(x) dx , (10.3.7)� �1

�t2

where �(x) is the crack opening displacement defined by

� ��(x) � u (x, 0 ) � u (x, 0 ) for �t � x � t. (10.3.8)y y

Note that the right-hand side of (10.3.7) is the energy released when
a crack is formed in the laminate with effective Young’s modulus

Therefore, the stress �(x) in the 90� layer (prior to the formationE (ƒ).c

of this crack) should be uniform and given by
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EL�(x) � 2E (ƒ) � �, (10.3.9)� �c 21 � � E /ET L

where EL is the longitudinal (fiber direction) modulus of the individual
layers. Substituting (10.3.9) into the right-hand side of (10.3.7) yields

EL 2U(ƒ ) � U(ƒ) � � 2E (ƒ) � � t�, (10.3.10)� �1 c 21 � � E /ET L

where is the average crack opening displacement defined by�

t1
� � � � (x) dx, (10.3.11)0

�t2t

and �0(x) is the crack opening displacement due to a unit applied strain
field, that is,

�(x)
� (x) � . (10.3.12)0 �

Since �(x) can be calculated by the finite-element method for given
�0(x) can then be obtained through linear superposition from�,

(10.3.12).
Next, consider the left-hand side of (10.3.10). It follows from

(10.3.3) and (10.3.6) that

2U(ƒ ) � U(ƒ) � 2� Lt[E (ƒ ) � E (ƒ)]. (10.3.13)1 c 1 c

On the other hand, making use of (10.3.4) and (10.3.5) yields

2t
L � . (10.3.14)

ƒ � ƒ1

Substitution of (10.3.14) into (10.3.13) gives

[E (ƒ ) � E (ƒ)]c 1 c2 2U(ƒ ) � U(ƒ) � 4� t . (10.3.15)1 ƒ � ƒ1

Obviously, in the limiting of ƒ1 → ƒ, (10.3.15) can be written as a
differential equation:
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dE (ƒ)c2 2U(ƒ ) � U(ƒ) � 4� t . (10.3.16)1 dƒ

Combining (10.3.10)–(10.3.16) yields

dE � Ec L� � 2E (ƒ) � . (10.3.17)� �c 2dƒ 4t 1 � � E /ET L

In addition to (10.3.17), should also satisfy the initial conditionE (ƒ)c

that when there is no crack (ƒ � 0),

E (0) � E . (10.3.18)c 0

Equations (10.3.17) and (10.3.18) form an initial value problem for the
effective Young modulus of the composite. The solution to the initial
value problem (10.3.17) and (10.3.18) is given by (Qu and Hoiseth,
1998)

ƒ� E ƒ�LE (ƒ) � E exp � � 1 � exp � . (10.3.19)� 	 
 � 	 
��c 0 2t E � E 2tL T

It is seen that this solution approaches the theoretical limit

E (ƒ) Ec L→ , (10.3.20)
E E � E0 T L

as ƒ → � in which only the 0� layers carry the load.
It is seen from (10.3.19) that once the crack opening displacement�,

of a single crack in an infinitely long (h / t → �) specimen, is known,
the effective elastic modulus of the laminate with any crack density
can be predicted. Shown in Figure 10.6 is the predicted Young modulus

as a function of crack density ƒ for c � 0.55 and various values ofEc

�. The solid lines are the analytical solution from (10.3.19), and the
symbols are the exact solutions from the finite-element method (Qu
and Hoiseth, 1998). It is found that for the wide range of materials
considered, the maximum difference between the finite element and the
analytical solutions is less than 5 percent.

The effective Young modulus given by (10.3.19) can only give the
stiffness as a function of crack density. To predict the effective (overall)
stress–strain behavior, damage (cracking) evolution must be modeled.



272 BRITTLE DAMAGE AND FAILURE OF ENGINEERING COMPOSITES

ν = 0.3, c = 0.55
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Figure 10.6 Effective Young’s modulus. Lines are from the analytical solution and
symbols are from the finite-element solutions.

To this end, a fracture criterion is required. Once a fracture criterion is
established, solutions of crack density can be obtained as a function of
the applied strain �.

As the cross-ply laminate is loaded in the y direction, transverse
cracks develop in the 90� layers. Assume the transverse cracks initiate
as tunneling cracks, namely, they span the entire 90� ply and propagate
in the width direction of the laminate (the z direction). Then, based on
linear elastic fracture mechanics, the energy released due to the for-
mation of a new tunneling crack can be written as (Hutchinson and
Suo, 1991),

t1
G (ƒ) � � �(x)�(x) dx, (10.3.21)ss

�t4t

where �(x) is the crack opening displacement given in (10.3.11) and
�(x) � �y(x, 0), that is, the normal stress on the crack line prior to
cracking. Note that both �(x) and �(x) depend on the crack density ƒ.
Therefore, Gss is a function of ƒ.

Through simple dimensional analysis, the energy release rate can be
written as
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2G (ƒ) � � tE g(�, �, c, ƒ), (10.3.22)ss 0

where is the applied strain, is the overall plane strain Young� E0

modulus for the uncracked composite defined in (10.3.2), and g(�, �,
c, ƒ) is the nondimensional energy release rate.

The energy release rate Gss(ƒ) can also be related to the effective
stiffness through the principle of conservation of energy. To develop
such a relationship, consider a specimen containing N cracks in the 90�
layer. It follows from the conservation of strain energy that (Qu and
Hoiseth, 1998)

1 1 Nt2 2E (ƒ)� (2hNt) � E � (2hNt) � G (ƒ), (10.3.23)c 0 ss2 2 2

where 2hN is the height of the specimen (thickness is unit). Substituting
(10.3.22) into (10.3.23) yields

E (ƒ) 2cg(�, �, c, ƒ) � 1 � , (10.3.24)� �E ƒ0

where is the effective Young modulus determined in the previousEc

section. Making use of (10.3.24) gives the steady-state energy release
rate for tunneling cracks

G (ƒ) 2E �ƒss T� g(�, �, c, ƒ) � 1 � exp � . (10.3.25)� 	 
�2� tE (E � E )ƒ 2t0 L T

An interesting limit of (10.3.25) as ƒ → 0 is

ET 2G (0) � � �E . (10.3.26)ss 0E � ET L

This can also be obtained directly from (10.3.21) by using (10.3.9) and
(10.3.11).

Next, consider a 90� layer with an existing set of transverse matrix
cracks of density ƒ. Assume that a new set of cracks bisecting the
existing set is in the process of tunneling across the layer; see Figure
10.7. The energy released by the cracks in the process of tunneling is
(Hutchinson and Suo, 1991)
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Figure 10.7 Multiplication of transverse matrix cracking in cross-ply laminate.

2G (2ƒ) � G (ƒ). (10.3.27)ss ss

Then, based on the Griffith energy criterion in linear elastic fracture
mechanics, a new set of cracks will be initiated if the following equa-
tion is satisfied:

(2)G � 2G (2ƒ) � G (ƒ), (10.3.28)c ss ss

where is the plane strain mode I toughness of the 90� layer(2)Gc

(material 2).
Substituting (10.3.26) into (10.3.28) yields

22� tE E �ƒ �ƒ0 T(2)G � exp � � exp � . (10.3.29)� 	 
 	 
�c (E � E )ƒ 2t tL T

Equation (10.3.29) is the desired evolution equation for the crack den-
sity ƒ as a function of the applied strain . For � � 0.3, c � 0.55, the�
crack density ƒ as a function of is plotted in Figure 10.8(2)��tE /G0 c

for � � 1, 5, 10, 20, 30.
Figure 10.9 presents a comparison between the theoretical predic-

tions and the experimental data for crack density versus applied load.
The experimental data is from Varna and Berglund (1991). The tested
material is an AS/3501-06 carbon fiber–epoxy [02/902]s laminate. In
the numerical calculations, no adjustment parameters are used. All ma-
terial constants are taken directly from Varna and Berglund (1991). It
is seen that the predicted crack density versus load curve (dotted line)
has the same trend as the experimental one but is slightly shifted to
the right. This may be attributed to many factors. Chief among them
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Figure 10.8 Crack density vs. applied strain.
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Figure 10.9 Comparison between experimental and analytical results for crack
density vs. applied load.
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Figure 10.10 Effective stress–strain curves.

is the fact that the model is based on the assumption that the laminate
contains an infinite number of layers, while the experimental data were
obtained for a [02/902]s laminate. Since the model predicts the trend
correctly, a simple parameter adjustment can be done in practical ap-
plications to correlate the prediction with the measurement. For ex-
ample, in the case considered here, by reducing the toughness of the
90� layer in the direction of the fiber from � 130 J/m2 as reported(2)Gc

in Varna and Berglund (1991) to � 104 J/m2, the model predicts(2)Gc

excellent agreement with the experiments as shown by the solid line
in Figure 10.10.

Note that, in the limit of ƒ → 0, Eq. (10.3.29) becomes

2� �E E0 T(2)G � . (10.3.30)c E � ET L

Thus, the threshold strain at which transverse matrix cracking starts to
occur is

(2)G (E � E )c T L� � . (10.3.31)th � �E E0 T
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Now, consider the effect of matrix cracking on the overall stress–strain
behavior. To begin the calculation, the threshold strain is obtained�th

from (10.3.31) for the given composite system. Then, the strain is�
increased gradually. For each value of � the corresponding crack� � ,th

density ƒ is computed from (10.3.29). Substituting this value of ƒ into
(10.3.19) yields the corresponding effective Young modulus at this
given strain. Finally, the stress corresponding to this strain is�(ƒ)
evaluated from

�(ƒ) � E (ƒ)�(ƒ). (10.3.32)c

For � � 0.3, c � 0.55, the overall stress–strain curves for various values
of � are presented in Figure 10.10. Note that these curves are invariant
to because of the normalization.(2)Gc

PROBLEMS

10.1 Consider a composite material consisting of randomly oriented
and shaped inhomogeneities embedded in a matrix with stiffness
tensor L0. Let the stiffness tenors of the inhomogeneities be L1,
L2, L3, . . . , LN, as shown in Figure 7.1. We further assume that
interfaces between the inhomogeneities and the matrix are not
perfect. The interfacial jump condition is given by (10.1.4). Find
the effective stiffness tensor of this composite.

10.2 Prove the two variational principles stated in Section 10.1.

APPENDIX 10.A

By substituting (10.1.5) into (10.1.36), we obtain the following:

R � �P � (� � �)Q (10.A.1)ijkl ijkl ijkl

with

� 2�3 d�
P � � � (� n̂ n̂ � � n̂ n̂ � � n̂ n̂ � � n̂ n̂ )� �ijkl ik j l jk i l il j k jl i k

0 016� n
� sin � d�, (10.A.2)

� 2� n̂ n̂ n̂ n̂3 i j k lQ � � � d� sin � d�, (10.A.3)� �ijkl
0 04� n
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where

n � �n̂ n̂ , (10.A.4)i i

sin � cos � sin � sin � cos �
n̂ � , , . (10.A.5)	 
a a a1 2 3

For spheres (a1 � a2 � a3 � a), we have n � 1/a. Thus,

1 1
P � I , Q � (2I � � � ). (10.A.6)ijkl ijkl ijkl ijkl ij kla 5a

For cylinders (a1 � a2 � a, a3 → �), the non-zero components are

3�
P � P � 4P � 4P � 2P � , (10.A.7)1111 2222 2323 1313 1212 8a

9�
Q � Q � 3Q � 3Q � 3Q � . (10.A.8)1111 2222 2323 1313 1212 32a
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11

MEAN FIELD THEORY FOR
NONLINEAR BEHAVIOR

In previous chapters, we have assumed that all the inhomogeneities in
the heterogeneous material behave linear elastically. Therefore, the
overall behavior of the heterogeneous material is also linear elastic. For
linear elastic behavior, the effective stiffness tensor is usually sufficient
to fully characterize the stress–strain relationship, or the material’s re-
sponse under load.

If one or more of the inhomogeneities in a heterogeneous medium
behave nonlinearly (nonlinear elastic, viscoelastic, elastoplastic, elas-
toviscoplastic, etc.), the overall behavior, or the effective properties of
the heterogeneous medium, will not be linear elastic. Unlike the effec-
tive stiffness and compliance for linear materials, the effective prop-
erties of nonlinear heterogeneous materials are much more complex to
model and characterize. The main difficulty is the typical strong intra-
phase fluctuations of the stress and strain fields in nonlinear hetero-
geneous materials and in the hereditary nature of most inelastic
behaviors. At a given length scale, the responses of the inhomogeneities
can vary markedly at different load levels. For example, a two-phase
elastoplastic composite material effectively behaves as a multiphase
material, and phase averages have less predictive capabilities than in
the linear elastic case. In this chapter, we will develop a general frame-
work based on the mean field theories to describe the nonlinear behav-
ior of heterogeneous media.

Historically, the mean field theory for inelastic behavior was devel-
oped mainly for crystalline materials initially. The early knowledge
acquired through physical metallurgical studies of the plastic behavior

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8



MEAN FIELD THEORY FOR NONLINEAR BEHAVIOR 281

of single crystals leads naturally to a certain interest in their extension
to polycrystals, where the main challenge is to relate the mechanical
response of an aggregate of crystals (known as a polycrystal) to the
fundamental mechanisms of single-crystal deformation. Specifically,
the problem of predicting the yield stress of a polycrystal as a function
of the yield strength of the constituent single crystals was considered
by Sachs (1928) and studied more extensively later by Taylor (1938),
whereas Schmid and Boas (1935) originated their fundamental law re-
garding the crystallographic slip within single crystals. Note that these
earlier theoretical frameworks are specific to crystal plasticity and are
formulated within a context closer to physical metallurgy than to me-
chanics of materials. More rigorous mechanistic analysis was carries
out by Bishop and Hill (1951), who generalized the Taylor model to
describe the different loading paths and to show their extreme features
for the yield stress of polycrystalline materials. Subsequently, the de-
velopment of metal forming processing and related plastic anisotropy
problems resulting from texture evolutions provided the driving force
in extending the Taylor model to more accurate approaches.

In 1957, Eshelby introduced the concept of eigenstrains. The plastic
deformation in each single crystal can be simulated by an eigenstrain
distribution. Thus, the same homogenization techniques for linear elas-
ticity can be followed to describe the nonlinear behavior of polycrys-
talline materials. This way of thinking was first adopted by Budiansky
and Mangasarian (1960) and developed later by Kröner (1961). Their
work constitutes the fundamental basis of the self-consistent mean field
theories for nonlinear behavior of heterogeneous materials. Unlike the
Sachs and Taylor models, the self-consistent framework ensures both
the compatibility and equilibrium conditions across the grains interface
in polycrystalline aggregate. However, as discussed later, Kröner’s
model is limited to spherical inhomogeneities and isotropic matrix with
incompressible plasticity.

The next breakthrough was made by Hill (1965), who adopted the
same concept as Kröner (in the sense of Eshelby) by introducing an
original idea of describing the plastic flow by a sequence of lineari-
zations leading to an incremental procedure of homogenization. In
Hill’s approach, the overall behavior of the polycrystal, as well as the
behavior of each grain, is approximated by a ‘‘pseudo’’-elastic behavior
at each loading increment. Therefore, plastic unloading is accounted
for. However, the nonlinear material behavior, compounded by the non-
uniformity of stress and strain fields, renders the linearized properties
nonuniform in each phase. This constitutes the major difficulty in using
the Hill model without appropriate approximations.
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The treatment of this difficulty was the center of different investi-
gations leading to the emergence of mean field theories with different
varieties of linearization sequences of the nonlinear behavior. Within
these procedures, one can distinguish between the secant, the tangent,
and affine approaches. The classical secant formulation was developed
by Berveiller and Zaoui (1979) for crystalline materials and adapted
later by Tandon and Weng (1988) to the case of two-phase elastoplastic
composite materials. The secant formulation, which can be viewed as
an intermediate method between the Kröner approach and the incre-
mental method of Hill, reduces significantly the complexity of the Hill
model by assuming isotropic homogeneous plastic flow in each phase.
The first tangent mean field method was introduced by Hutchinson
(1976) to describe steady-state creep behavior of crystalline materials.
It turns out that Hutchinson’s use of the power law creep also leads to
another variant of the secant method (see below). More recently, Mol-
inari et al. (1987) derived a tangent formulation for viscoplastic power
law by adopting a sequence of linearization similar to linear thermo-
elasticity.

All of these self-consistent methods rely on the assumption of piece-
wise uniform properties so that the Eshelby inclusion solution could
be combined with the linearization procedure to obtain the overall non-
linear properties. However, for most nonlinear behavior such as plastic
flow, the fields fluctuate in each phase and their heterogeneity increases
(e.g., with the plastic flow) at each loading increment. This makes it
difficult to assess the predictive capabilities of these self-consistent
methods and to select the accurate one. Such limitation was the main
motivation behind the development of the variational principles for
nonlinear behaviors in the mid-1990s.

Variational approaches for elastic and viscoelastic composites
(Willis, 1983; Talbot and Willis, 1985; Castañeda, 1991; Suquet, 1993)
combined with a linearization procedure enable us to compare some
nonlinear mean field theories to rigorous bounds of the Hashin–
Shtrikman type. It turned out (Gilormini, 1997) that both tangent and
secant approaches lead to estimates that are too stiff and can even
violate the bounds in some cases.

Different ways of thinking have emerged recently to overcome this
deficiency of the mean field theories. Improvements can be made by
modifying the secant approach to take into account a better description
of stress and strain fluctuations at the microscale level. A first attempt
in this direction was made for particulate-reinforced composite by Qiu
and Weng (1992). It uses the average strain energy in the matrix to
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define its effective stress. Under this theory, the results are valid only
for incompressible materials. A more general theory valid for arbitrary
microstructure and compressible matrix has been developed by Suquet
(1995). It was based on the second-order moments in each individual
phase of the linear comparison solid. The use of second order moments
has also been adopted independently by Hu (1996) and Buryachenko
(1996). Another variety of the second-order estimates has been pro-
posed by Castañeda (1996). It was based on Taylor’s second-order de-
velopments of stress, strain, and resulting potentials.

An alternative in extending mean field theories to secant formulation
plasticity has been introduced by Dvorak (1992) using the transfor-
mation field theory. The methodology models the plastic flow of mul-
tiphase materials by a uniform piecewise distribution of eigenstrains.
Such approaches are in principle suitable for use as micromechanically
based constitutive laws in finite element codes. They are also very
attractive in terms of computational requirements but tend to strongly
overestimate the nonlinear overall response of heterogeneous materials
because they essentially use elastic accommodation of microstress and
strains throughout the loading history.

In this chapter, several varieties of self-consistent mean field theories
will be discussed in details. Illustrative results for face-center-cubic
(FCC) elastoplastic polycrystalline materials using an incremental self-
consistent scheme at small strains will be presented.

11.1 ESHELBY’S SOLUTION AND KRÖNER’S MODEL

As discussion above, the first attempts made in modeling the elasto-
plastic behavior of polycrystalline materials through a homogenization
scheme had their principal inspiration from the Eshelby inclusion so-
lution in linear elasticity. The idea of liking these two problems came
from two considerations. First of all, it is possible to describe the plastic
strain of each individual grain by a distribution of eigenstrains (or
stress-free strain) as introduced by Eshelby. Second, the interactions
between a typical grain and its surrounding grains can be simulated by
an inclusion problem of a single inhomogeneity undergoing a stress-
free plastic strain while being surrounded by an equivalent homoge-
neous elastoplastic medium with appropriate boundary conditions.

To introduce Kröner’s model, let us consider a representative volume
element of a polycrystalline material of total volume D comprised of
N single crystals. It is assumed that D is much larger than the volume
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of each crystal in the representative volume element of the polycrystal
aggregate so that N �� 1. The representative volume element may be
subjected to either the traction boundary condition

� • n� � � • n (11.1.1)S

or the rate form of displacement boundary condition

u̇� � �̇ • x, (11.1.2)S

where S is the surface of D and n is the outward unit normal of S. The
overdot indicates the rate, or increment. Note that the rate here is typ-
ically not the change with respect to time. Instead, it is the change (or
increment) with respect to the load.

According to the average stress and average strain theorems intro-
duced in Section 5.4, the volume averages of stress and strain tensors
are

1 1
� � � � dV, �̇ � � �̇ dV. (11.1.3)

D DD D

For the sake of simplicity, we will consider in this chapter small-
strain deformation only. Therefore, it is possible to decompose the total
strain and total strain rate into elastic and plastic parts, that is,

e p e p� � � � � , �̇ � �̇ � �̇ , (11.1.4)

where and are the elastic and plastic parts of the strain tensor,e p� �
respectively. The volume averages of strain and strain rate tensors can
be decomposed similarly:

e p e p� � � � � , �̇ � �̇ � �̇ . (11.1.5)

Note that, as discussed in Section 3.1, neither the elastic strain nore�
the plastic strain is compatible by itself, although the sum of thesep�
two fields is compatible. In other words, there is no, for example, such
displacement field such that � ( � )/2.e e e eu � u ui ij i, j j,i
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As discussed in Section 3.1, the elastic strain is related to the total
stress through Hooke’s law,

e p� � L� � L(� � � ). (11.1.6)

Single-phase polycrystals can be viewed as an assembly of essen-
tially the same single crystals of different orientations and sizes. There-
fore, an ensemble average of a field quantity can be defined as the
average over all single crystals; see Section 5.3. For example, the en-
semble averages of the stress and strain tensors are

N N

��� � c � , ��� � c � , (11.1.7)� �r r r r
r�1 r�1

where cr is the volume fraction of the r th crystal in the polycrystal
assembly D. As discussed in Section 5.3, we consider only statistically
homogeneous media in this book. Therefore, the volume average and
ensemble average of a field quantity should be the same, for example,

N1
� � � � dV � ��� � c � , (11.1.8)� r r

DD r�1

N1
� � � � dV � ��� � c � . (11.1.9)� r r

DD r�1

Similarly,

�̇ � ��̇�, �̇ � ��̇�. (11.1.10)

However, due to the interphase incompatibilities of the elastoplastic
strain fields, the elastic and plastic strain tensors by themselves may
not be ergodic, that is,

e e p p e e p p� � �� �, � � �� �, �̇ � ��̇ �, �̇ � ��̇ �. (11.1.11)

To illustrate these, let us assume that the representative volume element
D is subjected to the traction boundary condition (11.1.1). In the ab-
sence of body forces (so assumed for the rest of this chapter), the total
stress field must satisfy
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� � � � 0 in D (11.1.12)

and

� � n� � � � n. (11.1.13)S

Next, let �e be the stress field in D induced by the traction boundary
condition (11.1.1) when all the single crystals in the polycrystal assem-
bly D are linear elastic, that is,

e� � � � 0 in D (11.1.14)

and

e� � n� � � � n. (11.1.15)S

Clearly, the above equations imply that is a statically admissiblee�
stress field for the polycrystal assembly D subjected to the traction
boundary condition (11.1.1), even when plastic deformation occurs.
Further, since (11.1.14) and (11.1.15) describe a pure linear elastic
problem, it then follows from (11.1.9) that

e e� � � � ��� � �� �. (11.1.16)

The strain field corresponding to can be written as (11.1.17)e�

1 e e e–� � (u � u ) � M � , (11.1.18)ij 2 i, j i, j ijkl kl

where is the displacement field when all the single crystals in theeui

polycrystal assembly D behave linear elastically. Note that this �ij is
typically not the elastic part of the total strain field introduced ine�ij

(11.1.4), that is, �ij � e� .ij

Conceivably, and � are different because of plastic deformatione�
that occurred in D. So, we introduce the plastic residual stress field by

p e e p� � � � � or � � � � � . (11.1.19)

It is so named because represents the stress field remained in thep�
plastically deformed polycrystal assembly D after elastic unloading
( � 0). Further, it follows from (11.1.16) thate�
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p p� � �� � � 0. (11.1.20)

Equations (11.1.12)–(11.1.15) also imply that

p� � � � 0 in D (11.1.21)

and

p� � n� � 0. (11.1.22)S

We call such stress field self-equilibrium stress field. Note that gener-
ally

e e� � L� , (11.1.23)

although

e e� � � � L� . (11.1.24)

These can be seen from (11.1.6) and (11.1.19).
Now, consider again the linear elastic problem. The stress field in

the r th single-crystal �r can be written as

e� � B � in � (11.1.25)r r r

where Br is the local elastic stress concentration tensor introduced in
(5.7.9), which can be determined approximately by the homogenization
schemes developed in Chapter 7. Note that

N N N N
e e e�� � � c � � c B � � c B ��� � c B �� �.� � � �r r r r r r r r

r�1 r�1 r�1 r�1
(11.1.26)

Thus,

N

�B � � c B � I. (11.1.27)�r r r
r�1

Substituting (11.1.25) into the second of (11.1.19) yields
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p� � B � � � in � . (11.1.28)r r r r

It then follows from the decomposition (11.1.4) that

T T e T p�B �� � �B � � � �B � �, (11.1.29)

or

T T p�B �� � ��MB� � �B � �. (11.1.30)

In deriving (11.1.30), we have substituted the elastic strain by using
Hooke’s law in terms of elastic compliance M. The diagonal symmetry
of M allows us to replace BT with B. In (11.1.30), we can show easily
that the field MB is kinematically admissible. Thus, application of the
Hill lemma to ��MB� yields

e��MB� � ����MB� � �M � � , (11.1.31)

where � �MB� is the effective elastic compliance of the polycrys-M
talline material.

On the other hand, since BT is statically admissible, one can write

T T�B �� � �B �� � ��� � �, (11.1.32)

where (11.1.27) has been used. By combining (11.1.29), (11.1.31), and
(11.1.32), one can conclude that

e T e e p T p p� � �B � � � �� �, � � �B � � � �� �. (11.1.33)

The same statement can be made for the rates,

e T e e p T p p�̇ � �B � � � ��̇ �, �̇ � �B �̇ � � ��̇ �. (11.1.34)

Based on the foregoing discussions, one can derive some interesting
and well-known features of crystalline materials.
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Stored Elastic Strain Energy

The total elastic strain energy stored in D is given by

1 eU � � �� dV. (11.1.35)
D2

Making use of (11.1.6) and (11.1.19), we can rewrite this as

1 1 e p e pU � � �M� dV � � (� � � )M(� � � ) dV
D D2 2

1 1e e p e p p� � � M� dV � � � M� dV � � � M� dV.
D D D2 2

(11.1.36)

Note that the first term on the right-hand side is the strain energy in
an elastic body. Thus, it follows from the discussions in Section 5.6
that

e e e e� � M� dV � D� M� � D�M�. (11.1.37)
D

The second integral is

p e p p e p e� � M� dV � � � � dV � � � u dV � � � u n dV � 0,ij ij ij i, j ij i j
D D D S

(11.1.38)

where we have used (11.1.18), (11.1.21), and (11.1.22). Thus, the strain
energy stored in D when subjected to the traction boundary condition
(11.1.13) is given by

D 1 p pU � �M� � � � M� dV. (11.1.39)
D2 2

We see that the stored elastic strain energy contains, in addition to the
macroscopic strain energy resulting from the applied load, a contribu-
tion from the plastic residual stresses.
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Dissipated Energy

The dissipated energy due to plasticity, or the stress power from plas-
ticity, is defined as [see (2.3.5)]

1 pW � � ��̇ dV.
D2

Making use of the strain decomposition, this can be rewritten as

1 1 eW � � ��̇ dV � � ��̇ dV. (11.1.40)
D D2 2

It follows from the Hill lemma (5.5.5) that the first term on the right-
hand side of (11.1.40) can be written as

e p� ��̇ dV � D��̇ � D�� � D�� . (11.1.41)
D

Following the same arguments used in deriving the strain energy, the
second term on the right-hand side of (11.1.40) can be written as

e e p p� ��̇ dV � � �M�̇ dV � D��̇ � � � M�̇ dV. (11.1.42)
D D D

Hence

D 1 1 1p p p p p p��̇ � W � � � M�̇ dV � � ��̇ dV � � � M�̇ dV.
D D D2 2 2 2

(11.1.43)

This clearly shows that the macroscopic plastic stress power ispD��̇
not completely dissipative. The first term on the right-hand side of
(11.1.43) is dissipative, while the second term resulting from the plastic
residual stress is stored in the material. This contribution may explain
the ‘‘interphase’’ work hardening observed in polycrystalline materials
(see below).
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Interphase Work Hardening

Following the same procedure used in calculating the dissipation en-
ergy, one can easily obtain the following:

D 1 1p p p p�̇�̇ � � �̇�̇ dV � � �̇ M�̇ dV. (11.1.44)
D D2 2 2

If all the single crystals in the polycrystal assembly behave as elastic
perfectly plastic materials (without work hardening), then the plastic
flow of each crystal can be described using the normality rule as

p ˙ ˙�̇�̇ � �ƒ � 0 in D,

where ƒ(�) is the yield surface and is the well-known plastic param-�̇
eter. Therefore, we have

D 1p p p�̇�̇ � � �̇ M�̇ dV � 0 (11.1.45)
D2 2

because M is positive definite. Clearly, one can conclude from the
inequality (11.1.45) that the macroscopic or homogenized behavior of
polycrystal assembly display work hardening during its plastic flow
even though all of its single crystals are perfectly plastic. In other
words, the inhomogeneity of the material is one of the sources of its
work hardening. Such prediction has been confirmed experimentally
for polycrystalline materials. For example, for most single crystals,
there is very little work hardening during the early stage (easy glide
region) of deformation. However, during this stage, the polycrystal ex-
periences a significant work hardening due to the intergranular inter-
actions among the single crystals.

In general, a nonlinear heterogeneous material can be considered as
a standard generalized material (in the sense of thermodynamics) by
defining appropriate internal variables, state variables, and associated
thermodynamic forces. Such formulation requires an infinite number
of internal variables (e.g., the plastic strain field), which renders such
a procedure not feasible for practical situations. This is why nonlinear
heterogeneous materials require suitable approximations to model their
overall behavior. The modeling of nonlinear behavior in inhomoge-
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neous materials is still a challenging issue and has not been solved
completely yet.

Kröner’s Approach

The modeling of elastoplastic behavior of polycrystalline materials by
the concept of Eshelby’s elastic solutions was initiated by Budiansky
and Mangasarian (1960). Their original idea was to model the first
stage of the plastic deformation so that Eshelby’s elastic inclusion so-
lution is applicable without any major modifications. They argued that
the favorably oriented grains that first experience a plastic deformation
can be simulated by an ellipsoidal inclusion subjected to stress-free
plastic strain (eigenstrain) in interaction within an elastic infinite me-
dium representing the other grains that are still at the elastic regime.
This approximation is also supported by the fact that the number of
grains undergoing plastic deformation is low at the earlier stage of the
plastic flow, and hence the homogenization procedure can be performed
by the dilute approximation. In other words, the interactions between
the plastically deformed grains can be neglected.

Subsequently, Kröner, who initiated the self-consistent scheme in
elasticity, proposed a similar formulation that enables us to describe
the elastoplastic behavior beyond the earlier stages of the plastic flow.
Unlike Budiansky’s approach, Kröner considered the infinite medium
in the Eshelby scheme as the ‘‘unknown’’ homogeneous medium sub-
jected to an average at a certain stage of the plastic flow. To solvep�
the interaction or localization problem for a given set of grains sub-
jected to uniform plastic strain whereas the polycrystals as a wholep� ,
is plastically deformed by Kröner’s approximation adopts the Esh-p� ,
elby solution by describing the set of grains by an ellipsoidal inclusion
subjected to an eigenstrain and surrounded by an infinite medium,p�
which in turn is subjected to a uniform deformation One of thep� .
limitations of Kröner’s model is that the framework was developed
based on isotropic and spherical grains, and incompressible plasticity.

Let us first consider a homogeneous elastic matrix of stiffness L and
volume D, subjected to a uniform strain Let �r be an ellipsoidal�.
inclusion embedded within the matrix. It goes without saying that �r

		 D. To simulate the plasticity, let be an eigenstrain field distrib-p�r

uted in �r .
According to the Eshelby inclusion solution, the total strain on the

inclusion is given by
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p� � � � S � in � , (11.1.46)r r r r

where Sr is the Eshelby inclusion tensor for �r . This gives

p �1� � S (� � �) in � . (11.1.47)r r r r

The total stress field in the inclusion is thus given by [see (4.3.22)]

p� � L(� � � ) in � . (11.1.48)r r r r

Substituting (11.1.46) into (11.1.48) gives

p p� � L� � L(S � I)� � � � L(S � I)� , (11.1.49)r r r r r

where is the stress tensor averaged over the entire polycrystal� � L�
assembly D.

Recall that Eshelby’s tensor Sr depends on the elastic stiffness tensor
L and the shape and orientation of the inclusion. Therefore, in its gen-
eral form, (11.1.49) is capable of capturing the plastic anisotropy re-
sulting from morphological aspects related to the irregular shape of
grains.

As mentioned above, Kröner initially considered the case of spher-
ical inclusions in isotropic matrix. Under such conditions, one has [see
(2.4.23)]

h d h dL � 3KI � 2�I , S � 3	I � 2
I , (11.1.50)r

where

K 1 � � 3(K � 2�) 4 � 5�
	 � � , 
 � � ,

3K � 4� 9(1 � �) 5(3K � 4�) 15(1 � �)

(11.1.51)

K and � are, respectively, the bulk and shear moduli, and � is the
Poisson ratio of the isotropic matrix material. The symbolic notation
introduced in Section 1.4 has been used for isotropic fourth-order ten-
sors. Thus, we have
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h dL(S � I) � 3K(3	 � 1)I � 2�(2
 �1)I . (11.1.52)r

The incompressibility of the plastic deformation means

h pI � � 0. (11.1.53)r

Thus, substituting (11.1.52) into (11.1.49) yields

d p� � � � 2�(2
 � 1)I � . (11.1.54)r r

To describe the plastic flow, (11.1.54) should be written in a rate or
incremental form, that is,

d p�̇ � �̇ � 2�(2
 �1)I �̇ . (11.1.55)r r

Substituting the second of (11.1.47) into (11.1.55), we arrive at

�(2
 � 1) d�̇ � �̇ � I (�̇ � �̇). (11.1.56)r r2


Equation (11.1.56) relates local quantities and to the macro-�̇ �̇r r

scopic quantities and It constitutes the first step for a homogeni-�̇ �̇.
zation scheme crucial for an accurate prediction of the macroscopic
behavior. It is clearly seen from (11.1.56) that the interaction between
the different quantities is purely elastic. This results from the descrip-
tion of the plastic strain as an eigenstrain leading to a purely hetero-
geneous elastic problem. In reality, however, during the plastic flow,
constraints exerted by the aggregate on a single grain become softer
than in the elastic regime and change with the plastic deformation.
Since the Kröner model is based on elastic constraints that remain
elastic during the plastic flow, it will result in stiffer predictions of the
overall behavior.

Let us now introduce the instantaneous or tangent modulus of the
polycrystal and the tangent modulus of the single-crystal throught tL L

t t�̇ � L �̇, �̇ � L �̇ . (11.1.57)r r r

Substituting (11.1.57) into (11.1.56) leads to

�(2
 � 1) �(2
 � 1)t d t dL � I �̇ � L � I �̇ (11.1.58)� � � �r r2
 2


or
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�̇ � A �̇, (11.1.59)r r

where

�1
�(2
 � 1) �(2
 � 1)t d t dA � L � I L � I (11.1.60)� � � �r r 2
 2


defines the strain rate concentration tensor. Substitution of (11.1.60)
into the second of (11.1.57) leads to

N N
t�̇ � c �̇ � L A �̇. (11.1.61)� �r r r r

r�1 r�1

One can then conclude that

N
t tL � L A (11.1.62)� r r

r�1

or

�1N �(2
 � 1) �(2
 � 1)t t t d t dL � L L � I L � I .� � � � �r r 2
 2
r�1
(11.1.63)

Equation (11.1.63) inherits the implicit character of the self-
consistent scheme as is the case in linear elasticity. Clearly the non-
linearity is captured in (11.1.63) since the local tangent modulus
depends on the plastic strain p� .

If we further assume that the instantaneous tangent modulus tensor
is also isotropic, that is,

t t h t d t t h t dL � 3K I � 2� I , L � 3K I � 2� I , (11.1.64)r r r

then

�1
�(2
 � 1) �(2
 � 1)t t d t dL L � I L � I� � � �r r 2
 2


t t2� [4
� � �(2
 � 1)]rt h d� 3K I � I . (11.1.65)r t4
� � �(2
 � 1)r

Making use of this in (11.1.63) gives us
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N t tc � [4
� � �(2
 � 1)]r rt� � . (11.1.66)� t4
� � �(2
 � 1)r�1 r

To see some insight of the Kröner model prediction, we consider the
case

t t� 		 �, � 		 �. (11.1.67)r

This is approximately true for later stages of plastic deformation. Under
this assumption, (11.1.66) reduces to

N
t t� � c � . (11.1.68)� r r

r�1

This last equation is the Taylor–Lin bound, which is equivalent to the
Voigt model in linear elasticity. In fact, the Taylor–Lin model (Taylor,
1938; Payne et al. 1958) assumes homogeneous strain in the polycrys-
talline aggregate so that � � Therefore, the effective tangent modulus�.
predicted by the Taylor–Lin model simply leads to (11.1.68).

Treating the interactions between grains as elastic instead of elas-
toplastic is one of the major limitations of the Kröner model. Addi-
tionally, the consistency attributed to the Kröner approach is not really
true since in his procedure the equivalent homogeneous medium is
taken to be elastic even though with assigned plastic deformation.
These shortcomings are taken into consideration in the Hill self-
consistent model to be discussed next.

In closing this section, we mention that although the Kröner model
presented here is in terms of a summation over all the single crystals,
the results can be easily recast into integral forms (ensemble average),
as discussed in Section 7.5.

Hill’s Self-Consistent Model

To solve the nonlinear elastoplastic deformation, Hill proposed solving
successive linear problems at each loading increment. To accomplish
this, Hill introduced the following local and global constitutive laws:

t t�̇ � L �̇ , �̇ � L �̇, (11.1.69)r r r

where is the tangent modulus of the r th grain, is the effectivet tL Lr

tangent modulus of the polycrystal assembly, and and are, re-�̇ �̇r r
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spectively, the stress and strain rates averaged over the r th grain, while
and are, respectively, the stress and strain rates averaged over the�̇ �̇

entire polycrystal assembly. The inverse of these equations are

t t�̇ � M �̇ , �̇ � M �̇, (11.1.70)r r r

where is the tangent compliance of the r th grain and is thet tM Mr

effective tangent compliance tensor of the polycrystal assembly.
To solve for we assume that the r th grain in the polycrystaltL ,

assembly is simulated by an ellipsoidal inclusion �r embedded in a
homogeneous matrix with effective modulus tensor which is yet totL ,
be determined. As in the linear elastic case, such self-consistent ap-
proach accounts for, at least partially, the interactions between the
grains.

Making use of the rate form of (4.5.19), we have

�̇ � �̇ � H (�̇ � �̇ ), (11.1.71)r r r

where the concentration tensor is given by [see (4.5.13)]Hr

t �1H � L (S � I). (11.1.72)r r

In the above, is the Eshelby inclusion tensor computed for the in-Sr

clusion �r embedded in a matrix with elastic stiffness tensor IttL .
depends on the shape of �r and on the overall property Note that,tL .
although (11.1.71) and (11.1.72) are similar to the linear elastic case,
the effective property to be determined here is the effective tangent
modulus of the heterogeneous material, not the effective elastic mod-
ulus.

Substituting (11.1.69) into (11.1.71), one obtains

t t(L � H )�̇ � (L � H )�̇. (11.1.73)r r r r

From this equation, the average strain rate on the r th grain is expressed
in terms of the macroscopic strain rate as

�̇ � A �̇, (11.1.74)r r

where

t �1 tA � (L � H ) (L � H ), (11.1.75)r r r r
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is the strain rate concentration tensor in elastoplastic deformation,
which depends on the effective tangent modulus and geometrical as-
pects of the grain in consideration �r .

Similarly, making use of (11.1.70) in (11.1.71) gives the average
stress rate on the r th grain in terms of the global stress rate,

�̇ � B �̇, (11.1.76)r r

where

�1 t �1 �1 tB � (H � M ) (H � M ). (11.1.77)r r r r

It then follows from (11.1.74)–(11.1.76) and (11.1.69) and (11.1.70)
that

N N N
t t�̇ � c �̇ � c L �̇ � c L A �̇, (11.1.78)� � �r r r r r r r r

r�1 r�1 r�1

N N N
t t�̇ � c �̇ � c M �̇ � c M B �̇. (11.1.79)� � �r r r r r r r r

r�1 r�1 r�1

These lead to

N N
t t t tL � c L A , M � c M B . (11.1.80)� �r r r r r r

r�1 r�1

The last two equations are the Hill self-consistent scheme to evaluate
the effective tangent modulus and effective tangent compliance tenors
of a polycrystal assembly. Note that the second of (11.1.80) requires
that the tangent compliance tensor Mt for each grain to exist. When
this is the case, one can show that (see Problem 11.6)

t t t tL A � B L and M B � A M . (11.1.81)r r r r

This leads to � � I; see Problem 11.6. Therefore, it isML LM
sufficient to solve either the first or the second of (11.1.80). In practice,
the first of (11.1.80) is more widely used because Mt is not always
well defined for all single crystals for a given polycrystal assembly.
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As discussed in Section 7.5, (11.1.80) can be cast into an integral
form. We will not repeat the discussion here. Readers are encouraged
to formulate (11.1.80) into an integral form on their own.

Note that (11.1.80) reduces to the self-consistent estimates (7.5.13)
and (7.5.14) if the tangent modulus and tangent compliance tensors are
replaced by their corresponding elastic stiffness and compliance ten-
sors. This implies that the linear elastic behavior is a special case of
the Hill model for elastoplastic behavior. Generally, (11.1.80) gives
more accurate results in comparison with Kröner’s model because
Hill’s model captures at least partially the fluctuations of strains be-
tween each grain. However, the Hill model is still an approximation
because of the use of piecewise uniform mechanical properties on each
grain. Therefore, any intraphase fluctuation arising naturally from the
elastoplastic behavior is disregarded in this approach.

It should also be noted that obtaining from (11.1.80) is not antL
easy task. This is due to the implicit nature of the equation and the
anisotropy of the linearized constitutive laws (11.1.69), which makes
the calculation of the Hill constraint tensors a complicated task. In
general, the determination of through (11.1.80) requires an iterativetL
procedure. First, for a given state of deformation, an initial guess of

is used on the right hand of (11.1.80) to calculate an improved valuetL
for Then, this improved is substituted back into the right-handt tL . L
side of the equation again to obtain the next improvement. This pro-
cedure is repeated sufficiently until a convergent value is obtained for

tL .
Another major difficulty behind the Hill self-consistent model is re-

lated to how the effective tangent modulus depends on the prescribedtL
values of strain rate Unlike in the single-crystal case where only a�̇.
finite number of branches exist, for polycrystals varies continuouslytL
as the direction of prescribed strain rate varies in the strain rate space.
In other words, is a homogeneous function of degree zero oftL �̇
(Hutchinson, 1970). In practice, additional assumptions are usually
made regarding the anisotropy of the tangent modulus in order to sim-
plify the calculations. Examples of this will be discussed in the next
section.

11.2 APPLICATIONS

The main purpose of this section is to explore the feasibility using the
Hill self-consistent method to predict stress–strain behavior of poly-
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crystalline materials from the elastoplastic properties of single-crystal
constituents. We will focus on FCC metallic materials by presenting
briefly the main features of plastic deformation at the continuum level
of single crystals under conventional loading conditions of strain rates
and temperature. Our attention is not to describe exhaustively the var-
ious mechanisms of plastic deformation from a physical metallurgy
point of view, for such a purpose the readers are referred to more
specialized textbooks and technical papers that are recommended at the
end of this chapter. Instead, we will follow a mechanistic procedure to
bridge the scales between the single-crystal level and the polycrystal-
line level.

Plastic Deformation of Single Crystals

The physical understanding of single-crystal plasticity was established
during the earlier years of the last century, in 1900 to 1938, with the
contribution of Ewing and Rosenhain (1900), Bragg and Bragg (1933),
Taylor and co-workers (1923, 1925, 1934, 1938), Polanyi (1922),
Schmid and Boas (1935), among others. Their experimental measure-
ments established that at room temperature the major source of plastic
deformation is the dislocation movements through the crystal lattices.
These motions occur on certain crystal planes in certain crystallo-
graphic directions, and the crystal structure of metals is not altered by
the plastic flow. Mathematical descriptions of these physical phenom-
ena of plastic deformation in single crystals were presented by Taylor
(1938), when he investigated the plastic deformation of polycrystalline
materials in terms of single-crystal deformation. More rigorous and
rational formulations were given by Hill (1965), Hill and Rice (1972),
Asaro and Rice (1977), and by Hill and Havner (1982). A comprehen-
sive review of this subject can be found in Azaro (1983).

The kinematics of single-crystal deformation and the resulting elas-
toplastic constitutive laws are based on an idealization of dislocation
motion as a collective movement of the atoms leading to slips in certain
directions on specific crystallographic planes. This process occurs when
the resolved shear stress on one or more of these slip systems reaches
a critical value. As plastic deformation proceeds, the critical yield
stresses associated with the slip systems increases. This contributes to
the strain hardening of the polycrystalline aggregate.

Consider a single crystal with N possible slip systems. Each system
g is characterized by the unit normal ng to the slip plane on which the
collective movement of dislocations occurs, and by the direction mg of
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dislocation gliding, which is colinear with the Burger vector bg of glid-
ing dislocations on the system g, so that bg � bmg, where b is the
magnitude of the Burger vector. The mathematical tool treating the
collective movement of dislocations considers each dislocation line as
the boundary of a cutting surface Sg with a unit normal ng, across which
the discontinuities of the displacement vector are uniform and char-
acterized by the Burger vector bg so that This transformationg gb n � 0.i i

can be described at each material point by a second-order tensor �p(r)
as

p g g g� (r) � b n 
(S ), (11.2.1)ij i j

where 
(Sg) is the surface Dirac function given by

g
(S ) � � 
(r � r) dS�. (11.2.2)
gS

If many dislocations with the same Burger vector bg and the same
cutting surfaces are present in the single-crystal volume V, one can
define an average transformation �p by

1p g g g� � bm n � 
(S ) dV. (11.2.3)ij i j
VV

Introducing the average plastic shear 	g by

1g g	 � b � 
(S ) dV (11.2.4)
VV

leads to

p g g g� � 	 m n . (11.2.5)ij i j

If we account for all dislocations present at the slip systems, (11.2.5)
can be extended to

p g g g� � 	 m n . (11.2.6)�ij i j
g

The shear rate is calculated from (11.2.4) asg	̇
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 1g g	̇ � b � 
(S ) dV . (11.2.7)� �
V
t V

Equation (11.2.7) describing the creation and movement of dislocations
at the continuum level corresponds to the Orowan relation.

The rate of plastic distortion is the sum of the contributions ofp�̇
the shear rates from all the active slip systems. That isg	̇

p g g g�̇ � 	̇ m n . (11.2.8)�ij i j
g

The symmetric part of the plastic distortion gives the plastic strain rate

1p p p g g˙ ˙�̇ � (� � � ) � 	̇ R , (11.2.9)�ij ij ji ij2 g

where

g 1 g g g g–R � (m n � m n ). (11.2.10)ij 2 i j j i

The antisymmetric part of the plastic distortion defines the plastic spin,

1p p p g g˙ ˙ ˜ẇ � (� � � ) � 	̇ R , (11.2.11)�ij ij ji ij2 g

where

g 1 g g g g˜ –R � (m n � m n ). (11.2.12)ij 2 i j j i

The second-order tensors Rg and are also called the orientationgR̃
tensors because they depend only on the orientation of the single crystal
in consideration.

Let � denote the stress in the single crystal. The so-called resolved
shear stress on a slip system g is given by

g g� � � R . (11.2.13)ij ij

Within the framework of time-independent plasticity (any viscous ef-
fect is neglected), a slip system g is considered to be active if the
resolved shear stress �g reaches a critical value which depends ong� ,c
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the previous deformation history of the single crystal, leading to a strain
hardening state. It is generally assumed that the deformation history of
a given slip system g depends on only the amplitude of shear strain
associated with N active systems, so that one can write

g g 1 2 N˜� � F (	 , 	 , . . . , 	 ). (11.2.14)c

When the amount of shear is small enough, we can use a linear ap-
proximation of (11.2.14),

g˜
Fg g h˜� � F (0, 0, . . . , 0) � (0, 0, . . . , 0)	 , (11.2.15)�c h
	h

where (0, 0, . . . , 0) can be viewed as the initial critical shear stressgF̃
of the slip system g. It is generally assumed the same for all slip
systems. Therefore, (11.2.15) can be expressed as

g 0 gh h� � � � H 	 (11.2.16)�c
h

where �0 � (0, 0, . . . , 0), and Hgh � 
 /
	h (0, 0, . . . , 0) is theg g˜ ˜F F
strain hardening matrix, which describes the hardening interactions be-
tween the different slip systems. Note that the diagonal components of
the matrix Hgh define the self-hardening due to the plastic shear in the
same system, while the nondiagonal components correspond to the la-
tent hardening due to shear slip on the other systems. The matrix co-
efficients can be evaluated by experimental characterization performed
on single crystals.

At any stage of the deformation process, the rate of changes of
critical shear stress is deduced from (11.2.16) as

g gh h�̇ � H 	̇ . (11.2.17)�c
h

It follows from the above definitions that a slip system is potentially
active if � and loading or unloading, respectively, depending ong g� �c

whether

g g g�̇ � �̇ with 	̇ � 0 (11.2.18)c

or
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g g g�̇ 	 �̇ with 	̇ � 0. (11.2.19)c

A system is inactive if 	 and � 0.g g g� � 	̇c

Relation (11.2.17) is known as the consistency condition whose res-
olution for each active system g determines the shear rate on thisg	̇
system. Taking into account (11.2.13) and (11.2.18), the consistency
condition writes

g gh h�̇ R � H 	̇ . (11.2.20)�ij ij
h

From the definition (11.2.9) of the plastic strain rate, the total strain
rate is the sum of the elastic and plastic parts, that is,

e p �1 g g�̇ � �̇ � �̇ � L �̇ � 	̇ R (11.2.21)�
g

or

g g�̇ � L �̇ � 	̇ R . (11.2.22)�	 

g

Note that for a given state of stress �, is uniquely related to if�̇ �̇
the hardening matrix Hgh, governing the shear rates in different slip
systems, is positive semidefinite (Hill, 1966), while only for certain
hardening laws are the shear rates always unique. At least one setg	̇
of shear rates exists that satisfies the constitutive relations (11.2.9) and
(11.2.17) through (11.2.21) for a prescribed strain rate (or prescribed�̇
stress ). If there are N nonzero they would satisfy N equationsg�̇ 	̇ ,
resulting from the combination of the consistency condition �g g�̇ �̇c

and the constitutive relations (11.2.22). In fact, substituting (11.2.22)
into (11.2.20) yields the following set of equations:

gh h gQ 	̇ � R L�̇, (11.2.23)�
h

where

gh gh g hQ � H � R LR . (11.2.24)

These equations are associated with the loading system together with
the constraints � 0.h	̇
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Only for certain hardening laws will the N 
 N matrix Qgh be nec-
essarily nonsingular. For perfect plasticity (Hgh � 0), for example, it is
always possible to choose at least one set of linearly independent slip
systems among the potentially active ones such that this matrix is non-
singular and the auxiliary equations (11.2.20) are satisfied. Thus, for
perfect plasticity the dimension of Qgh is never greater than 5 
 5. If
its inverse is denoted by the N nonzero shear rates for this choiceghQ̃ ,
of active slip systems are expressed by

� �g g g gh h˜	̇ � �̇ �̇ with �̇ � Q LR . (11.2.25)�
h

Recall that the tangent modulus and compliance tensors of a single
crystal are given, respectively, by (11.1.69), that is,

t t�̇ � L �̇, �̇ � M �̇. (11.2.26)

From the foregoing kinematics of single-crystal plastic deformation,
the main feature of the tangent modulus and compliance is that they
depend on the set of active slip systems, which in turn depends on the
prescribed strain rate (or stress ). It is well known in crystal plas-�̇ �̇
ticity that the definitions of tangent modulus and tangent compliance
lead to a multibranch description. It also should be noted that, regarding
(11.2.26), the inverse of tangent modulus does not exist in all situations.
In other words Lt may possess some singularities. Perfect plastic be-
havior is one of such cases, where the problem of homogenization is
typically carried out by using directly the tangent modulus rather than
its inverse, since there is no restriction on the strain rate, whereas the
stress rate is subjected to certain conditions regarding the regions in
stress rate space.

Substituting (11.2.25) into (11.2.22) and in comparison to (11.2.26),
one obtains the following expression for single-crystal tangent modu-
lus:

�t g gL � L I � R �̇ . (11.2.27)�	 
ijmn ijkl klmn kl mn
g

Using (11.2.25) and (11.2.24), (11.2.27) can be explicitly rewritten as

t gh g h �1 g hL � L I � (H � R LR ) R L R .�	 
ijkl ijmn mnkl mn klpq pg
g,h

(11.2.28)
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It can be readily shown that the tangent modulus Lt as given by
(11.2.28) satisfies the symmetries

t t gh hgL � L if H � H . (11.2.29)ijkl klij

If the single crystal is assumed to be elastically isotropic, then we
have [see (1.4.5)]

h dL � 3KI � 2�I , (11.2.30)

where

h 1 d 1 2– – –I � 
 
 , I � (
 
 � 
 
 � 
 
 ).ijkl 3 ij kl ijkl 2 ik jl il jk 3 ij kl

The tangent modulus thus becomes

t h d 2 g gh g h �1 hL � 3KI � 2�I � 4� R (H � 2�R R ) R ,�ijkl ijkl ijkl ij pq pq kl
g,h

(11.2.31)

where the plastic incompressibility is used.
In summary, the single-crystal tangent modulus described by

(11.2.28) and (11.2.31) is unique for a given strain rate even if the�̇
strain rates are not. Referring to (11.2.31), one can remark that eveng	̇
though the elasticity is approximated as isotropic, the tangent moduli
are anisotropic in nature. This results from the typical process of the
plastic flow activated on discrete slip systems and their interactions
governing the strain hardening behavior.

Plastic Deformation of Polycrystalline Materials

In the previous section, we presented a possible way to determine the
tangent modulus of a single crystal from the theory of homogeneous
and continuum slip on well-defined slip systems. Let us now consider
a polycrystalline material where the current configuration has under-
gone certain plastic deformation, and the potentially active slip systems
as well as the stress distribution in each grain are known. In this stage
the polycrystal is subjected to a loading increment characterized, for
example, by a strain rate To determine the effective tangent modulus�̇.

using the Hill self-consistent model, we need to evaluate the instan-tL
taneous stress and strain rates, and as well as the tangent moduli�̇ �̇,
Lt, for a given prescribed macroscopic stress rate or strain rate�̇ �̇.
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To this end, an iterative procedure is needed. First, a tentative guess
is made for so that the Hill constraint tensor given by (11.1.72) cantL
be determined. Then, for each active set of slip systems, necessarily a
subset of potentially active systems, the tangent modulus for the grain
considered is calculated from (11.2.28) or (11.2.31) in the case of iso-
tropic elasticity. Next, the strain concentration tensor A is computed
for this grain using (11.1.75). To ensure that the assumed set of active
slip systems do constitute the correct branch of Lt for the prescribed

(or ), the auxiliary conditions (11.2.20) should be checked by taking�̇ �̇
into account Eqs. (11.1.75) and (11.2.26). If condition (11.2.20) is ful-
filled, then Lt is correct for this iteration; if not, a new set of potentially
active systems should be chosen until the correct Lt and A are found.
This procedure is carried out for each grain orientation. The final step
in the first iteration is to calculate an improved estimate (in comparison
to the initial guess) of from (11.1.80). The entire procedure is thentL
repeated until a convergent is reached.tL

In the next two sections, the method is illustrated by simulating a
monotonically increasing uniaxial load. In this case, the tangent mod-
ulus tensor is transversely isotropic. The corresponding Eshelby inclu-
sion tensor and the Hill constraint tensors are obtained for computing
the strain or stress concentration tensors.

Hutchinson’s Calculations

Hutchinson (1970) implemented the Hill self-consistent model to study
the behavior of a polycrystal consisting of randomly oriented FCC
single crystals. In his computational procedure, the grains are consid-
ered spherical in shape and their orientations are assumed equally rep-
resented so that the average procedure required for the homogenization
steps can be performed over all orientations.

The elasticity of each single crystal is described by three independent
Voigt elastic constants C11, C12, and C44 in the classical way of cubic
symmetries. The random distribution of single crystals leads to isotro-
pic overall elastic constant of the polycrystalline aggregate character-
ized by its bulk modulus K and shear modulus �. Using the linear
elastic self-consistent method for randomly distributed cubic crystal,
the elastic moduli of the polycrystal can be obtained (Problem 11.4):

1–K � (C � 2C ), (11.2.32)3 11 12

3 28� � (5C � 4C ) � � C (7C � 4C ) �11 12 44 11 12

� C (C � C )(C � 2C ) � 0. (11.2.33)44 11 12 11 12
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An FCC single crystal has crystallographically similar systems
whose unit normals are the four [1,1,1]-type directions, relative to the
crystal axes, and whose slip directions are the [1,1,0] types. As for
elastic deformation, the self-consistent method can be used to express
the initial critical macroscopic stress (the yield stress) in terms of0�c

the initial shear stress of a slip system introduced by (11.2.16). That0�c

is (see Problem 11.5)

30 0� � � , (11.2.34)	 
c c 2 2� 2� � �2 3

where

C � C C11 12 44� � , � � ,2 32�(1 � 2
) � 2
(C � C ) �(1 � 2
) � 2
C11 12 44

(11.2.35)

and 
 is given by (4.3.38).
For the case of isotropic elasticity where 2C44 � C11 � C12, it can

be readily shown that �2 � �3 � 1. Hence �0 0� � .c c

Note that expression (11.2.33) is equivalent to assuming a Tresca
criterion for the overall yield stress. This is only valid if no residual
stresses are present in the polycrystalline materials.

During a monotonic uniaxial tensile test in the x3 direction, the tan-
gent moduli display transverse isotropy with respect to the macro-L
scopic coordinate system, so that Hooke’s law can be written in terms
of the Voigt elastic constants:

t t t�̇ C C C 0 0 0 �̇11 11 12 13 11
t t t�̇ C C C 0 0 0 �̇22 11 11 13 22
t t t�̇ C C C 0 0 0 �̇33 11 11 33 33� , (11.2.36)t�̇ 0 0 0 C 0 0 2�̇13 44 13

t�̇ 0 0 0 0 C 0 2�̇� 
 � 
� 
23 44 23
t�̇ 0 0 0 0 0 C 2�̇12 66 12

where

t 1 t t–C � (C � C ). (11.2.37)66 2 11 12
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Copper is selected for this simulation because its single crystal
shows strong elastic anisotropy. The elastic moduli for single-crystal
copper used in our calculations are C12/C11 � 0.722 and C44/C11 �
0.447. The self-consistent predictions using Eqs. (11.2.32)–(11.2.34)
give, respectively, the polycrystalline elastic moduli and initial critical
shear stress:

0 0K � 0.815C , � � 0.285C , � � 1.129� (11.2.38)11 11 c c

or

E � 0.722C , � � 0.343, (11.2.39)11

where E is Young’s modulus and � Poisson’s ratio.
Furthermore, we pay particular attention to the single-crystal strain

hardening and its effect on the polycrystalline hardening, by consid-
ering both perfect plasticity for each grain, as well as different forms
of the hardening matrix Hgh.

As shown by Kneer (1965), the transverse isotropy of the overall
tangent modulus leads to analytical expressions of the Eshelby tensor.
It follows from the Kneer calculations that the Eshelby tensor can be
expressed as

S � T L ,ijkl ijmn mnkl

where

3
(m) (m)˜T � K T ,�ijmn ijmn

m�0

1 2m1 z(m)K � � dz, (m � 0, 3).2 4 6
08 a � a z � a z � a z0 1 2 3

The coefficients am and are a polynomial functions of the com-(m)T̃ijmn

ponents of the transverse isotropic tangent modulus. Details of thisCij

calculation can be found in (Kneer, 1965).
We first consider the case without strain hardening in single crystals.

The results are presented in Figure 11.1 for isotropic elasticity and
anisotropic elasticity with the moduli of copper listed in (11.2.38).
Clearly, the results show that the elastic anisotropy increases the initial
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Figure 11.1 Tensile stress–strain curves for FCC polycrystals with randomly ori-
ented and perfectly plastic single crystals.

yield stress of the polycrystal. This is not expected because the inhomo-
geneous elasticity arising from single-crystal anisotropy should de-
crease, rather than increase, the yield strength of the polycrystal yields.
This might be explained by the fact that stresses in each grain are
estimated by treating them as spherical inclusions. This is one of the
limitations of the self-consistent model.

As discussed previously, the polycrystalline aggregate displays a
strain hardening behavior even if every single crystal in the aggregate
behaves as a perfect plastic material. This arises from the intergranular
interactions.

To show the effect of single-crystal strain hardening, the interaction
matrix Hgh should be estimated. In general, this procedure requires an
experimental analysis performed on single crystals. Different forms of
strain hardening matrix have been proposed in the literature. Taylor’s
(1938) isotropic hardening law is the simplest and the most widely
used one. This law states that the yield stresses of all slip systems
remain equal and increase in proportion to the total shear. So that Hgh

� h for all g and h, we have � h�h
g h�̇ 	̇ .c

Taylor’s simple hardening law is not able to reproduce the principal
features of a single-crystal hardening, nor can it capture the polycrys-
talline hardening behavior, especially, at later stages of plastic defor-
mation where multiple activations of slip systems render the
interactions highly anisotropic.

Nevertheless, the Taylor’s hardening law is used in the calculations
presented in Figure 11.2 to show at least at the earlier stage of the
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Figure 11.2 Effect of single-crystal hardening.
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Figure 11.3 Upper and lower bounds on stress–strain curves.

plastic flow the effect of single crystals hardening. The computations
are performed for different hardening parameters h.

Finally, under the same conditions without single-crystal hardening,
the stress–strain relationship for polycrystal copper is estimated using
the upper bound of the Taylor–Lin model and the Kröner’s self-
consistent model. The comparison is shown in Figure 11.3. As dis-
cussed throughout this chapter, the stress–strain curve obtained from
Kröner’s model lies above the one obtained by the Hill method. This
is expected because in the Kröner inclusion problem, the matrix exerts
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an elastic constraint, whereas in the Hill model the matrix provides a
much softer constraint because of plastic deformation.

11.3 TIME-DEPENDENT BEHAVIOR OF POLYCRYSTALLINE
MATERIALS: SECANT APPROACH

Time-dependent behavior of polycrystalline materials was first modeled
by Hutchinson (1976) by assuming a power law describing the shear
rate on slip systems for a given single crystal. The analysis was per-
formed under small-strain condition leading to an elastoviscoplastic
type behavior.

Hutchinson (1976) assumed a steady-state creep behavior for single
crystals for which the shear rate induced in a slip system g by a given
resolved shear stress �g is described by a rate-sensitive criterion, which
is equivalent to assuming a nonlinear viscous behavior:

ng�g 0	̇ � 	̇ , (11.3.1)	 
g�c

where is a reference rate and n is the inverse of rate sensitivity.0	̇
When n �� 1, the shear rate increase is negligible unless �g is very
close to This statement is equivalent to conditions (11.2.19) andg� .c

(11.2.20) for slip systems activation in time-independent plasticity. The
critical shear stress often called reference stress in time-dependentg� ,c

plasticity, is strongly dependent on temperature. The exponent n de-
pends also on temperature, although somewhat less strongly, and usu-
ally falls between 3 and 8 for metals. A survey on the temperature
ranges where the steady-state creep of polycrystal and single crystal
can be approximated by a power law was given by Ashby and Frost
(1975).

If N is the total number of slip systems, the total strain rate is the
sum of the contributions from all these systems:

N
g g s�̇ � 	̇ R � M � , (11.3.2)�ij ij ijpq pq

g�1

where
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n�1N 0 g	̇ �s g gM � R R (11.3.3)� 	 
	 
ijpq ij pqg g� �g�1 c c

with Ms being the so-called secant viscoplastic compliance of the single
crystal. As reported by Hutchinson (1976), the compliance tensor is
homogeneous of degree n � 1 in stress so that

s n�1 sM (��) � � M (�). (11.3.4)

Let us now define the stress potential �(�) and strain rate potential
�( ) such that�̇


� 
�
�̇ � and � � . (11.3.5)


� 
�̇

The viscoplastic constitutive law (11.3.2) leads to the following typical
relationships between the dissipation � , �(�), and �( ):�̇ �̇

nn � 1 g g��̇ � (n � 1)�(�) � �(�̇) � � 	̇ . (11.3.6)�
n g�1

Substituting (11.3.5) into (11.3.6) and by differentiating (11.3.6) with
respect to the stresses, one obtains

2
 
� 
� 
 �
(� �̇ ) � (n � 1) � � � . (11.3.7)kl kl kl
� 
� 
� 
� 
�ij ij ij ij kl

This last equation leads to

2
� 
 �
n � � . (11.3.8)kl
� 
� 
�ij ij kl

Combining (11.3.8) with (11.3.2), we can readily show that

21 
 �sM � , (11.3.9)ijkl n 
� 
�ij kl

where
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2
 � 
�̇ij t� � M . (11.3.10)ijkl
� 
� 
�ij kl ij

In Eq. (11.3.10), Mt is the tangent compliance tensor.
On the other hand, a Taylor expansion of (11.3.2) at the vicinity of

a point can be written as�̃ � �̇


�̇ij ˜ t ˜�̇ � � � �̇ � M (�̇) � � �̇ , (11.3.11)�ij kl ij ijkl kl ij
�kl ���̃

where is called the back-extrapolated strain rate.˜̇�ij

From (11.3.9) and (11.3.10), the relation between the grain’s secant
and tangent compliances are

t sM � nM . (11.3.12)

At the polycrystal level, the macroscopic constitutive law is assumed
to be similar to that of single crystals, so that one can write

s�̇ � M � , (11.3.13)ij ijpq pq

where is the macroscopic secant compliance tensor. In the samesM
way as in the single-crystal case, Taylor expansion of (11.3.13) at the
vicinity of the macroscopic stress leads to the definition of a macro-
scopic tangent modulus astM

t 0�̇ � M (�) � � �̇ , (11.3.14)ij ijpq pq ij

where � 
 /
 and is a macroscopic extrapolatedt 0M (�) �̇ � � �̇ijkl ij kl ��� ij

strain rate.
Hutchinson (1976) has shown that the macroscopic tangent and se-

cant compliance tensors are linked by a relation similar to the one for
single crystals, that is, � n This is derived by defining thet sM M .
macroscopic dissipation macroscopic strain rate potential �( ), and��̇, �̇
stress potential �( ) such that�


� 
�
�̇ � and � � .


� 
�̇

Note that Eqs. (11.3.11) and (11.3.14) are exact only when they
describe the strain rate associated with the stress used as a reference
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for the expansion. Otherwise they are only approximate. This will not
present a limitation for the treatment of the grains since the stress and
the strain rates are assumed to be uniform within the framework of the
self-consistent scheme. As a result, the actual value of stress in the
grain considered can be selected to perform the expansion.

Starting from the linearized equation (11.3.14), the macroscopic tan-
gent compliance tensor can be estimated by adopting a Hill-typetM
self-consistent method. In other words, one can consider each grain

with tangent compliance Mt and prescribed reference strain rate em-˜̇�
bedded in a homogenized effective medium having the properties of

and prescribed reference strain ratet 0M �̇ .
Following the same procedure as for Eqs. (11.1.71) and (11.1.72),

the Eshelby solution extended to a tangent formulation gives the inter-
action relation linking the local to the macroscopic quantities [see
(4.5.19)],

˜�̇ � �̇ � H(� � �), (11.3.15)

where H̃ is the inverse of the Hill constant tensor,

�1 �1 tH̃ � (S � I) M . (11.3.16)

Note that Eshelby’s tensor in (11.3.16) depends on the tangent com-
pliance tensor together with the shape of the grain in consideration. As
reported by Lebensohn and Tomé (1993), the relation � n ena-t sM M
bles us to express the equations in terms of the secant compliance
tensor as

�1 �1 sH̃ � n(S � I) M . (11.3.17)

Substituting (11.3.2) and (11.3.12) into (11.3.15) yields

� � B�, (11.3.18)

where

s �1 s˜ ˜B � (M � H) (M � H).

Finally, the homogenization procedure using � ��� and �s� M
leads tos�M B�

s s s �1 s˜ ˜M � �M �(M � H) (M � H)�. (11.3.19)
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In summary, we have introduced in this section the viscoplastic self-
consistent model initially developed by Hutchinson (1976) for model-
ing steady-state creep of polycrystalline materials, and have shown how
to relate a secant formulation to a tangent formulation. We have also
shown how the Eshelby solution required for the self-consistent scheme
can be used to combine both the secant and tangent moduli for solving
interaction problems.

Since Hutchinson’s work (1976), the viscoplastic self-consistent
model has been adopted by many authors as an alternative strategy to
tackle the problem of large plastic deformations by simply neglecting
the elastic deformation. This way of thinking was successively adopted
by Molinari et al. (1987) to describe the texture development in cubic
polycrystals. For more information regarding the numerical implemen-
tation and limitations of the method, the readers are referred to the
work of Lebensohn and Tomé (1993).

PROBLEMS

11.1 Prove Eq. (11.1.30).

11.2 Check the consistency � of the prediction from�1L (M)
(11.1.80).

11.3 Show that, for perfect plasticity, the dimension of Qgh is never
greater than 5 
 5.

11.4 For cubic symmetries, if we assume that all single crystals are
randomly oriented, show that a self-consistent estimation of the
elastic constant of the polycrystal gives isotropic moduli ex-
pressed by Eqs. (11.2.32) and (11.2.33).

11.5 For cubic symmetries, if we assume that all single crystals are
randomly oriented, show that the overall critical shear stress is
given by (11.2.38).

11.6 Show the following relationships:

t tL A � B L and M B � A M.r r r r
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12
NONLINEAR PROPERTIES

OF COMPOSITES
MATERIALS:

THERMODYNAMIC
APPROACHES

Thermodynamic approaches in micromechanics consist of solving the
field equations by minimizing a free energy, where the minimum found
corresponds to the desired macroscopic potential which repre-W(�),
sents the mechanical energy stored in the domain V of the represen-
tative volume element (RVE) subjected to a macroscopic strain . As�
mentioned in the linear case through the introduction of variational
principles, which leads to different bounds, an exact solution to these
field equations is rather difficult to obtain and becomes impossible to
derive in the nonlinear case. This is mainly due to highly fluctuating
fields resulting from the nonlinear behavior of the constituents.

It has been shown that approximated solutions for the local problem
can be obtained in the linear case, leading to pertinent estimations of
the macroscopic behavior, which are capable of accounting for the in-
fluence of morphological parameters and phase spatial distribution on
the global behavior. Unfortunately, due to the nonapplicability of the
superposition principle, on which most developments are based in lin-
ear cases (e.g., use of elementary solutions such as Eshelby’s one), the
philosophy behind these approaches cannot be transported directly to
nonlinear behaviors.

To take advantage of the knowledge acquired in linear cases, line-
arization of the local constitutive laws could be one of the interesting
approaches. The procedure consists of replacing the nonlinear field
equations in the RVE by linear equations in the same RVE, whose
solution can be evaluated exactly or approximately via the use of the
tools developed for linear materials. The linearization is completed with

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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a set of complimentary equations, which characterizes the parameters
defining the linear problem (e.g., elasticity moduli). Typically, these
equations are nonlinear so that the character of the initial problem is
conserved. However, in this case, we will not deal with field equations
but with equations involving a finite set of variables which can be
solved with the appropriate numerical tools. In most cases, simple al-
gorithms lead to a solution.

The methodology presented in the above is referred to as the ‘‘non-
linear extension’’ of a linear model. The local linear problem resulting
from the linearization procedure is identical to the homogenization
problem for linear composites, referred to as linear comparison com-
posite (LCC). This virtual LCC results solely from the linearization
step and has no physical existence. Further, its moduli are distinct from
the initial elasticity moduli of the real nonlinear composite. Although
it is often the case, the LCC does not necessarily have the same spatial
distribution of phases, or the same number of constituents, as the real
nonlinear composite.

One of the difficulties of this method lies in the use of the linear
model to obtain the nonlinear macroscopic behavior. Typically, linear
models do not provide detailed description of the local fields in the
LCC but only averaged strains or stresses in the phases. This infor-
mation is sufficient in the case of linear problems since the macroscopic
stress can be obtained from averaged strains in the phases via the fol-
lowing equation:

� � c � � c L � .� �r r r r r
r r

Due to the nonlinear behavior of the constituents, this property does
not hold for nonlinear composites where the macroscopic stress is given
by

��(�) ��(� )r� � c � � c � c� � ���r r r r
V�� ��rr r r r

where �(�) is the local free energy, cr the volume fraction of each
phase, and Lr their stiffness.

The above general principles will be addressed in this chapter, in the
particular case where the LCC is obtained from the secant moduli of
the nonlinear constituents. Two approaches, the ‘‘classical’’ approach
and the ‘‘modified’’ approach, will be presented and compared. These
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two approaches are both relatively simple to use and differ only from
the set of complimentary equations characterizing the LCC.

In the first part, the nature of the constitutive laws will be presented
and illustrated with examples. Both tangent and secant linearization
methods for the constitutive laws will be defined. The variational for-
mulation that defines the homogenized behavior of heterogeneous ma-
terials will be presented in the second part. The general method of
‘‘nonlinear extension’’ of linear models is presented at the end and
applied to the case of the classical secant linearization, which shows
inconsistencies related to the lack of information regarding the intra-
phase fluctuations of local fields. An attempt to estimate these hetero-
geneities is made through the modified-secant formulation based on the
second-order deformation moments within the phases, correcting the
deficiencies of the classical extension. The two approaches will be il-
lustrated and compared through the different problems given at the end
of this chapter. Recent methodologies to describe the overall behavior
of nonlinear composites adopt variational procedures. These ap-
proaches are not addressed here. The reader may refer to the Suggested
Readings at the end of the chapter.

12.1 NONLINEAR BEHAVIOR OF CONSTITUENTS

Thermodynamic Potentials

The behavior of the constituents treated in this chapter can be described
by two thermodynamic potentials: the free energy � and the dissipation
potential �, which are both expressed as a function of strain � and of
the appropriate internal variables � (scalar or tensorial):

Constitutive laws: (12.1.1)
��(�, �) ��(�, �)rev� � , a � � ,

�� ��

Complimentary laws: (12.1.2)
��(�̇, �̇) ��(�̇, �̇)irr� � , a � � ,

��̇ ��̇

with � � � rev � � irr. (12.1.3)

The convexity of � and its nullity at � 0 impose a positive dis-�̇
sipation and, consequently, the second law is satisfied. The convexity
of � is associated with the stability of the material. Although many
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approximate formulations have been proposed, there is no homogeni-
zation theory giving rigorous solutions to the homogenized behavior
of phase mixtures described by (12.1.1)–(12.1.3). However, theories
based on rigorous bounds have recently been developed in the simple
case where the behavior of the phases can be described with only one
potential, the free energy or the dissipation potential, the remaining
potential being equal to zero.

Behaviors Described by a Single Potential

We assume the behavior of each phase is described with a single convex
potential, �(�) or the remaining potential is equal to zero, such�(�̇),
that the stress–strain or stress–strain rate relation can be written as
follows:

��(�)rev� � � � , � � 0. (12.1.4)
��

Or

��(�̇)irr� � � � , � � 0. (12.1.5)
��̇

Equation (12.1.4) describes a nonlinear elastic behavior under small-
strain deformation, while (12.1.5) corresponds to a purely viscous be-
havior where deformation can be finite (the problem is purely Eulerian).
For the sake of simplicity of the notations, only the first expression
will be used (nonlinear elasticity). The results will be directly trans-
ferable to the second case by considering � as a strain rate.

Equation (12.1.4) can be inverted to obtain

��̃(�)
� � , (12.1.6)

��

where is the complimentary energy of the material. Mathemati-�̃(�)
cally, the relation between and �(�) is obtained via the Legendre�̃(�)
transformation:

�̃(�) � sup {�:� � �(�)}. (12.1.7)�

Let us now consider a few examples.
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Isotropic Materials

Most isotropic materials are linear under hydrostatic load and nonlinear
under shear; their behavior can be written with the following expres-
sions:

�eqsec sec� � 3k� , s � 2� (� )e, � (� ) � , (12.1.8)m m eq eq 3�eq

where

� �kk kk 3 1 /2–� � , � � , � � ( s:s) , s � � � � � ,m m eq 2 ij ij m ij3 3

(12.1.9)

2 1 /2–� � ( �:�) , e � � � � � . (12.1.10)eq 3 ij ij m ij

Therefore, the bulk modulus K is constant while the shear modulus
� sec depends on strain (hence the nonlinearity of the deformation). This
behavior is derived from the following free energy:

�eq
9 2 eq eq eq–�(�) � k� � � (� ), � (� ) � � � d� , (12.1.11)2 m eq eq eq

0

where �eq is the area under the curve in the �eq(�eq) diagram. The
associated complimentary energy is written as follows:�̃(�)

1 2 eq�̃(�) � � � �̃ (� ). (12.1.12)m eq2K

Here is the dual potential of �eq.eq�̃

Hencky’s Model in Plasticity

The elastoplastic behavior is rigorously described with incremental re-
lations that enable us to distinguish plastic and elastic loads. In the
case of isotropic hardening (where the hardening variable is �) with
the Von Mises criterion, these relations are written as follows:
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� 1 3 sme p e p ˙� � � � � , � � I � s, �̇ � � ,
3K 2� 2 �eq

�1y3 s:ṡ d� y y˙ ˙� � if � � � (�), � � 0 if � � � (�).� � eq eq2 � d�eq

(12.1.13)

Hencky’s model, also referred to as the deformation theory of plasticity,
neglects the incremental nature of plasticity and replaces the equation
describing the evolution of the plastic deformation (12.1.13) by

� 1 3 sme p e p� � � � � , � � I � s, � � � ,
3K 2� 2 �eq

y �1� � (� ) (� ). (12.1.14)eq

For example, the model proposed by Ramberg and Osgood describes
a power law hardening �y(�) � �0(� /�0)1 / n. This model can be written
in the three-dimensional case:

�� 1 3� seqm 0e p e p� � � � � , � � I � s, � � ,� �3K 2� 2 � �0 eq

(12.1.15)

which is derived from the following potential:

n�1�1 1 � � eq0 02 2�̃(�) � � � (� ) � , (12.1.16)� �m eq2K 6� n � 1 �0

where �, n 	 1, �0, and �0 are the elastic shear modulus, the hardening
exponent, and reference material constants, respectively.

In the case of monotonic loading, Hencky’s model is a useful ap-
proximation. Unfortunately, it is inapplicable in the case of complex
loadings. It can be shown that the incremental method and the defor-
mation theory give the same response under monotonic and radial (the
principle stress directions are time independent) loading. The adoption
of the deformation theory in the case of heterogeneous materials sup-
poses the stress state to be monotonic and radial at any point of the
RVE. This hypothesis is more than likely not satisfied. However, in
simple cases (e.g., elastoplastic matrix reinforced with simply shaped
elastic inclusions), it can be observed that under a monotonic and radial
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macroscopic load, deviations from this hypothesis are small. Therefore,
the approximation of the incremental theory by a deformation theory
is fairly good. For a more detailed discussion on the relationship be-
tween the incremental plasticity and the deformation theory, one can
refer to Hutchinson (1976).

Creep Behavior

The high-temperature creep of metals can often be treated by neglecting
elastic deformation. It is typically expressed by a power law relation
between strain rate and Cauchy’s stress:

� �̇s 2 ė eq eq
� � � I � s, � , � , �̇ � 0. (12.1.17)m m� 3 �̇ � �̇eq eq 0 0

The potentials � and describing the dissipation are written as follows:�̃

m�1 n�1�̇ �� �̇ � �̇eq eq0 0 0 0�(�̇) � , �̃(�) � . (12.1.18)� � � �m � 1 �̇ n � 1 �0 0

Here m � 1/n, and and �0 are the strain rate sensitivity exponent�̇0

and the reference strain rate and stress, respectively.

Continuum Description of Single Crystals

The general framework of thermodynamic potentials can also be ap-
plied to crystalline materials. The total strain rate, in a single crystal�̇,
is given by a superposition of the elementary shear rates in each slip
system

N
g g�̇ � 
̇ R , (12.1.19)�

g�1

where the shear rate in the slip system g depends only on the criticalg
̇
shear stress �g in this system, such that

g��̃g g
̇ � (� ), (12.1.20)g��

where the potential is convex and typically given by a power lawg�̃
as follows:
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gn �1g g� 
̇ �� �0 0g g�̃ (� ) � . (12.1.21)� �g gn � 1 �0

In the above, ng 	 1 is the creep exponent, is the critical shear stressg�0

for the considered system, and is a reference shear rate.
̇0

The constitutive law described by Eqs. (12.1.19) and (12.1.20) are
derived from a convex potential for the single crystal:

N N��̃(�) g g g g�̇ � , �̃(�) � �̃ (� ) � �̃ (R :�). (12.1.22)� �
�� g�1 g�1

Secant Moduli Description of the Behavior

In what follows, only one notation of the behavior will be used, based
on the elastic potentials, � and The constitutive law (12.1.8) can be�̃.
written in a more compact form as follows:

sec� � L (�):�, (12.1.23)

where Lsec is the secant modulus tensor. In the case of isotropic ma-
terials, it is a function of the projection tensors Ih and Id:

sec h sec dL (�) � 3KI � 2� (� )I . (12.1.24)eq

Note that Lsec is not uniquely defined. For example, one can add an
anisotropic component to the secant tensor without changing the con-
stitutive law:

eijsec sec d 2˜ –L � L � �(I � ẽ ẽ ), ẽ � (12.1.25)ijkl ijkl ijkl 3 ij kl ij �eq

such that Lsec(�):� � (�): � for all �. And is a secant tensorsec sec˜ ˜L L
in the sense described by (12.1.23), but Lsec given by (12.1.24) is the
only isotropic tensor verifying this relation.

Incremental Formulation and Tangent Moduli

We now discuss homogenization methods based on tangent moduli. It
results from an incremental form of the constitutive law given by
(12.1.4), obtained with a differentiation with respect to time:
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2 �� (�)� �(�) ijtg tg�̇ � L (�):�̇, L (�) � � , (12.1.26)ijkl �� �� ��ij kl kl

where Ltg(�) is the tangent modulus tensor, which is typically aniso-
tropic, even when the material is isotropic. Accordingly, in the case of
an isotropic material described by Eqs. (12.1.23) and (12.1.24), the
tangent tensor is given by

sec4 d�tg h sec dL (�) � 3KI � 2� (� )I � (� )� ẽ ẽ . (12.1.27)ijkl ijkl eq ijkl eq eq ij kl3 d�eq

For convenience, Ltg can be expressed as

tg h sec 1 tg 2L (�) � 3KI � 2� (� )E � 2� (� )E , (12.1.28)ijkl ijkl eq ijkl eq ijkl

where

2 2 1 d 2–E � ẽ ẽ , E � I � E ,ijkl 3 ij kl

secd� (� ) d� (� )1eq eq eqtg sec� � � � � � � . (12.1.29)eq eqd� 3 d�eq eq

The tensors E1 and E2 have the following properties:

2 2 2 1 1 1 2 1E :E � E , E :E � E , E :E � 0,
2 h 1 hE :I � 0, E :I � 0. (12.1.30)

The shear modulus � tg gives the slope of the curve �eq(�eq).
In the case of isotropic incompressible materials described by a

power law, the secant tensor Lsec (12.1.24) and the tangent tensor Ltg

(12.1.28) are given by

m�1�1 � eq0sec h sec d secL (�) � ��I � 2� (� )I , � (� ) � ,� �eq eq 3 � �0 0

(12.1.31)

and

tg h sec 1 2 tg secL (�) � ��I � 2� (� )(E � mE ), � (� ) � m� (� ).eq eq eq

(12.1.32)
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To illustrate the nonuniqueness of the secant moduli, it can be easily
verified that the anisotropic tensor (1/m)Ltg is also the secant tensor
for isotropic materials described by a power law see Problem 12.1.

The tangent modulus tensor is uniquely defined with equation
(12.1.26). However, in some cases, it is approximated, to simplify the
algebra, by an isotropic tensor,

iso tg h tg dL (�) � ��I � 2� (� )I . (12.1.33)eq

Another isotropic tangent tensor is expressed by

1 4 � miso tg h tg d d h sec dL (�) � ��I � (L �I )I � ��I � 2 � (� )I .eq5 5

(12.1.34)

It should be noted that the above approximation may lead to severe
discrepancies in the homogenization schemes adopting a tangent line-
arization of local constitutive laws.

12.2 EFFECTIVE POTENTIALS

Let us now consider a RVE with volume V and boundary S representing
a nonlinear heterogeneous material. The boundary conditions on S are
given in terms of combined loading: traction boundary condition p0 on
S� and displacement boundary condition u0 on Su with S � S� � Su.

We are to find the fields u, �, and � so that u and � fulfill the
conditions of kinematics:

1 T–� � (
u � (
u) ) within V2

u is continuous in V. (12.2.1)� 0u � u on Su

Under the conditions (12.2.1), u and � are called kinematically admis-
sible:

div � � f � 0 inside V. (12.2.2)	 0� � n � p on Su

Under the conditions (12.2.2), � is called statically admissible.
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By introducing the thermodynamics potentials, � and � are related
at each material point r of V by the constitutive laws:

��(�(r), r) ��̃(�(r), r)
�(r) � , �(r) � . (12.2.3)

�� ��

The solution to the nonlinear problem requires solving one of the fol-
lowing problems:

Under displacement boundary conditions related to an applied
macroscopic strain the problem consists of solving the following�,
problem for statistically admissible stress:

��(�(r), r)
∀ r � V �(r) � ,

�� (12.2.4)
��(r)� � �.V

Under traction boundary conditions related to an applied macroscopic
stress the problem consists of solving the following problem for�,
kinematically admissible strain:

��(�(r), r)
∀ r � V �(r) � ,

�� (12.2.5)
��(r)� � �.V

Solutions to (12.1.1) or (12.1.2) lead to the definition of local stress
and strain fields fulfilling the following variational properties, which
result from the convexity of the local potentials � and This can be�̃.
stated as:

The solution of strain field for the first problem minimizes the free
energy �, so that

��(�)� � inf��(�̃)�, (12.2.6)

where is a kinematically admissible strain with ��̃ ��̃� �.
The solution of stress field for the second problem minimizes the

complementary free energy so that�̃,

��̃(�)� � inf��̃(�̃)�, (12.2.7)

where is a trial statically admissible stress with ��̃ ��̃� �.
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Definition (12.2.6) corresponds to the macroscopic or effective free
energy of the representative volume element, denoted by W ( ), so that�
the macroscopic constitutive relation writes

�W(�)
� � , (12.2.8)

��

with

W(�) � inf��(�̃)�. (12.2.9)

Equation (12.2.8) can be shown from (12.2.4) and (12.2.6) by using
the Hill lemma.

Similarly, one can define a macroscopic complementary energy as

˜�W(�) ˜� � with W(�) � inf��̃(�̃)�. (12.2.10)
��

Note that the potentials W and are dual convex functions, such thatW̃
with the help of the Hill lemma, one has

˜W(�) � W(�) � ��(�)� � ��̃(�)� � ��:�� � �:�. (12.2.11)

The principles of minimum energy (12.2.6) and (12.2.7) may be used
to set bounds for the effective potentials W and For example, byW̃.
choosing the solution of problem (12.1.1) or (12.1.2) corresponding to
a uniform stress � � and uniform strain field � � respectively,� �,
one obtains the equivalent Voigt and Reuss bounds for the effective
potentials. By setting � � in (12.2.9), one has�

n

W(�) � ��(�)� � c � (�). (12.2.12)� r r
r�1

Similarly

n

W̃(�) � ��̃(�)� � c �̃ (�). (12.2.13)� r r
r�1

As an application for incompressible power law materials defined by
(12.1.18), the Voigt and Reuss bounds read (see Problem 12.2)
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m�1 m�1Reuss Voigt� �� � � �eq eq0 0 0 0� W(�) � , (12.2.14)� � � �m � 1 � m � 1 �0 0

where

Reuss �n �m Voigt� � �� � , � � �� �. (12.2.15)0 0 0 0

12.3 THE SECANT APPROACH

For general purposes, the secant method solves the following field
equations:

1 T–� � (
u � (
u) ),2

div � � 0,

��� � �,
sec�(r) � L (r, �(r)):�(r), (12.3.1)

where Lsec is the local secant modulus tensor, which depends on the
phase considered. It typically fluctuates within a phase due to the fluc-
tuation of the local strain �(r). Therefore, the secant modulus tensor is
highly heterogeneous. Its fluctuation results from the nonlinearity of
the problem associated with its dependency on the local strain.

Indeed, the heterogeneity of secant modulus tensor depends on
which type of nonlinear behavior is displayed by the constituents and
also on the amount of applied strain. To set up a direct homogenization
procedure of such highly heterogeneous materials is very difficult un-
less systematic approximations are used, which, in general, relies on a
linearization procedure with appropriate complementary laws.

As a first attempt and within a general procedure, the problem could
be seen at a given strain state as a linear problem with the following
local constitutive law:

lin�(r) � L (r):�(r), (12.3.2)

with

lin secL (r) � L (r, �(r)). (12.3.3)
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Definition (12.3.2) is the linear model required for the linearization
procedure of the local behavior, whereas definition (12.3.3) corresponds
to additional or complementary relationships, so that the nonlinear be-
havior can be captured. When these two steps are accomplished, the
problem becomes a classical one. Then an appropriate ‘‘classical’’ lin-
ear homogenization scheme can be chosen to obtain the nonlinear mac-
roscopic behavior. However, (12.3.2) and (12.3.3) are still not suitable
for analytical calculations due to the infinite number of complementary
equations required for definition (12.3.3).

Therefore, approximations are needed, which, clearly, need to render
a finite number of complementary equations with a certain accuracy in
describing the heterogeneous nature of the nonlinear behavior. For such
a purpose, approximations are introduced both in the step of lineari-
zation and complementary equations. The linear model in Eq. (12.3.2)
may be assumed piecewise uniform for the stiffness tensor Llin(r), so
that, for a given phase r(r � 1, . . . , n) one has Llin(r) � Lr. In addition,
the complementary equations are reduced to a finite number corre-
sponding to the identified number of constituents or phases, which lead
to a definition of stiffness tensors Lr at some effective piecewise uni-
form strains representing the strain distribution in each phase, and�̃ ,r
therefore requiring an accurate model to be determined. The n com-
plementary equations read

secL � L (�̃ ), (12.3.4)r r r

where the nonlinearity of the problem lies in the dependency of each
individual effective strain on the stiffness Lr of the different phases,�̃r

so that n nonlinear problems have to be solved, requiring in general
simple iterative procedures. Once the tensors Lr are determined, the
problem becomes a classical one by taking advantage of the homoge-
nization approaches developed in linear elasticity.

The choice of the appropriate linear homogenization scheme to de-
scribe the microstructure of the real nonlinear composite material de-
fines the so-called linear comparison composite, for which the overall
effective stiffness L is expressed formally as

L � L(c , L , . . .) 	 L(�), (12.3.5)r r

which depends on the stiffness of each constituent and some morpho-
logical aspects related to the microstructure. The overall constitutive
law is then nonlinear and formally given by
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� � L(�):�. (12.3.6)

In the following, two methods to define the effective strains are�̃r

discussed and compared. The first approach is known as the classical
secant method. It simply defines the effective strains as the average
strain in each phase. The second method, called the ‘‘modified’’ secant
method, could be seen as a refinement of the first method by introduc-
ing the second-order moment of the strain field.

Classical Method

The classical method has been extensively used to deal with the non-
linear behavior of composite materials. It consists of defining the ef-
fective strain as the mean value of the local strain field over the�̃r

considered phase. That is

�̃ � ��(r)� . (12.3.7)r Vr

The main advantage behind assumption (12.3.7) lies in the expression
of effective strains as a function of the applied strain by means of�̃ �r

the global strain concentration Ar:

�̃ � A :�, r(r � 1, . . . , n), (12.3.8)r r

which are determined by appropriate explicit or implicit linear mean
field theories (see Chapter 7), which give the n concentration tensors
in terms of the stiffness tensors Lr of each phase for explicit schemes
and the overall stiffness for implicit schemes. That isL

A � A (L, L , s � 1, . . . , n). (12.3.9)r r r

Finally, since Lr depends on the corresponding effective strain �̃r

through Eq. (12.3.4), Eq. (12.3.8) together with expression (12.3.9)
provide n nonlinear equations, whose solutions determine the overall
nonlinear property by means of the constitutive equation (12.3.6).L
As noticed before, such a scheme requires in general iterative procedure
and suitable convergence criteria.

Note that through the definition of a linear comparison composite,
upper and lower bounds of the effective properties can be foundL
using the linear variational principles presented in Chapter 6.
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The classical secant method can be illustrated in case of two-phase
materials. In fact, combination of

��(r)� � �,V (12.3.10)
�̃ � A :�, �̃ � A :�1 1 2 2

leads to

c A � c A � I. (12.3.11)1 1 2 2

In addition, from the constitutive law of each constituent, we have

� � L :�̃ , � � L :�̃ , (12.3.12)1 1 1 2 2 2

and

� � c � � c � . (12.3.13)1 1 2 2

Equation (12.3.10) gives

L � c L :A � c L :A . (12.3.14)1 1 1 2 2 2

Then substituting (12.3.11) in (12.3.14) yields

1 �1A � (L � L ) (L � L ),1 1 2 2c1 (12.3.15)
1 �1A � (L � L ) (L � L ).2 2 1 1c2

Therefore, when the linear homogenization model is identified to obtain
the effective stiffness as

L � L(c , L , L ), (12.3.16)1 1 2

the solution to the nonlinear problem is given by the following set of
equations:
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1 �1�̃ � (L � L ) (L � L ):�,1 1 2 2c1

1 �1�̃ � (L � L ) (L � L ):�, (12.3.17)2 2 1 1c2

sec secL � L (�̃ ), L � L (�̃ )1 1 1 2 2 2

When the two phases are isotropic,

h sec (1) d h sec (2) dL (�̃ ) � 3K I � 2� (�̃ )I and L (� ) � 3K I � 2� (�̃ )I ,1 1 1 1 eq 2 2 2 2 eq

(12.3.18)

and the linear comparison composite displays an overall isotropy such
that

h dL(�) � 3KI � 2�(� )I , (12.3.19)eq

where the linear homogenization scheme gives

K � K(K , K , � , � , c ), � � �(K , K , � , � , c ).1 2 1 2 1 1 2 1 2 1 (12.3.20)

The set of nonlinear equations (12.3.17) is reduced to

(1) (1) (2) (2) (1) (1) (2) (2)�̃ � A � , �̃ � A � , �̃ � A � , �̃ � A � ,m m m m m m eq eq eq eq eq eq

1 K � K 1 � � �2 2(1) (1)A � , A � ,m eqc K � K c � � �1 1 2 1 1 2

1 K � K 1 � � �1 1(2) (2)A � , A � , (12.3.21)m eqc K � K c � � �2 2 1 2 2 1

sec (1) sec (2)� � � (�̃ ), � � � (�̃ ).1 1 eq 2 2 eq

Further, if the materials are incompressible, the linear homogenization
model gives

� � �(� , � , c ), (12.3.22)1 2 1

and the nonlinear set of equations become
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(1) (1) (2) (2)�̃ � A � , �̃ � A � ,eq eq eq eq eq eq

1 � � � 1 � � �2 1(1) (2)A � , A � , (12.3.23)eq eqc � � � c � � �1 1 2 2 2 1

sec (1) sec (2)� � � (�̃ ), � � � (�̃ ).1 1 eq 2 2 eq

As discussed above, when the appropriate linear homogenization
scheme is chosen, the classical method becomes relatively easy to im-
plement through an iterative algorithm. A few examples are treated as
problems at the end of this chapter.

Modified Secant Method

The classical secant method for describing the nonlinear behavior of
composite materials assumes basically homogeneous strain field within
each phase and therefore neglects any intraphase fluctuations of local
fields. This results in few discrepancies and limitations, which was
behind the principal motivations in developing the modified secant ap-
proach.

Let us first recall the basis of the classical secant method, which
leads to a certain number of inconsistencies. As shown above, the clas-
sical method derives the average stress over a phase r (r � 1, . . . ,�r

n) as

sec� � L :� � L (� ):� , (12.3.24)r r r r r r

which implies the existence of a phase strain energy potential
� (r) determined with respect to the average strain such that(r)(� ) � ,r

�� (� )r r� � . (12.3.25)r ��r

In the case of incompressible materials, (12.1.24) reads

(r) (r)�� (� )eq eq(r)� � , (12.3.26)eq (r)��eq

where
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1 1(r) (r)� � � �(r) dV , � � � �(r) dV . (12.3.27)
 � 
 �eq eq
V VV Vr eq eqr r

One can also define the following equivalent average strain as

1(r)� � � � (r) dV. (12.3.28)eq eq
VV rr

The first discrepancy of the classical method results from the equal-
ities (12.3.25) and (12.3.26), which are satisfied only if the strain field
is homogeneous in each phase. Or, in general, the nonlinear behavior
leads to highly intraphase fluctuations, and as a result one can show
that

1 1 �� (�) �� (� )r r r� � � �(r) dV � � dV � , (12.3.29)r
V VV V �� ��r rr r r

or in the case of incompressible materials

(r) (r)�� (� )eq eq(r)� � . (12.3.30)eq (r)��eq

The result (12.3.30) is shown in the following.
In fact, one has

1 1 �� (�)r(r)� � � �(r) dV � � dV
 � 
 �eq
V VV V ��r req eqr r

(r)�� (� ) �� (�)1 eq eq eq
� � dV (12.3.31)�

VV �� ��r eqr eq

which leads to

(r)�� (� )1 2e(�)eq eq(r)� � � dV . (12.3.32)
 �eq
VV �� 3�r eqr eq eq

On the other hand, the convexity of the function e:e leads to the fol-
lowing inequality:
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(r) (r)�� (� ) �� (� )1 2e(�) 1eq eq eq eq(r)� � � dV � � dV.
 �eq
V VV �� 3� V ��r reqr eq eq r eq

(12.3.33)

Since for most nonlinear composite the function /��eq] is con-(r)[�� (� )eq eq

cave, one can easily show that

(r) (r) (r) (r) (r)�� (� ) �� (� ) �� (� )1 eq eq eq eq eq eq� dV � � , (12.3.34)
VV �� �� ��rr eq eq eq

where we further assume that � With (12.3.34), statement(r) (r)� � .eq eq

(12.3.30) is proved.
Another limitation of the classical method results from the fact that

the definition of the macroscopic properties does not necessarily rely
on the definition of a macroscopic W ( ), so that�

�W(�)
� � . (12.3.35)

��

In fact, it turned out that in some cases of nonlinear composite mate-
rials, the following property of the macroscopic potential of isotropic
materials

2 2� W(� , � ) � W(� , � ) ����eq m eq m eqm� � � , (12.3.36)
�� �� �� �� �� ��eq m eq m eq m

is not fulfilled by the classical secant approach, see Problem 12.4.
The modified secant method took its inspiration from the above

statement. It was developed in accordance to the following. The first
step is the definition of the macroscopic potential from the Hill lemma:

1
W(�) � � �:L(r):� dV � �:L:�, (12.3.37)

VV

and its derivative with respect to the stiffness Lr of the r phase in the
linear comparison composite:

�W(�) �L 1 �L(r) 2 ��
� �: :� � � �: :� dV � � �:L(r): dV,(r) (r) (r) (r)

V V�L �L V �L V �Lijkl ijkl ijkl ijkl

(12.3.38)

where the local stiffness Lr(r) is assumed to be piecewise uniform:
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n

L (r) � L ƒ (r), (12.3.39)�r r r
r�1

where ƒr is the characteristic function defined in (5.3.8). With (12.3.39),
the first term on the right-hand side of (12.3.38) yields

1 �L(r) 1� �: :� dV � c � � � dV � c �� � � , (12.3.40)r ij kl r ij kl Vr(r)
V VV �L V rijkl r

while the second term writes

1 �� 1 1 ��� �:L(r): dV � � �(r) dV : � dV � 0.	 � 	 �(r) (r)
V V VV �L V V �Lijkl ijkl

(12.3.41)

To establish (12.3.41) we used the Hill lemma in accordance to the
fact that the strain field �� / is kinematically admissible, so that(r)�Lijkl

��� dV � 0.(r)
V �Lijkl

According to (12.3.40) and (12.3.41), (12.3.38) is reduced to

1 �L
�� � � � �: :�. (12.3.42)ij kl Vr (r)c �Lr ijkl

The fourth-order tensor ��ij�kl corresponds to the second-order mo-�Vr

ment of the strain field over the r phase in the linear comparison com-
posite material. It is calculated by (12.3.42) and therefore requires the
definition of the linear homogenization scheme to express the macro-
scopic properties in terms of the local ones.

The diagonal term of the second-order moment can be��:��Vr

adopted in the modified second method as an alternative way to mea-
sure the intraphase fluctuation of the strain field better than the classical
method. This comes from the convexity of the function �:�:

��:�� 	 ��� :��� , (12.3.43)V V Vr r r

where the equal sign holds only if the strain field is homogeneous.
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In the case of isotropic materials, the second-order moment uses the
equivalent strain such that

(r)�L1 �L 1 �L ijkl d (r) 2�: :� � �: :� � 2�� � � I � 3(� ) , (12.3.44)ij kl V ijkl eqr(r)c �� c �L ��r r r ijkl r

where is given by (12.3.28).(r)� eq

Finally, by adopting the second-order moment of strain, the modified
secant method involves the following steps:

• The identification of the appropriate linear homogenization
scheme, which give the overall stiffness as function of the phaseL
stiffness in the linear comparison composite. Then the deriv-(r)Lijkl

atives in (12.3.44) can be accomplished.
• The resolution of the following n nonlinear set of equations

1 /21 �L(r) (r) (r) (r)L � L (� ), � � �: :� , (12.3.45)� �ijkl ijkl eq eq 3c ��r r

which gives the n unknown secant tensors (r) (r)L (� ).ijkl eq

As in the case of the classical method, the modified method requires
simple iterative algorithm to derive the overall properties of the non-
linear composite.

If the linear comparison composite has overall isotropy, one can
easily show from (12.3.45) that

1 /21 1 �K ��(r) 2 2� � � � � , (12.3.46)
 � ��eq m eqc 3 �� ��r r r

where and are computed by a linear homogenization approach.K �
Let us illustrate the method in the case of a two-phase isotropic

composite material, where phase (1) is softer and dispersed in phase
(2). Suppose that Hashin–Shtrikman lower bounds are appropriate to
derive the overall properties of the linear composite. One has (see Ex-
ample 6.2)
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c1K � K � ,2 1 c2� 4–K � K K � �1 2 2 3 2 (12.3.47)
c1� � � � ,2 1 6c (K � 2� )�2 2 2 2�

� � � 5(3K � 4� )1 2 2 2

from which one can derive explicit expressions for the second-order
moment of strain required to compute the tensor of secant moduli in
each phase. The results are

1 � � �2(1) (2) 2 2 1 /2� � � , � � (N� � M� ) , (12.3.48)eq eq eq m eqc � � �1 1 2

with

2 21 1 K � K 1 K � K2 1N � K � c K � c K ,
 � � � � �1 1 2 23c � c K � K c K � K2 2 1 1 2 2 2 1

(12.3.49)

21 1 � � �2(1)M � � � c �
 � �1c � c � � �2 2 1 1 2
2 212 1 � � � � � �2 1 2� c c k . (12.3.50)� � � � �1 2 25 c � � � 3K � 4�1 1 2 2 2

Concluding Remarks

In the classical and modified secant nonlinear extensions presented in
the above, the phase distribution is the same in the LCC and in the
nonlinear composite. As explained in previous sections, this results
from the choice of a particular linearization scheme. This option is
pertinent and does not lead to any ambiguity in the choice of the linear
homogenization model used to describe the morphology of the LCC.

However, another richer strategy can be used in which the homo-
geneous domain for the secant moduli tensors does not correspond to
the domain occupied by the constitutive phases. For example, one could
define LCCs with more phases than the nonlinear composite. One can



342 NONLINEAR PROPERTIES OF COMPOSITES MATERIALS

easily anticipate that this richer description of the local heterogeneity
of the secant moduli will be closer to the real distribution of the moduli
in the nonlinear composite. Hence, the prediction will be more suited.
However, the evaluation of a large number of internal variables, the
critical choice of a linear model, and the difficulty related to the larger
number of considered phases complicate the use of this approach.
There is a configuration where this description can be naturally called
upon, at least theoretically; when the phase distribution of the nonlinear
composite can be appropriately described with morphological patterns.
Let us consider the simple case of Hashin’s composite spheres assem-
bly. In this case, the linear isotropic behavior of the microstructure can
be well described with a three-phase self-consistent scheme based on
the analytical solution of the problem of a composite inclusion embed-
ded in an infinite medium.

PROBLEMS

12.1 Show that (1/m)Ltg is a secant modulus for power law materials
defined by constitutive equations (12.1.18), where Ltg is the tensor
of tangent moduli given by (12.1.26).

12.2 Show equation (12.2.15).

12.3 Consider a two-phase composite material made of two power law
isotropic materials. The two phases obey constitutive relations
(12.1.8). They have the same components n and m, the same
reference strain �0, but differ by their flow stress denoted by

for phase (1) and for phase (2).(1) (2)� �0 0

By combining the nonlinear problem (12.3.23) with a lower
bound Hashin–Shtrikman type of estimation of the effective shear
modulus the average strain distribution in each phase does not�,
depend on the volume fractions of the constituents, so that

m�1(1) (1)(1)� �1 � �eq eq1 0� , with � .� �(2) (2) (2)� � � �2 �eq 2 0 eq11 � � 1� �5 �2

When phase (1) is rigid show from the average condition

(1) (2)c � � c � � �1 eq 2 eq eq

the following results:
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�eq(1) (2)lim � � 0, lim � � ,eq eq
(1) (1) c� →�� � →�� 20 0

(1) (1) m 5 (2) (2) m–lim � (� ) � � (� ) .0 eq 2 0 eq
(1)� →��0

From the definition of the overall stress deviator s

s � c s � c s1 1 2 2

and the constitutive equations of each phase

m m(1) (2)� �2 e 2 eeq eq1 2(1) (2)s � lim � , s � lim �� � � �1 0 2 0(1) (2)(1) (1)3 � � 3 � �� →�� � →��0 eq 0 eq0 0

show that the overall constitutive equation reads

m�1 3� –2 � (1 � c )eq0 2 1(2)s � e, with � � � .� � 0 0 m3 � � (c )0 0 2

12.4 Consider the above problem when the inclusions [phase (1)] are
voids. Show that the effective properties of the linear comparison
composite are given by

4 c c2 2K � � , � � � � �2 2 2–3 c 1 � c1 3 1

and the solution of the nonlinear problem is reduced to

�eq(2)� � .eq 2–1 � c3 1

Express the overall constitutive laws for the spherical and devia-
toric parts and show that the following condition

2 2� W(� , � ) � W(� , � ) ����eq m eq m eqm� � �
�� �� �� �� �� ��eq m eq m eq m

is not satisfied.
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12.5 Consider Problem 12.4 when both phases are rigid plastic
(m � 0) and show that the nonlinear problem is reduced to the
following relations:

(1) (1) (1)� 5 2 � � 5eq 0 0� 1 � if � ,� �(2) (2) (2)� 3 5 � � 2eq 0 0

(1) (1)� � 5eq 0� 0 if � .(2) (2)� � 2eq 0

If we denote by the flow stress of the rigid plastic composite,�0

show that

(1)� 50(1) (2)� � c � � c � if � ,0 1 0 2 0 (2)� 20

(1)� 50(2) 3–� � � (1 � c ) if 
 .0 0 2 1 (2)� 20

12.6 Consider Problem 12.3 and apply the modified secant method for
what follows. Show Eqs. (12.3.48)–(12.3.50). Show that the lin-
ear problem defined by Eq. (12.3.45) is reduced to

1 /2��
m�1(1) (1)(1)� �c �� � �eq eq2 1 1 0� , with � � �(2) (2) (2)� c �� � � �eq 1 2 0 eq
 �

��2

with a lower bound Hashin–Shtrikman estimation of show that�,

2 2 1 /2(1)� 2 � 6 �eq 1 1� 1 � � 1 � c � 1 .	
 � �� � � �1(2)� 5 � 25 �eq 2 2

Show that the flow stress of the composite with rigid inclusions
is expressed by

3 m�1 /2–(1 � c )2 1(2)� � � .0 0 m(c )2
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12.7 Consider Problem 12.4 and show that the nonlinear problem using
the modified method writes

1 /24 1(2) 2 2� � � � (� ) .
 �eq m eq2–9c 1 � c1 3 1

Rewrite the overall constitutive laws for the spherical and devia-
toric parts and check the following equality:

2 2� W(� , � ) � W(� , � ) ����eq m eq m eqm� � �
�� �� �� �� �� ��eq m eq m eq m

SUGGESTED READINGS
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13
MICROMECHANICS OF

MARTENSITIC
TRANSFORMATION

IN SOLIDS

Martensitic transformation in solids has received considerable atten-
tion in recent years because of its broad potential applications. Such
phase change can be induced by the application of stress as well as by
temperature change. The original interest in martensitic phase trans-
formation came from the special mechanical properties of the transfor-
mation product, namely the strength of martensite and the
corresponding thermomechanical treatments to produce adequate be-
havior for engineering applications.

Various strain mechanisms enter the behavior of such materials.
Most of them are ductile materials, and, therefore, in addition to the
plastic flow, a microstructure evolution accompanying the phase change
leads to complex strain mechanisms ensuring basically the coexistence
of the two phases. These strain mechanisms result from an accom-
modation process, which enhances ductility at a particular strength
level by means of ‘‘transformation induced plasticity,’’ known as the
TRIP effect. The classical definition given to this phenomenon corre-
sponds to the irreversible strain observed even if the specimen is loaded
by a stress state less than the yield stress of the softer phase.

In such materials, the overall behavior depends strongly on the tem-
perature since the martensitic phase transformation kinetics is related
with temperature through the so-called chemical energy. Furthermore,
since martensitic phase transformation occurs without diffusion through
a cooperative shear movement of atoms, it is recognized that the ap-
plied as well as the internal stresses assist the transformation. The role
of plastic strain on the progress of martensitic transformation is much

Fundamentals of Micromechanics of Solids.  Jianmin Qu and Mohammed Cherkaoui
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-46451-8
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Figure 13.1 Schematic representation of critical stress for martensitic transfor-
mation as function of temperature.

more complicated. Martensitic phase transformation occurs on cooling
without applied stress at Ms temperature. Above Ms, the critical stress
to undergo martensitic phase transformation increases linearly with
temperature up to the temperature defined as the maximum tem-�Ms

perature at which martensitic transformation occurs by elastic stress.
In this temperature range, martensitic transformation is defined as the
stress-assisted transformation. At temperatures above significant�M ,s

plastic flow precedes the transformation, and an additional contribution
to transformation arises from the production of new nucleation sites by
plastic deformation. In this temperature regime where the transforma-
tion critical stress decreases significantly, the phase change is defined
as the plastic-strain-induced transformation. The temperature depend-
ence of the critical stress for causing martensitic transformation is sche-
matically represented in Figure 13.1 where the Md temperature is
introduced to reflect the stability of austenitic phase.

From a micromechanics point of view, materials with phase trans-
formation can be considered as two-phase composite materials where
the ‘‘reinforcement’’ phase evolves. In addition to the usual thermo-
elastic properties, which may be assumed homogenous for most of
these materials, the inelastic behavior of austenite–martensite two-
phase material appears strongly heterogeneous. According to the di-
versity of active mechanisms and the evolving microstructure, various
coupling have to be described. From a kinematical point of view, a
volume element experiences a plastic strain in its austenitic state, fol-
lowed by the instantaneous transformation strain according to discrete
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values of the possible set of transformation strains and plastic flow in
the martensitic state. This phenomenon is also known as dynamic soft-
ening. Beside the chemical part of the free energy, the elastic part is
due to applied stresses, as well as due to internal stresses generated by
the incompatibilities of the total inelastic strain field (plastic � trans-
formation). These couplings render possible a good combination be-
tween ductility and strength in materials with phase transformation. In
fact any tendency to increase ductility in conventional materials will
decrease the strength. For example, a good combination between
strength and ductility is a required property to design lightweight struc-
tures in automotive bodies and also to improve body safety.

To reproduce the various features of materials exhibiting martensitic
phase transformation is not a simple task. Since the problem has to be
considered from a multiscale point of view taking into account the
microstructure evolution accompanying martensitic transformation,
only partial solutions have been developed during the last decades.

Basically, modeling the behavior of such materials raises, naturally,
the following problems:

1. To define adequate variables describing the microstructure evo-
lution during the phase transformation. For example, the volume
fraction ƒ of martensite or a set of volume fractions ƒI (I � 1, 2, . . .)
may constitute an appropriate internal variable. If it is the case, the
evolution law of this variable should be specified. It may be formally
written as

˙ ˙ƒ � ( )�̇ � ( )T

in terms of control variables, stress and temperature, for example. It
should be noticed that any attempt to perform a systematic solution to
this problem has to be accomplished through a thermodynamic study
to derive energetic criteria for phase transformation.

2. To define the appropriate scale to describe the transformation
strain or TRIP strain, accompanying the phase transformation. As this
inelastic strain results from complex accommodation processes, which
occur at the microscale, morphological considerations of the transfor-
mation product have to be taken into account. At this scale, the defi-
nition of the TRIP strain may leads to a set of transformation strains

(I � 1, 2, . . .), which depends on the possible crystallographictrI�
orientations of martensite related to the concept of martensitic variants.
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It may be possible to adopt a more macroscopic description by intro-
ducing a kind of metallurgical variable (�,T) to deal with the TRIPtr�
strain. However, such a description may lead to a model with limited
predictive capabilities.

3. To adopt an appropriate nonlinear homogenization scheme for a
well-defined representative volume element (RVE). The choice of an
appropriate RVE is also conditioned per the choice of internal and
metallurgical variables describing the microstructure evolution and the
morphological aspects of the transformation. If the problem is de-
scribed by the macroscopic variables ƒ and (�,T), the RVE simplytr�
represents a two-phase austenite–martensite composite material. For
such a case, simple isotropic secant approach (see Chapter 12) may be
sufficient to describe the overall behavior. However, a multivariant de-
scription of the transformation product may require the definition of
various RVE. For example, an RVE representing a single crystal with
a certain number of martensitic variants (different orientations), sur-
rounded by an austenitic matrix, is required to approximate the stress
and strain distribution in each phase. Another RVE can also be defined
to account for the polycrystalline structure of these materials.

Complete descriptions of the above interrelated problems are still
under investigation both experimentally and theoretically. In particular,
refined microstructural analyses are needed to understand various
mechanisms at different scales. As the problem of multiscale modeling
is still challenging for these materials, the reader will find in this chap-
ter an introduction to the different microscale mechanisms with certain
guidance in terms of micromechanical modeling. We pay particular
attention to the problem of coexistence of two phases and resulting
discontinuities in terms of stress, strain, and mechanical properties. For
such a purpose we describe in details the concept of energy momentum,
originally introduced by Eshelby. We show how this framework can be
adapted to derive energetic criteria for phase transformation at different
scales.

13.1 PHASE TRANSFORMATION MECHANISMS AT
DIFFERENT SCALES

The elementary mechanism accompanying martensitic transformation
lies in a nondiffusion process at the atomic level, which transforms the
parent crystallographic lattice (austenite) into a new crystallographic
lattice of the transformation product (martensite); see Figure 13.2. This
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Figure 13.2 Bain strain resulting from lattice change during phase transformation.

solid–solid phase transformation results from purely geometrical fea-
tures in a local lattice distortion called the Bain strain.

The Bain strain �B describing the geometrical transformation from
austenite to martensite is incompatible in nature and therefore requires
an accommodation procedure that, in general, affects the transformed
regions. This accommodation step depends on the mechanical proper-
ties of the parent and product phases and leads to a typical length,
shape, and spatial distribution of the product of phase transformation.

The concept of the incompatibility accompanying the Bain strain
means that the lattice change will generate elastic strain both in parent
and product phases and, as a result, internal stresses. These stresses
may be sufficient to initiate relaxation mechanisms with certain diver-
sity depending on the mechanical properties of the considered material,
which are controlled by the chemical composition, thermomechanical
processes, and other parameters. The relaxation mechanisms may be
activated as follows:

• Inelastic deformations by plastic shear or twinning in parent and
product phases

• A typical resulting morphology of the transformed domains, which
consists, in general, in a plate and lath shapes

• Formation of autoaccommodating groups of martensite

Indeed, a complete determination of such an accommodating step
relies on a fine description of the typical microstructure of the trans-
formation product. Therefore, it could only be accomplished through
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approximate ways leading to the crystallographic theories of marten-
sitic transformation. One of the well-known theories is the method of
Wechsler, Liebermann, and Read (1953), which describes the accom-
modation step by an inelastic strain preserving the parent phase lattice
and leading to the concept of habit plane or interface between austenite
and martensite.

This theory is based on the concept of inelastic compatibility of a
local transformation strain �tr (r) assumed to be uniform within an
elementary transformed volume VI. In other words, the methodology
assumes a given morphology of the transformed region and deals with
the compatibility conditions through two different ways: one is based
on a concept of energy minimization using the elementary Eshelby’s
inclusion, the other deals with the problem of stress and strain discon-
tinuities across the interface SI of the considered domain, where the
compatibility conditions rely on the coherency of this interface.

Eshelby’s Inclusion Method

Through the basic concept of Eshelby’s inclusion problem, the trans-
formed domain VI is assumed to be ellipsoidal in shape and experiences
an eigenstrain corresponding to the lattice distortion described by the
Bain strain �B. If we denote by L the elastic stiffness tensor of the
infinite medium and by V its volume, the free energy density reads

I1 V B I BW � � �L�(I � S )�� , (13.1.1)
2 V

where SI is the Eshelby tensor.
If the lattice change do not generate any elastic deformation and

therefore any increase of the elastic free energy, the compatibility con-
ditions should fulfill the following eigenvalue problem:

I B(I � S )�� � 0. (13.1.2)

In general, with the purely geometric lattice change described by �B,
Eq. (13.1.2) has no solution. Therefore, an additional inelastic mech-
anism is required to satisfy the eigenvalue problem raised by (13.1.2).
One of the accommodation mechanisms corresponds to a plastic shear
or twinning within the transformed domain by preserving its crystal-
lographic lattice; see Figure 13.3. The resulting strain is called ‘‘lattice
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Figure 13.3 Schematic representation of the accommodation process by twinning
or slip in martensite by lattice invariant strain (B, Bain strain; P, plastic deformation
or twinning; R, rotation).

invariant strain’’ and denoted here by �inv. From this analysis, the trans-
formation strain �tr � �B � �inv is compatible so that the conditions

I tr(I � S )�� � 0 (13.1.3)

is satisfied if

trdet(� ) � 0 (determinant). (13.1.4)

Therefore, a complete determination of �tr from (13.1.4) can be per-
formed following the next steps:

1. Plastic shear or twinning is assumed to occur along a slip system
of the transformed region with a magnitude � so that the lattice
invariant strain reads

inv� � �R, (13.1.5)

where R defines the orientation tensor of the slip or twin system
defined by its unit normal ñ and shear direction m̃ as

1–R � (m̃ ñ � m̃ ñ ). (13.1.6)ij 2 i j j i

2. The second step defines an interface called the habit plane be-
tween the two phases, so that the transformation strain is consid-
ered to be predominately shear along this plane. That is

tr 1–� � g(m n � m n ), (13.1.7)ij 2 i j j i
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Figure 13.4 Schematic representation of Eq. (13.1.7).

where m is the shear direction and n the unit normal to the habit
plane; g is the magnitude of the shear.

As stated above, the accommodation process occurs mainly by shear,
however, when phase transformation is accompanied by substantial
plastic flow, a volumic component is measured, which ranges from 1
to 4%. In other words, the two vectors m and n are not necessarily
perpendicular (Fig. 13.4).

From Eq. (13.1.7) and for a given �B and R, the compatibility equa-
tions (13.1.3) and (13.1.4) determine g and the vectors m and n. This
ends the second step; see Problem 13.1.

Method Using Jump Conditions

For this analysis, the compatibility conditions lie in the definition of a
coherent interface or habit plane SI between the parent and product
phases with n being the unit normal of the surface. This hypothesis
corresponds to the continuity of displacement ([u] � 0) and/or velocity
([v] � 0) fields as well as the stress vector ([�] � n � 0), where [x] �
x� � x� denotes the jump of x across the interface. In the present case,
the ‘‘positive’’ side belongs to the parent phase (austenite), whereas the
‘‘negative’’ one corresponds to the transformed regions (martensite).

It is interesting to note that, in the case of shape memory alloys
where the transformation occurs mainly without a plastic deforma-
tion and under specific conditions, the analysis can also be adapted to
martensite–martensite interfaces.

The field equations expressed at the interface can be reduced to the
following compatibility conditions; see Problem 13.2:
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� � 1–[� ] � � � � � (� n � � n ), (13.1.8)ij ij ij 2 i j j i

where the total strain at each side of the interface ��,� � �e�,e� �
�tr�,tr� consists of an elastic part �e and a transformation contribution
�tr resulting from the accommodation process accompanying the phase
change; � is a vector to be determined.

For simplicity, the behavior from each side of the interface is de-
scribed by linear elastic constitutive law, such that

�,� �,� �,� tr�,tr�� � L �(� � � ). (13.1.9)

If we further introduce a reference homogeneous elastic medium L
such that

�,� �,� �,�L � L � (L � L) � L � �L ,

Eq. (13.1.9) is equivalent to

tr e[�] � L�[�] � L�[� ] � [�L�� ], (13.1.10)

or by taking into account the condition [�] � n � 0, it results that

tr eL�[�]�n � L�[� ]�n � [�L � � ]�n. (13.1.11)

Substituting (13.1.8) into (13.1.11) leads to the following equations
whose resolution gives the components of the vector �. That is

� � � ℵ , (13.1.12)ik k i

where �ik � Lijklnjnl and ℵi � Lijkl nj � [�Lijkl ]nj.tr e[� ] �kl kl

Clearly, Eq. (13.1.11) shows that a compatible phase transformation
(e.g., �e�,e� � 0) requires heterogeneous transformation strain, for ex-
ample, [�tr] � 0. Therefore, it results from (13.1.11) that a compatible
expression of the transformation strain reads

tr 1–[� ] � [� ] � (� n � � n ). (13.1.13)ij ij 2 i j j i

Direct applications of compatibility conditions (13.1.13) can be gen-
erated as follows:
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1. The Bain strain described in Figure 13.2 from purely geometrical
considerations does not fulfill (13.1.13). In fact, if from the aus-
tenitic side we state that �tr� � 0 and from the martensitic side
�tr� � �B, Eq. (13.1.13) gives

tr B 1–[� ] � � � (� n � � n ). (13.1.14)ij ij 2 i j j i

2. The accommodation process described in the previous section,
which relies on a slip or twinning in the transformed regions [see
(13.1.5)], fulfills the compatibility conditions (13.1.13), such that
if one assumes that �tr� � 0 and �tr � �B ��inv, the compatibility
conditions writes

tr B inv 1–[� ] � �(� � � ) � (� n � � n ), (13.1.15)ij ij ij 2 i j j i

which is equivalent to Eq. (13.1.7).

More recently, mathematical-based approaches have been proposed
to predict other compatible morphologies during phase transformation.
For details, the reader could refer to the Suggested Readings at the end
of this chapter.

Notion of Martensitic Variants

As discussed in previous sections, the accommodation process accom-
panying the lattice change during phase transformation leads to a typ-
ical morphology of the transformation product, which implicitly results
in a heterogeneous transformation strain �tr (r). In the previous anal-
ysis, we adopt an accommodation process through a shear or twinning
by defining a habit plane between austenite and martensite leading to
expressions (13.1.7) and (13.1.15) of the transformation strain �tr. From
purely crystallographic considerations and due to high symmetries of
the parent phase, 24 couples of n and m are possible to define a habit
plane leading to the notion of martensitic variant.

From this concept, each possible martensitic variant is described by
its crystallographic orientation, morphology, and transformation strain,
which are implicitly interrelated by the accommodation process of the
lattice change.
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Kinematics at Single-Crystal Level

The purpose of this section is to discuss the different strain mechanisms
during phase transformation at the single-crystal level. This step is
required to build micromechanical tools for the first scale transition
linking the appropriate features of transformed regions to constitutive
equations of single crystals.

At this level, the concept of martensitic variants is taken into account
by assuming that the transformation strain is piecewise uniform within
elementary transformed regions corresponding to the different marten-
sitic variants, so that one can write

N
tr tr II� (r) � � � (r), (13.1.16)�

I�1

where � I (r) are the Heaviside step functions for the different trans-
formed domains or variants I and N their number. The transformation
strain associated with a martensitic variant I is described by (13.1.7)trI�
as

tr 1 I I I I II –� � g (m n � m n ) � gR , (13.1.17)ij 2 i j j i ij

where RI is the orientation tensor of the variant I.
For a single crystal (taken as an RVE) with volume V subjected at

its external boundary 	V to a displacement ui � and undergoing� x ,ij j

an inelastic strain field �tr (r) � �p (r) within V, the total macroscopic
strain is�

1 e tr p e tr p� � � (� (r) � � (r) � � (r)] dV � �� (r) � � (r) � � (r)�.
VV

(13.1.18)

Note that the elastic strain field �e (r) arises from and the incompat-�
ibilities of the fields �tr (r) and �p (r), where �p (r) denote the plastic
strain field.

In general, it is difficult to distinguish experimentally between the
plastic contribution and the transformation one at the macroscopic
level. However, in terms of modeling, we will be able to make this
distinction if we adopt a crystallographic description of phase trans-
formation.
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For homogeneous elasticity with its elastic stiffness L, one obtains
directly the elastic part �e of as follows:�

�1 tp� � L �� � � , (13.1.19)

where � ��(r)�, and � ��tr (r) � �p (r)� corresponds to thetp� �
macroscopic inelastic strain arising from the phase transformation and
the plastic flow. At this stage, one can distinguish between two cases
where the physical aspects of martensitic transformation change sig-
nificantly:

1. In the case of shape memory alloys, the plastic contribution is
neglected and the transformation strain becomes

1tr tr� � � � (r) dV. (13.1.20)
VV

Due to typical properties of the strain field �tr (r), one can dif-
ferenciate between two simplified forms for tr� :
• The microstructure of variants as well as the fact that �tr (r) is

piecewise uniform, this leads to

1tr tr tr II I� � � � dV � � ƒ , (13.1.21)� �
IVV I I

where are material constants, and ƒI are the internal variablestrI�
subjected to the following constraints:

I I0 
 ƒ 
 1, 0 
 ƒ 
 1. (13.1.22)�
I

• Since the transformation strain vanishes within the austenitic
phase, thus (13.1.21) can be written as

M1 V 1tr tr tr tr� � � � (r) dV � � � (r) dV � ƒ�̃ ,� �MM MV VV V V

(13.1.23)

where ƒ � ƒI is the total volume fraction of martensite, and�I

being the average transformation strain over the total volumetr�̃
VM of martensite, which is an unknown to be determined from
solving the deformation problem.
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2. The case of iron base alloys where the phase transformation is
accompanied by substantial plastic flow in the parent phase. In
this case, it is more critical to distinguish at the macroscopic level
between a macroscopic transformation strain [in the sense of Eq.
(13.1.23)] and a macroscopic plastic strain. This basically results
from the fact that the transformation part contains a plastic con-
tribution resulting from the accommodation process discussed
above. An incremental formulation with a multivariant description
is more appropriate for this class of materials (see below).

Incremental Formulation: Concept of Moving Boundaries

In most heterogeneous materials, the mechanical properties may be
assumed piecewise uniform at appropriate scales. These materials are
made up of different phases and/or grains separated by interfaces called
grain or phase boundaries. The interfaces are in general stationary with
respect to particles and often considered as perfect, at least at low
temperatures. This hypothesis corresponds to the continuity of displace-
ment ([u] � 0) and/or velocity ([v] � 0) fields as well as the stress
vector ([�] � n � 0). The continuity assumptions extended to equivalent
forms for the volume lead to the usual localization and homogenization
relations, from which the classical scale transition methods are devel-
oped. The overall behavior of the RVE is then deduced from the mi-
crostructure and the local behavior (basically the purpose of previous
chapters).

In various situations where inelastic strains result from discrete phys-
ical mechanisms such as twinning, martensitic transformation, or re-
crystallization, the previous hypotheses are no longer valid because of
evolving microstructures or moving boundaries whose velocities are
different from those of the particles. Consequently, the strain field and/
or mechanical properties exhibit discontinuities across moving bound-
aries and therefore:

• Additional terms in localization and homogenization relations have
to be introduced in the framework of local thermodynamics and
micromechanics to account for the moving boundaries.

• Driving forces, germination, and growing laws describing the
evolving microstructure need to be determined.

These are discussed next.
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Kinematics of Evolving Microstructure

In materials undergoing martensitic phase transformation, the parent
and product phases coexist with the same chemical composition but
differ in their lattices, volumes, and shapes. As a result, a complex
accommodation process (discussed in the previous section) occurs lead-
ing to a typical morphology of the transformation product with multiple
interfaces S or boundaries within the transformed region itself, and with
the parent phase. During a loading increment (stress or temperature),
two scenarios are possible:

• The material experiences phase transformation with a complex
movement of interfaces between parent and product phases.

• Under particular conditions, reorganization of preexisting trans-
formed regions is possible by a typical movement of interfaces
within these regions.

For example, it is interesting to link, from kinematics purpose, the
macroscopic strain increment acting on the boundary of an RVE to�̇
the velocity field. The velocity v of particles belonging to the external
boundary of the RVE is assumed as

d�ij˙� � � x � x . (13.1.24)i ij j jdt

From the definition of macroscopic strain

1
� � � � (r) dV.ij ij

VV

The strain increment is given by

d 1 1 	
�̇ � � � (r) dV � � � (r) dV . (13.1.25)	 
 � �ij ij ij

V Vdt V V 	t

By neglecting the change in volume V of the RVE, (13.1.25) is reduced
to



13.1 PHASE TRANSFORMATION MECHANISMS AT DIFFERENT SCALES 361

1 	
�̇ � � � (r) dV . (13.1.26)� �ij ij

VV 	t

The strain field is discontinuous along the different moving interfaces,
the time derivative in (13.1.26) reads

	� (r)1 1ij
�̇ � � dV � � [� (r)]w n dS, (13.1.27)ij ij � �

V SV 	t V

or

	� (r)1 ij
�̇ � � � [� (r)] w n �(S) dV, (13.1.28)� �ij ij � �

VV 	t

where �(S) � �(r � r�) dS� is the Dirac delta function. [�] � �� ��S

�� is the jump of the local strain field; w is the velocity of the interface
at a material point, where the outward unit normal to the interface is
denoted by n; and w�n� is a scalar describing the normal velocity of
the interface.

Applications

For example, the time derivative of (13.1.20) shows different mecha-
nisms associated with martensitic transformation in shape memory al-
loys, which are not revealed through a simple ‘‘static’’ comparison
between the actual configuration and the reference one (austenite). By
taking into account the discontinuities [�tr (r)] � � of thetr� tr�� �
strain field �tr (r) along the moving boundaries, one has

1 1tr tr tr�̇ � � �̇ (r) dV � � [� (r)]w n dS, (13.1.29)� �
V SV V

and since the concept of stress-free or eigenstrain is adopted for the
transformation strain, so that (r) � 0. It then follows thattr�̇

1tr tr�̇ � � � [� (r)]w n dS, (13.1.30)� �
SV
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where S represents all of the moving boundaries (austenite–martensite
as well as boundaries between the martensitic variants), and 
�n� is
the normal velocity of the interface.

The ‘‘crystalline’’ description of the martensitic transformation (anal-
ogous to crystal plasticity) comes directly from (13.1.30); see Problem
13.3:

tr tr I˙ I ˙� � � ƒ , (13.1.31)�
I

where in (13.1.31) the distinction between transformation and exchange
between existing variants is not explicitly shown.

The different mechanisms are more explicitly described when one
expands the time derivative of (13.1.23):

tr tr ˙ tr˙ ˙� � ƒ�̃ � ƒ�̃ . (13.1.32)

In fact, the analysis of (13.1.32) allows us to distinguish the following
phenomena:

• Transformation ( � 0) without deformation ( � 0, � 0).tr ˙ trƒ̇ �̃ �̃

• Transformation ( � 0) with deformation ( � 0) but withouttrƒ̇ �̃

reorientation ( � 0).˙ tr�̃

• Deformation by reorientation ( � 0) without transformation˙ tr�̃
( � 0).ƒ̇

• Transformation, deformation, and reorientation ( � 0, � 0,trƒ̇ �̃

� 0).˙ tr�̃

In the case of iron-based alloys, the average inelastic strain of the single
crystal is given by

1tp tr p� � � [� (r) � � (r)] dV, (13.1.33)
VV

where �p(r) describes simultaneously the plastic strain of an elementary
volume element at austenitic and martensitic states. When the plastic
flow becomes significant during phase transformation, the reorientation
and inverse transformation mechanisms can be disregarded. The pro-
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gression of the transformation can be described by the instantaneous
growth of new plates or laths in the austenitic phase. The time deriv-
ative of (13.1.33) leads to

1 1tp tp tp�̇ � � �̇ (r) dV � � [� (r)]w n dS. (13.1.34)� �
V SV V

The volume integral in (13.1.34) describes the plastic flow in residual
austenite and preexisting martensitic variants, it could be written as the
following form involving the average plastic strain rate in austenitep˙ A�
and the average one over a martensitic variant. That is

1 tp p I M˙ A ˙ I� �̇ (r) dV � (1 � ƒ)� � ƒ � . (13.1.35)�
VV I

The surface integral is much more complicated. It requires the deter-
mination of the inelastic strain jump at each point of the moving in-
terface, which can be expressed as

tp p p tr tr� � I I[� (r)] � � � (� � � ) 
 �� . (13.1.36)

Such a jump may be assumed to result only from the accommodation
process leading to the definition of compatible transformation strain

However, as can be seen from (13.1.36), a heterogeneous plastictrI� .
strain � 0 may occur during the phase transformation. Its deter-p�,��
mination is not a simple task and may require complex numerical cal-
culations. Since the transformation strain contains a plastictrI�
contribution corresponding to lattice invariant strain, the contribution
of can be neglected. Therefore, the surface integral readsp�,��

1 tp tr II ˙� � [� (r)]w n dS � � ƒ . (13.1.37)�� �
SV I

Substituting (13.1.35) and (13.1.37) into (13.1.34) yields

tp p I M tr I˙ ˙ A ˙ I I ˙� � (1 � ƒ)� � ƒ � � � ƒ . (13.1.38)� �
I I

In (13.1.38) one can distinguish the following contributions:
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• The first term describes the average plastic flow in the residual
austenitic phase.

• The second term corresponds to the plastic flow in the preexisting
martensitic phase.

• The last term expresses the formation of new plates or laths.

At the single-crystal level, the plastic flow of residual austenite may
be described through the crystallographic slip by introducing the slip
systems of FCC lattices. The plastic strain increment is then expressed
by (see Chapter 11)

p g g˙ A� � P �̇ , (13.1.39)�
g

where Pg is the Schmidt tensor and the shear rate on slip system g.g�̇
However, it is more difficult to track the crystallographic slip in

martensitic variants. This is due to the large number of variables (24
	 24 variables, 24 possible variants, for each 24 possible slip system).
Due to the typical fine microstructure of the transformation product
and their typical crystallographic orientation, the plastic deformation
of martensite may have no significant contribution to the overall flow
of the RVE. This statement is also supported by the fact that martensite
is a hard phase. Equation (13.1.38) is then reduced to

tp g g tr I˙ I ˙� � (1 � ƒ) P �̇ � � ƒ . (13.1.40)� �
g I

Equation (13.1.40) contains a classical crystal plasticity problem with
internal variables, namely the volume fraction of each possible mar-
tensitic variant. To come out with a constitutive law of the RVE rep-
resenting the single crystal, evolution laws of these internal variables
have to be specified. In general, this step requires additional approxi-
mations and can be accomplished through two different ways:

1. To establish a thermodynamic framework to obtain the driving
forces for the activation of the internal variables. This method is
more appropriate to derive energetic criteria for the phase trans-
formation.

2. To assume evolution laws based on experimental observations
without any link with thermodynamics. This method does not
require the determination of driving forces; however, its predictive
capacities are limited.
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In next sections we present an example displaying the first methodol-
ogy. This is possible by adopting the original work of Eshelby’s mo-
mentum tensor.

Eshelby’s Energy Momentum Tensor

Eshelby introduced an important concept to deal with the configuration
of a solid. It corresponds to the energy momentum tensor, which is
another way to combine the field equations with energetic considera-
tions. Let us consider a homogeneous material without any incompat-
ibility in which the elastic energy density 
(r,�) only depends on the
elastic distortion �. Therefore, we can perform the following:

	�	
 	
 jk

 (r,�) � � , (13.1.41),i 	x 	� 	xi jk i

where the stress tensor reads

	

� � , (13.1.42)jk 	�jk

and �jk � uj,k, and u is the displacement vector.
From the equilibrium equation �ik,k � 0, one can easily show that


 (r,�) � [� (r)u (r)] . (13.1.43),i jk j,i ,k

Thus, (13.1.43) is equivalent to

[
(r,�)� � � (r)u (r)] � 0. (13.1.44)ik jk j,i ,k

Eshelby’s energy momentum tensor denoted here by � is expressed
by

� � 
� � � u . (13.1.45)ik ik kj j,i

Therefore, the energy momentum tensor satisfies the following equation
resulting from (13.1.44):

� � 0 13.1.46)ik,k

Let us consider now the case of martensitic transformation where the
accommodation process leads to a nonhomogeneous transformation
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strain field �tr (r) undergoing a jump [�tr (r)] across an interface be-
tween the parent and product phases. Let us define the following local
quantity Fi � [�ik]nk, which can be expressed from (13.1.45) as

F � [
� � � u ]n � [
]n � [� u ]n . (13.1.47)i ik jk j,i k i jk j,i k

From the diagonal symmetries of the elastic constant L and the decom-
position of the total distortion � into an elastic part �e and a transfor-
mation contribution �tr, one obtains for the jump of elastic energy (see
Problem 13.4)

1 � � e–[
] � (� � � )]� ]. (13.1.48)2 ij ij ij

On the other hand, the continuity of the traction vector, [�] � n � 0,
leads to

1 � � 1 � �– –[� u ]n � (� � � )[u ]n � (� � � )[� ]n . (13.1.49)jk j,i k 2 jk jk j,i k 2 jk jk ji k

Substituting (13.1.48) and (13.1.49) into (13.1.47), one has

1 � � e–F � (� � � ){[� ]n � [� ]n }, (13.1.50)i 2 jk jk jk i ji k

and by taking into account the compatibility equation (13.1.8), it results

[� ]n � [u ]n � � n n � � n n � [� ]n . (13.1.51)ji k j,i k j i k j k i jk i

Finally with (13.1.51), it follows that

1 � � tr–F � [� ]n � (� � � )[� ]n . (13.1.52)i ik k 2 jk jk jk i

If one follows a complete thermodynamic study—see Cherkaoui et al.
(1998)—one can show that the scalar

F � F w (13.1.53)i i

is the mechanical driving force if one considers the normal velocity of
the interface w�n� as the internal variable describing the microstructure
evolution. This variable is, in general, not appropriate to derive con-
stitutive equations of materials with evolving microstructure. It requires
time-consuming and complex computational tools. By means of addi-
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tional hypotheses taking into account the typical morphology of mar-
tensite, an alternative description is possible. It could be considered as
another scale of description, which adopts the volume fractions of mar-
tensite as internal variables.

13.2 APPLICATION: THERMODYNAMIC FORCES AND
CONSTITUTIVE EQUATIONS FOR SINGLE CRYSTALS

Thermodynamic Driving Forces

Recently, Cherkaoui et al. (1998) extended Eshelby’s (1970) pioneering
work on the energy momentum tensor to derive the thermodynamic
driving force acting on a moving boundary point between the product
and the parent phases. That is

1 � � tp–F � � (� � � )�[� ] � [�], (13.2.1)2

where [�tp] and [�] denote the jumps of the inelastic strain and the
chemical energy, respectively; �� and �� correspond to the limiting
values of the local stress field for each side of the moving interface,
which can be linked with the help of interface operators Q(L, n),

� � tp� � � � Q(L, n) � [� ], (13.2.2)

depending on the unit normal to interface and elastic constant of the
material. With (13.2.2), (13.2.1) can be rewritten as

1 � tp–F � [ Q(L, n) � � ]�[� ] � [�]. (13.2.3)2

As noticed above, the introduction of (13.2.3) as a thermodynamic
driving force assumes that the interface normal velocity is taken as the
internal variable characterizing the phase transition. It is also noticed
that equation (13.2.3) requires the determination of the local stress and
strain fields in each point of the moving interface. Therefore, the de-
termination of (13.2.3) for any topology of the interface could be ob-
tained only through strong numerical calculations. To go a step further
in the scale transition, an alternative relation of (13.2.3) is obtained by
introducing the concept of an ellipsoidal growing. The former hypoth-
esis assumes that the moving interface represents an ellipsoidal growing
domain. This is in accord with the microstructure developed during
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martensitic transformation corresponding to the formation of micro-
domains of a typical morphology of plate or lath.

Furthermore, as we discussed in the previous kinematic study, the
martensitic transformation progresses by the nucleation and instanta-
neous growth of new domains. This is related to a high interface ve-
locity between the parent and product phases, leading consequently to
the following expression for the local jump [�tp] of the inelastic strain

tp I p p tr tr� � I I[� ] � � � (� � � ) � �� . (13.2.4)

In other words, the instantaneous growth of a martensitic domain al-
lows the continuity of the plastic strain over its boundary. In connection
with (13.1.40), it implies that the volume fractions ƒI of each possible
martensitic variant are the internal variables characterizing the phase
transition at the mesoscale, the integration of (13.2.3) along the ellip-
soidal domain interface, and thanks to (13.2.4) one obtains the driving
force FI for the ‘‘flow’’ of a martensitic variant due to the formationIƒ̇
of a new domain. That is,

IṠI � tr 0 1 tr I tr 1 tr tr II I I I I– –F � � �� � B(T � T ) � � �L�(I � S )�� � � �L� �� ƒ ,2 2 Iƒ̇

(13.2.5)

where I is the identity tensor and SI is Eshelby’s tensor depending on
the aspect ratio as well as on the orientation of the martensitic micro-
domain; ṠI corresponds to the variation of SI due to the ellipsoidal
growth. For the sake of simplicity, a homothetic growth is assumed
giving ṠI � 0. The term B(T � T0) is a linear approximation of the
chemical energy jump [�]. B is a material constant and T0 the equilib-
rium temperature. It should be noticed that the derivation of (13.2.5)
requires the hypothesis of a uniform stress field �� within the growing
ellipsoidal domain. Details on the derivation of (13.2.5) as well as on
the notion of ellipsoidal growing can be found in Cherkaoui et al.
(1998).

Equation (13.2.5) gives the thermodynamic driving force for nucle-
ation and growth of martensitic microdomains belonging to different
martensitic variants; it requires the knowledge of the stress field inside
the growing domains. In addition to the overall applied stress, this
stress field contains several contributions due to different couplings
between plasticity and phase transformation at the microscale. In the
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following, several ways for the determination of internal stresses are
discussed from a micromechanics point of view:

1. The simplest way is to neglect any source of internal stresses. In
such conditions, Patel and Cohen (1953) have formulated the en-
ergy term resulting only from the interaction of applied stress
with transformation strains. This corresponds in (13.2.5) to the
term � � B(T � T0), where ��is assumed equal to the appliedtrI� �
stress and all the other contributions are neglected.�,

2. It is possible to assume an ellipsoidal growth of a martensitic
microdomain inside a homogeneous stress field corresponding to
the average stress over the austenitic phase. At the current con-
figuration of the RVE, if we denote by the average plasticpA�
strain in the austenitic phase, the interactions between plasticity
and martensitic phase transformation are taken into account
through the average stress in the austenitic phase; see ExerciseA�
Problem 13.5:

N
A I I p trA I� � � � ƒ L � (I � S ) � (� � � ), (13.2.6)�

I�1

where N is the number of active martensitic variants at the current
configuration of the RVE and ƒI their volume fractions.

With the instantaneous growth hypothesis, the stress inside a grow-
ing microdomain �� belonging to a martensitic variant I is related to

by the following simple form (see Problem 13.6):A�

� A I trI� � � � L � (I � S ) � � . (13.2.7)

With (13.2.7), (13.2.3) leads to

I A tr 0 1 tr I trI I I–F � � � � � B(T � T ) � � � L � (I � S ) � � . (13.2.8)2

In the thermodynamic force (13.2.8), one can distinguish two contri-
butions:

• A long-range internal stress effect through the term : � B(TA trI� �
� T0). The stress contains the effects of plastic strain of bothA�
phases, as well as of transformation strains undergone by the pre-
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existing martensitic variants. Depending on the applied and inter-
nal stresses, plays the role of variant selection.A�

• A self-internal stresses effect through the term : L : (I � SI)1 trI–�2

: depending essentially on the morphology of the growing mi-trI�
crodomain.

The effect of the internal stress field (emerging from the plastic flow)
on the martensitic phase transformation is known as the strain-induced
martensitic phase transformation phenomenon. Classically, the plastic
flow at the grain level is described by a homogeneous plastic strain
through the plastic slip on crystallographic glide systems. Intragranular
stresses arising from this description correspond to the second-order
internal stresses. However, for ductile materials undergoing martensitic
phase transformation, the role of plastic strain in phase transition is
more complicated. In fact, the martensitic plates nucleate at dislocation
pile-ups, dislocation dipole, or intersection of slip bands. In such a
situation, the description of the strain-induced martensitic transforma-
tion is insufficient through a homogeneous plastic strain. In other
words, a third-order stress field emerging from the heterogeneity of
plastic strain has to be taken into account. This can be performed by
the decomposition of the local austenitic plastic strain �p (r) into:

• A uniform part corresponding to its average over the wholepA�
volume of the austenitic grain (this part is described by the crys-
tallographic slip).

• A fluctuating part ��p (r) taking into account the heterogeneity of
the plastic strain due to various configurations of inelastic defects.

To take into account the fluctuations of the plastic strain, (13.2.7)
giving the stress inside a growing microdomain belonging to a marten-
sitic variant I is extended to

� A I tr pI� � � � L � (I � S ) � � � � (r), (13.2.9)

where �p (r) is a third-order stress field resulting from ��p (r) � �p (r)
is evaluated using an inclusion problem, where we assume that the
martensitic domain nucleates and grows at a plastic defect with volume
Vp and undergoing a plastic heterogeneity with strength ��p. The initial
shape of the martensitic nucleus coincides with one of the plastic de-
fects. In such conditions, the thermodynamic force (13.2.8) is extended
to the following form [see Cherkaoui et al. (2000)]:
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I A tr 0 1 tr I tr I nI I I n–F � � � � � B(T � T ) � � � L � (I � S ) � � � �gH � ,2

(13.2.10)

where

I I I p An n nH � R � L � (S � S ) � P , (13.2.11)

is Eshelby’s tensor depending on the morphology of the plasticpnS
‘‘defect’’ assumed to have the initial shape of the martensitic nucleus;
g and RI are given in Eq. (13.1.17); �n is the plastic slip in the residual
austenitic phase; is the corresponding Schmidt tensor; and � is aAnP
model parameter.

For the plastic flow in residual austenitic phase, the associated driv-
ing forces are the resolved shear stresses on slip systems given by (see
Chapter 11)

A A An n� � � � P . (13.2.12)

As shown by equation (13.2.12), the plastic flow is affected by the
phase transformation through the average stress This constitutes inA� .
addition to the transformation strain the mechanisms of ductility en-
hancement in these materials.

Critical Forces and Constitutive Equations of a Single Crystal

From an energetic point of view, the formation of a martensitic domain
is allowed, if the associated driving force FI overcomes a transforma-
tion barrier Fc. This critical force stems from the energy necessary to
rebuild the crystal lattice at the front of the developed domain. Fc can
be considered as a material parameter.

Concerning the plasticity of the austenitic phase and since the pre-
dominant mechanisms are the plastic slips on the crystallographic glide
systems, the usual hardening matrix is introduced describing theghHA

self and the latent hardening in FCC metals; see Chapter 11. In such
conditions, the critical force to achieve for plastic slip on a glidecg�A

system g is expressed as

c c gh hg 0� � � � H � , (13.2.13)A A A

where is the initial critical shear stress and is identical for all thec0�A

slip systems.
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When the thermodynamic driving forces reach their critical values,
the consistency rule leads to the evolution laws for and FromI nƒ̇ �̇ .
(13.2.10) and (13.2.12), the consistency rule applied to the transfor-
mation type of internal variables gives the following expression:

I J J I J J J I A n˙ n˙��R � gƒ L�(I � S )�R � R � ƒ L�(I � S )�R �P �̇

BI nn ˙� �H �̇ � T � 0. (13.2.14)
g

In the same way, one obtains from (13.2.13) and (13.2.12) the
following relation for the plastic type of internal variables:

g gA J J A J˙ ˙��P � gƒ L�(I � S )�P � R
g nJ J A A n gn n� ƒ L�(I � S )�P � P �̇ � H �̇ � 0. (13.2.15)A

which is added to Eq. (13.2.14) to build a nonlinear system whose
solution gives the evolution laws of the internal variables Xi character-
izing the martensitic phase transformation and the plastic flow of the
parent phase. This could be formally written as

i i˙˙ ˙X � A (�,T,X)� � B (�,T,X)T. (13.2.16)i kl kl

Equation (13.2.16) can be also expressed formally as function of in-
ternal variables Xi as follows:

tp k˙ ˙� � M (X)X . (13.2.17)ij ij k

Combining (13.2.16) and (13.2.17), the inelastic response of an
austenitic single crystal is expressed as

tp k k k k˙ ˙ ˙� � M (X) A (�,T,X)� � M (X)B (�,T,X)T. (13.2.18)ij ij mn mn ij

By adding the elastic response � L�1 � one obtains the consti-e ˙�̇ �,
tutive equation of an austenitic single crystal undergoing martensitic
phase transformation coupled with plasticity. That is
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�1 k k˙ ˙� � [L � M (X) A (�,T,X)]�ij ijmn ij mn mn

k k ˙� M (X) B (�,T,X)T. (13.2.19)ij

Equation (13.2.19) can also be formally written as

�1˙ ˙ ˙� � (L) � � mT, (13.2.20)ij mn

where L and m are the average tangent elastoplastic and thermal mod-
uli of a single crystal, respectively.

Equation (13.2.20) is similar to a nonhomogeneous thermoelastic
problems where both elastic modulus and thermal expansion coeffi-
cients fluctuate in a given composite material. In our case, it corre-
sponds to a polycrystalline aggregate of single crystals with given
crystallographic orientations with their constitutive laws described by
(13.2.20). Here the thermal contribution arises only from the chemical
energy related to phase transformation.

Under purely mechanical loading conditions (Ṫ � 0), Eq. (13.2.20)
is reduced to the incremental formulation adopted by Hill for his self-
consistent model; see Chapter 11. An extension of Hill’s approach to
account for the ‘‘thermal’’ fluctuations of local fields is not straight-
forward. In the next section, we recall the field equations within a
thermomechanical framework. The analysis leads to a thermomechan-
ical integral equation. A self-consistent approximation of this equation
reduces to Hill’s model when a purely mechanical loading is applied.

13.3 OVERALL BEHAVIOR OF POLYCRYSTALLINE
MATERIALS WITH PHASE TRANSFORMATION

In the previous section, the constitutive equation of an austenitic single
crystal has been established within micromechanics and thermodynam-
ics frameworks. This accomplishes the first transition method, which
takes into account different features of martensitic transformation and
its couplings with plastic flow. Interactions between crystals have to be
undertaken to describe the thermomechanical behavior of a polycrys-
talline aggregate, where each constituent is described by the constitu-
tive equation (13.2.20).

For such a purpose, let us consider a representative volume element
of the polycrystalline aggregate with volume V, subjected on its bound-
ary 	V to a velocity field v(r) such that
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˙� (r) � u̇ (r) � � x if r(x ) � 	V, (13.3.1)i i ij j i

where is the macroscopic applied strain.�̇
The field equations

1–�̇ (r) � 0, �̇ (r) � [u̇ (r) � u̇ (r)],ij,j ij 2 i,j j,i

˙�̇ (r) � L (r)�̇ (r) � m (r)T (13.3.2)ij ijkl kl ij

can be combined to solve the problem through the solution of a ther-
momechanical integral equation; see Problem 13.7:

0˙ ˙�̇ (r) � � � � � (r � r�)[�L (r�)�̇ (r�) � �m (r�)T] dV�.mn mn mnij ijkl kl ij
V�

(13.3.3)

To derive (13.3.3), a reference homogeneous medium with properties
L0 and M0, and with the same boundary conditions (13.3.1), is intro-
duced such that

0 0L (r) � L � �L (r), m (r) � M � �m (r), (13.3.4)ijkl ijkl ijkl ijkl ijkl ijkl

where (r � r�) is the modified Green’s function, expressed by0�mnij

0 1 0 0–� (r � r�) � � [G (r � r�) � G (r � r�)] (13.3.5)mnij 2 ki,kl kj,li

in terms of Green’s functions G0(r � r�) related to the reference ho-
mogeneous medium. Originally, the self-consistent mean field theory
has its great interest in the properties of the modified Green tensor �0,
which can be divided for any homogeneous medium with tangent mod-
uli L0 into a local part �loc and nonlocal part �nloc such as

0 loc nloc� (r) � � �(r) � � (r). (13.3.6)ijkl ijkl ijkl

Substituting (13.3.6) into (13.3.3), and using the properties of the Dirac
function �(r), the integral equation becomes,
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loc˙ ˙�̇ (r) � � � � [�L (r)�̇ (r) � �m (r)T]mn mn mnij ijkl kl ij

nloc ˙� � � (r � r�) [�L (r�)�̇ (r�) � �m (r�)T] dV�,mnij ijkl kl ij�V

(13.3.7)

where the integral form in (13.3.7) is generally difficult to estimate due
to high and stochastic fluctuations of the field �L(r�)� (r�) � �m(r�)Ṫ.�̇
To overcome this difficulty, the self-consistent mean field theory for
elastic materials chooses a reference medium (L0, M0) so that the mean
value of the field �L(r�)� (r�) � �m(r�)Ṫ vanishes and therefore the�̇
integral in (13.3.7) can be neglected. This condition of vanishing mean
value of the fluctuating field is also known as the self-consistency con-
dition. In fact, this condition writes

˙� [�L(r�)��̇(r�) � �m(r�)T) dV� � 0. (13.3.8)
V�

On the other hand, one can show in a straightforward manner that Eq.
(13.3.8) leads to the following macroscopic behavior (see Problem
13.8):

0 0˙ ˙ ˙� � L � � M T. (13.3.9)ij ijkl kl ij

Expression (13.3.9) shows an interesting property that consists in the
typical choice of the reference medium (L0, M0) to fulfill the consis-
tency condition stated above. Clearly, it follows from (13.3.9) that the
properties of the reference medium should be the effective properties
of the considered composite, that is, L0 � and M0 �L M.

Under the self-consistent approximation, Eq. (13.3.7) is reduced to

loc˙�̇ (r) � � � � [(L (r) � L ]�̇ (r)mn mn mnij ijkl ijkl kl

˙� [m (r) � M ]T. (13.3.10)ij ij

Here �loc is calculated with respect to the effective properties of theL
polycrystalline material.

Equation (13.3.10) may be reorganized as follows:
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˙ ˙�̇ (r) � A (r)� � a (r)T, (13.3.11)ij ijkl kl ij

where the concentration tensors A and a are expressed by

loc �1A (r) � {I � � [L (r) � L ]} ,mnkl mnkl mnij ijkl ijkl

loca (r) � A (r)� [m (r) � M ]. (13.2.12)kl klmn mnij ij ij

Note that Eq. (13.3.11) solves the concentration or localization prob-
lem, which allows us to determine the effective properties as

L � �L(r)�A(r)� , (13.3.13)V

M � �L(r)�a(r) � m(r)� , (13.3.14)V

where the following properties have been used:

˙ ˙ ˙ ˙ ˙� � ��̇(r)� , � � ��̇(r)� , � � L�� � MT.V V

Note that the mean field self-consistent model developed by Hill and
extensively discussed in Chapter 11 can be described by the localiza-
tion problem (13.3.11) in the case of purely mechanical load (Ṫ � 0).
In fact, Eshelby’s elementary inclusion problem used by Hill to solve
the concentration problem is deduced from (13.3.11) by assuming
piecewise uniform tangent modulus, so that

r r r loc r �1˙ ˙� � A � with A � [I � � (L � L )] . (13.3.15)ij ijkl kl ijkl mnkl mnij ijkl ijkl

In Eq. (13.3.15), one can readily show the relationship between �loc

and the Hill’s tensor H and as a result the equivalency between Eq.
(13.3.13) and (11.1.61) given in Chapter 11; see Problem 13.9.

Finally, to adopt the above framework for polycrystalline materials,
the representative volume element is assumed to be an aggregate of N
single crystals with homogeneous properties (Lg, mg) (g � 1, . . . , N)
and volume fractions ƒg. The integral forms (13.3.13) and (13.3.14) are
reduced to the following discrete expressions:
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N
g g gL � �L(r)�A(r)� � ƒ L �A , (13.3.16)�V

g�1

N
g g g gM � �L(r)�a(r) � m(r)� � ƒ (L �a � m ), (13.3.17)�V

g�1

where

g loc g �1A � [I � � (L)�(L � L)] , (13.3.18)

g g loc ga � A � � (L)�(m � M). (13.3.19)

As discussed in Chapter 11, the implementation of Eq. (13.3.16) to
(13.3.19) required an iterative numerical scheme. Note that the tangent
moduli (Lg, mg) (g � 1, . . . , N) are deduced from Eq. (13.2.19),
which requires the resolution of a nonlinear system involving the var-
ious internal variables related to phase transformation and plastic flow
in each considered single crystal. Indeed, the present problem dealing
with the behavior of polycrystalline materials with phase transforma-
tion is much more complicated than a purely plastic problem. Numer-
ical implementation of the present framework and applications to real
polycrystalline materials can be found in Cherkaoui et al. (2000).

PROBLEMS

13.1 Let us assume that the accommodation process accompanying the
Bain strain occurs by plastic deformation �p on a slip system with
unit normal ñ and shear direction m̃. We denote by �, the mag-
nitude of shear.
(a) If ñ is of (1,0,1) type and m̃ parallel to (1,0,�1) direction,

provide the expression of �p.
(b) If the Bain strain is expressed by

a 0 0
B� � 0 a 0 with a � 0.132, c � �0.199� �0 0 c

(a and b are lattice parameters)

express the compatibility condition and determine �.
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(c) Determine n and m in Eq. (13.1.7).

13.2 Prove the compatibility conditions (13.1.8).

13.3 Let us consider a RVE with volume V and that consists of a two-
phase austenite–martensite composite. We denote by ƒ � VM /V
the volume fraction of martensite. Let us assume that the existing
martensite is described by an ellipsoidal domain with boundary
or interface S. If the phase transformation occurs by the ellip-
soidal growth of this domain:
(a) Show that the volume fraction change is expressed by

(indications: use the half-axes of an ellipsoid)

MV̇ 1
ƒ̇ � � � w n dS.� �

SV V

(b) If the transformation strain is assumed to be piecewise uni-
form, so that

N
tr tr II� (r) � � � (r),�

l�1

prove Eq. (13.1.31).

13.4 Prove Eq. (13.1.48).

13.5 Consider a RVE with an austenitic matrix containing N marten-
sitic variants. Each variant I has experienced an eigen strain trI�
during the phase transformation. Denote by the average stressA�
in the matrix and by the one in a martensitic variant. ByMI�
using Kroner’s inclusion problem where the infinite medium rep-
resents the austenitic matrix:
(a) Show that � � L�(I � �( �M A I P trI A I� � S ) � � ).
(b) Prove Eq. (13.3.20).

13.6 Consider an infinite medium representing an austenitic matrix
with prescribed and Assume that a martensitic ellipsoidalA pA� � .
domain growth instantaneously in this matrix. If we denote by
�� the stress within this domain: Show that

� A I trI� � � � L�(I � S ) � � .

13.7 Using Green’s functions for infinite medium, prove the integral
equation (13.3.21).
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13.8 Prove Eq. (13.3.22).

13.9 Provide the relation between �loc and Hill’s tensor and prove the
equivalency between Eq. (13.3.13) and Eq. (11.1.61) given in
Chapter 11.
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INDEX

A
adiabatic deformation, 21
austenitic phase, 348, 358, 363–

364, 369, 371
auto-accommodating groups, 351
average strain theorem, 110
average stress theorem, 109
axial stress, 261–263

B
Bain strain, 351–352, 354–356,

377
body force, 15, 17, 35, 37, 53–54,

109, 113, 127, 285
bound

Hashin-Shtrikman lower, 143,
340

Hashin-Shtrikman upper, 143,
144

Poisson’s ratio, 220
Reuss lower, 123, 138, 330
Voigt upper, 123, 138, 330

boundary value problem, 35–36,
41–43, 54–55, 127

bridging fibers, 261, 264
Burgers vector, 57, 58, 62

C
Cauchy

formula, 15–17
strain, 14
stress, 15–16, 18, 20, 22, 24, 33

characteristic function, 105–107
coefficient of thermal expansion,

28–29, 52–53
cofactor, 37, 74

compatibility condition, 50, 352,
354–356, 377–378

composite sphere model, 196, 198,
200, 203, 205

concave surface, 32
concentration tensors, 118–119,

154–155, 158, 175, 333
conjugate pair, 20
conservation of energy, 20, 273
consistency condition, 105, 304,

375
constitutive law, 22
continuity of displacement, 245,

354, 359
coordinate rotation, 215
correlation function, 105–108
crack density, 268–269, 271–272,

274, 276, 277
crack opening displacement, 263–

266, 269–272
crack tip, 2, 259, 261, 264
creep behavior, 325
creep function, 29–31
critical shear stress, 303, 309, 312,

316, 325–326, 371
crystal

polycrystal, 100, 173–174, 176–
177, 179, 281, 284–286, 291–
294, 296–299, 306–307, 310–
312, 314, 316–318, 373

single, 176, 179, 281, 283, 285–
287, 291, 294, 296, 298–303,
305–314, 316, 325–326, 350,
357, 362, 364, 372–373, 376–
377, 379
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D
debond, 246
deformation tensor, 14, 20, 22–33
deformed configuration, 12–13,

15–17, 20, 50
deformed surface, 17
determinant, 37, 74, 353
Differential Scheme, 179, 195, 213
dilute case, 160, 185, 187, 225
dilute concentration, 185
dislocation

dipole, 370
edge, 58
general, 62
loop, 62–64, 66
pile-ups, 370
screw, 56

displacement boundary condition,
111, 116, 121–123, 126, 133,
135–136, 138, 147, 151–152,
155, 159–160, 169, 174, 198,
257, 284, 328–329

distribution function, 177–178
distribution of the inhomogeneities,

161, 183
divergence theorem, 18–19, 41, 55,

82, 109–122, 128, 247, 248
dot product, 6
double dot product, 6
dyad, 6

E
effective compliance, 114, 116,

118–119, 161, 168, 174, 232,
257

effective modulus, see also
effective stiffness, 113–114,
120, 165, 179, 183, 185, 187,
190, 198, 202, 204, 221, 267–
268, 297

effective stiffness, see also
effective modulus, 114–115,
117, 119, 122, 125, 126, 138,
140, 159, 160, 162, 166, 169–
171, 174, 176, 177, 179, 180,

183, 194, 257, 258, 268, 273,
277, 280, 332, 334

elastic distortion, 64, 365
elastic polarization strain, 49
elasticity, 22, 34, 35, 47, 120, 153
elastic-plastic material, 32, 34
elastoviscoplasticity, 312
ellipsoidal inclusion, 71, 77, 79,

81, 86, 177, 247, 252, 292,
297, 317

ellipsoidal inhomogeneity, 84, 156,
158, 164, 174, 177

energy
dissipated, 290
elastic, 289
Gibbs free, 21
Helmholtz free, 21
momentum tensor, 365, 367
release rate, 272–273

engineering constants, 217, 219,
224–226, 233, 266

ensemble average, 103–105, 107,
108–109, 285, 296

enthalpy, 21
equivalent inclusion equation, 87,

89, 156, 157, 255
equivalent inclusion method, 85,

91, 155–156
ergodic hypothesis, 104, 106, 107
Eshelby

energy momentum tensor, 365,
367

estimate, 160–161, 185, 190,
193

method, 158, 184
modified, 247, 252
modified tensor, 252
solution, 40, 80, 86–89, 155,

157, 251, 315, 316
tensor, 79, 80, 83, 139, 141,

157, 159, 162, 170–171, 175,
177, 183, 223–235, 251–252,
255, 257, 293, 297, 307, 309,
352

Euler
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angles, 176–177
configuration, 12, 17
coordinate, 12
strain, see also Cauchy strain,

14
evolving microstructure, 360
extensional stiffness matrix, 240
external heat flux, 20

F
Fiber, 113, 212–214, 217, 243,

244, 259, 278, 279, 317
fiber bridging, 259
fiber-reinforced composite, 100,

155, 214–215, 221, 223–224,
226, 234, 240, 259–261

flow rule, 32–33
fluctuating field, 319, 375
fracture criterion, 2, 267, 272
fracture toughness, 259, 260, 266

G
geometric singularity, 262
global strain concentration, 159,

166, 173, 333
grain, 100, 173–174, 176–177,

179, 281, 283, 292–294, 296,
297–299, 306–307, 309–310,
315, 359, 370

Green
function, 38, 40–43, 55, 63, 64,

77, 79, 127–128, 132, 138,
139, 147–148

strain, 14
theorem, 18

H
habit plane, 352–354, 356
Hashin-Shtrikman variational

principle, 133, 136
hereditary nature, 280
hierarchical approach, 226, 239
high concentration, 185
Hill

constraint tensor, 90, 175, 194,
299

lemma, 111, 115, 290, 330,
338–339

polarization tensor, 78
homogeneous polynomial, 39
homogenization scheme, 283,

287, 294, 328, 332, 335–336,
339–340, 350

Hooke’s law, 24, 30, 35, 50–53,
58, 62, 74, 75, 80, 85–86, 88,
117, 122, 147–148, 174, 227,
234, 285, 288, 308

Hutchinson’s calculation, 307
hyperelastic material, 22

I
incompressibility, 34, 294, 306
incompressible material, 283, 327,

336–337
incremental formulation, 326, 359
indicial notation, 5
inelastic behavior, 280, 348
initial configuration, 12, 13, 17
interface

imperfect, 246, 247, 257, 258
inclusion-matrix, 75
inhomogeneity-matrix, 76
perfect, 73, 245–246, 251, 257–

258
sliding, 246
spring model, 246
velocity, 368

internal energy, 19, 20, 21
internal heat source, 20
internal variable, 291, 321, 342,

358, 364, 367–368, 372, 377
interphase incompatibility, 285
intra-phase fluctuation, 280
isentropic deformation, 21, 22
isothermal deformation, 21–23

J
jump condition, 354
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K
kinematic tensor, 14
kinematically admissible

displacement, 112, 120–123,
126–127, 131–132, 258

kinematically admissible strain,
329

kinetic energy, 19
Kirchhoff assumption, 237
Kronecker delta, 9, 23, 52
Kröner approach, 282, 296
Kröner model, 294, 296

L
Lagrange

description, 12
strain, see also Green strain, 14

lamina, 234
latent hardening, 371
lattice, 70, 350–354, 356, 363,

371, 377
left stretch tensors, 13
linear comparison composite, 320,

332–333, 335, 338–340, 343

M
Mandel-Hill condition, 112
martensite-martensite interfaces,

354
martensitic microdomains, 368,

369
martensitic variant, 349–350, 356–

357, 362–364, 368–370, 378
mass density, 17, 19
material

asymmetry, 218
coordinates, 16
cubic, 45, 46
isotropic, 25–26, 37, 40, 58, 61–

62, 69, 74, 83, 204, 323, 326,
328, 338, 340, 342

orthotropic, 44
transversely isotropic, 45–46

matrix cracks, 266, 268

minimum complementary energy
theorem, 121

minimum potential energy
theorem, 120

mocrohomogeneity, 102
modulus

bulk, 187, 196–198, 201, 203–
207, 213, 219–220, 258, 307,
323

effective, 261, 268, 269, 271–
273, 277

longitudinal shear, 199
longitudinal Young’s, 199
shear, 26, 126, 162, 188, 190–

192, 198, 200–202, 204–206,
208, 218–220, 226, 233, 235,
258, 293, 307, 323–324, 327,
342

transverse bulk, 199
Young, 51, 214, 221–223, 225,

233, 240
monoclinic material, 229, 243
Mori-Tanaka Method, 163, 184
moving boundary, 359
multicoated inclusion, 204
multilayer composites, 226
Mura formula, 65

N
nonlinear behavior, 280–282, 291,

319–320, 331–333, 336–337
non-perfect interface, see also

imperfect interface, 113

O
one-point correlation, 105–106
orientation tensors, 302

P
perfect interface, 73, 245–246,

251, 257–258
perfect plasticity, 305, 309, 316
permutation tensor, 9, 37, 74
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phase transformation, 49, 53, 347–
351, 354–360, 362–364, 368–
373, 377–379

physical entity, 5, 19
plane strain, 219–220, 238, 260,

273–274
plastic behavior, 280, 305
plastic distortion, 302
plasticity, 31, 316–317, 323, 347,

379
Poisson’s ratio, 199
polar decomposition, 13
potential

convex, 322, 326
dissipation, 321, 322
effective, 328
macroscopic, 319, 338
thermodynamics, 18, 20, 21,

321, 325
probability distribution function,

105

Q
quadratic equation, 188, 191
quasi-static problems, 246

R
reciprocal theorem, 39, 41
recrystallization, 359
reduced stiffness matrix, 235
reference configuration, 14, 20, 21,

23
relaxation function, 29, 31
representative volume element,

102, 108, 197, 198, 200–201,
204, 227, 228, 229, 242, 253–
254, 283, 284, 285, 330, 350,
373, 376

resolved shear stress, 300, 302,
312, 371

right stretch tensor, 13
right stretch tensors, 13
rigid particles, 186
rotation matrix, 176

rotation tensor, 13, 24
rule of mixture, 223, 240
RVE, see also representative

volume element, 102, 103,
108, 111, 113, 319, 324, 328,
350, 357, 359, 360, 364, 369,
378

S
scalar function, 8, 18, 19
secant

approach, 312, 331
compliance tensor, 314–315
moduli, 326
viscoplastic compliance, 313

second order elastic constant, 23
self-adjoint operator, 129, 145
self-consistent method, 169, 173,

184
self-equilibrium stress field, 287
size distribution, 196
size-dependent propertiy, 183
slip plane, 62, 66, 300
slip system, 300–308, 310, 312,

325, 353, 364, 371, 377
spatial coordinates, 16
spin tensor, 14
statically admissible stress, 112,

121–124, 126–127, 134–136,
146, 149, 198, 259, 286

statistically homogeneous medium,
106, 108, 109, 113, 139, 285

steady-state creep, 282, 312
step function, 357
Stokes’ theorem, 19, 64
strain concentration tensor, 117,

166, 174, 180, 182–183, 224,
307

strain energy, 19, 23, 81–82, 112,
114–116, 122–123, 133, 135–
136, 151–152, 268–269, 273,
282, 289, 290, 336

strain hardening, 300, 303, 306,
309
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strain rate, 284, 295, 297–300,
302, 304–306, 312–315, 322,
325, 363, 374

stress
Cauchy, 15–16, 18, 20, 22, 24,

33
deviatoric, 31, 33
first Piola-Kirchhoff, 16
power, 20–21, 290
second Piola-Kirchhoff, 16, 23

stress concentration tensor, 118,
160, 167, 170, 174, 182, 255–
256, 287, 307

stress intensity factor, 259–261,
266

stress polarization, 80, 90–91, 127,
132–133, 135–136, 149

stress-free transformation strain, 49
stress-strain relationship, 28, 29,

31–33, 50, 234, 236, 280, 311
summary convention, 5
symbolic notation, 7, 26, 83, 129,

162–163, 168, 293

T
tangent compliance tensor, 297–

299, 314–315
tangent modulus, 294–299, 305–

307, 309, 314, 327–328, 376
Taylor expansion, 23, 27, 314
Taylor-Lin model, 296, 311
tensor transformation, 24
texture, 281, 316
thermoelasticity, 26
third order elastic constant, 23
threshold strain, 276, 277
traction boundary condition, 109,

110, 118–119, 146–147, 155,
160, 169, 175, 254, 284–286,
289, 328–329

traction vector, 16, 17, 18, 246,
366

transform
Fourier, 36, 37, 54, 57, 58

Laplace, 30–31
Legendre, 322

transverse matrix crack, 266, 269,
273

Tresca yield function, 33
TRIP, 347, 349–350, 379
twinning, 351–354, 356, 359
two-point correlation function,

105–106

U
unit outward normal, 16, 248
unit sphere, 39, 78, 92, 93, 139

V
variant, 282, 357–358, 362–364,

368, 370, 378
velocity of the interface, 361–362,

366
viscoelasticity, 29, 48
Voids, 190
Voigt

elastic constant, 25, 44, 216,
220, 227, 232, 233

Volterra formula, 63
volume average, 104, 106–109,

111, 112, 284, 285
volume fraction, 103–104, 107,

117, 125–126, 137, 140, 154,
160–162, 173, 178–180, 182,
185, 188, 192, 194, 196, 197,
200–201, 205, 208, 214, 225,
228, 240, 242, 258, 261, 268,
285, 320, 342, 349, 358, 364,
367–369, 376, 378

Von Mises criterion, 323
von Mises yield function, 33

W
work-hardening, 34

Y
yield function, 32–33
yield surface, 32–33, 291
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