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GENERAL INTRODUCTION

BIE/BEM

The Boundary Integral Equation (BIE) formulation of boundary value problems

(BVPs) in engineering, mathematics and applied science, and the Boundary Element Method

(BEM) of solution of the integral equations has been an effective and popular approach for

obtaining numerical data for real-world problems for more than thirty years.  Mathematically,

the boundary integral formulation can be traced back to the work of Green, Gauss, Fredholm

and other classical mathematicians.  It was Jaswon [1] and Symm [2] who first realized the

new role that Green’s boundary formula could play in the formulation and solution of practical

problems in potential theory.  Their work gave a new life to the study of integral equations

and indicated the beginning of  the so-called direct BIE method.

The work of Jaswon on potential theory was extended to elasticity theory in the 1960's

by Rizzo [3].  In [3], the boundary integral equation for elasticity, known as the Somigliana's

boundary formula [4], which is the vector counterpart of Green's formula, was solved using a

similar collocation technique.  This work and subsequent works on elasticity [5,6,7,8] started

an era of applications of the BIE method in engineering fields and inspired a growing number

of researchers to work in this area.  In the late 1970's, the name BEM was given to this

method in an attempt to make analogy with the Finite Element Method (FEM) (cf. several

textbooks [9,10,11,12]).  Since then, the method has experienced an increase in applicability,

efficiency, and popularity.  With the latest advances in computer technology, the BIEM/BEM

has become a powerful numerical tool for analysis and design in almost every engineering
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field.  Detailed historical development and reviews of applications of the BIE/BEM can be

found in  the books and review articles [13,14,15].

Green's Functions

Looking again at classical applied mathematics,  the so called Green's function method

[16,17] is among the oldest and most direct methods for solving BVPs governed by a linear

elliptic partial differential equation.  It is well known that an exact Green's function G*  exists

and may be used, in principle, to construct the solution of a BVP governed by a linear elliptic

partial differential equation for any reasonable domain.  The only practical shortcoming with

this simple and beautiful method is that it is not usually easy to find the Green's function

explicitly for realistic geometries.  Relatively few Green’s functions exist, in explicit analytical

form, and these are for fairly simple domains such as a halfspace, sphere, circular cylinder, etc.

For more complex geometries or practical configurations, the Green’s function is seldom

available.  Considerable effort has been expended, from time to time, to construct the Green’s

function in analytical, semianalytical or approximate forms, for certain specific problems; see

for example Boley [18].

Now the main ingredient of BIEM/BEM is a Green's function, namely the simplest

kind of Green's function, the so called freespace Green's function or fundamental solution to

the governing partial differential equation.  It is the use of this simplest Green's function which

makes the most significant analytical step possible in the formulation of a BIE and in the

derivation of integral representations for the desired fields in terms of  boundary values.  Since

the two methods, BIEM/BEM and the Green's function method, are both methods for solving

boundary value problems governed by a linear elliptic partial differential equation, and since
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BIEM/BEM involves the freespace Green's function, there must exist a very close relationship

between the two methods of solution.  It is helpful to note in examining this relationship

further, that every exact or region-dependent Green's function, which is usually so hard to

construct, differs from the freespace one by a regular function w.  Finding w is what is difficult

for most domains.  If this were not so difficult, there would be little need for numerical

methods in general  and the BIE/BEM in particular.

To continue the exploration of  the mentioned relationship, some recent research on

the BIEM/BEM and Green's functions [19,20,21] found that the exact Green's function and

the unknown boundary variables on the boundary, in a given boundary value problem, satisfy

the same BIE but with a different known vector.  As a consequence, the representation

integral for the BIE solution of the BVP may be written in a form which contains a precise

expression for the exact Green’s function.  This observation provides a way to construct a

numerical approximation to an exact Green’s function (a discretized Green’s function) for

problems in which an analytical Green’s function is not available.  Indeed, it is apparent from

Chapter 1 of this thesis that in using the BIE method to solve a given boundary value problem,

one has in fact constructed the Green’s function for the domain.  A number of ingredients in

the BEM may now be interpreted as numerical approximations to the exact Green’s function.

When using the BEM to obtain the discretized Green’s function, there is no restriction on the

configuration (2D or 3D), no restriction on boundary conditions, no restriction on the physical

nature of the problem as long as it’s a BVP governed by a linear elliptic partial differential

equation.  All of the BVPs considered in this thesis are in this category.
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It is shown in Chapter 1 that for a BVP for a domain bounded by a single surface, the

inverse of the coefficient matrix  ( A−1
) is closely related to the discretized Green’s function for

the BVP.  The construction of this inverse is the key and most computationally-intensive

ingredient in the usual BEM solution of a BVP.  The BEM solution requires a mesh, a

comprehensive computer code and all of the expertise to make the meshes and use the code in

order  to get reliable solutions.  The computer solution process itself involves mainly matrix

multiplications based on well established formulas for numerical quadrature.

Therefore, why not consider forming and storing at least A−1
, for common and/or

important boundary shapes and/or boundary conditions?  This could be done by computer-

modeling experts.  In effect, why not create a 'library' of numerical approximations to exact

Green's functions to be available for repeated use?  Modern technology for storage of massive

amounts of data, on CDs or on central storage, accessible via networks, would suggest that at

least some heavy computing could be 'done in advance', the results of which could be made

available to non expert users.  Such users, interested mainly in the data for particular physical

problems, could get such data, via 'point and click' operations, in negligible time - the expert

modeling, i.e., creating the Green's function library,  having been done in advance by others.

Details about the relation between A−1
 and the discretized Green’s function, for BVPs

with single surface boundary and strategies for using the discretized Green’s function to

obtain the solution to the BVP are addressed in Chapter 1.  For problems which involve two

separate surfaces as the boundary, a sub-matrix of the coefficient matrix can be interpreted as

the main ingredient of the region dependent Green’s function.  The process of using this

region dependent Green’s function is closely related to the partitioning method [20].  Thus for
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problems with two surfaces as the boundary, such as halfspace problems, the library idea is

closely related to the partitioning of the system matrix.  In Chapter 3, the library idea for

halfspace problems using freespace fundamental solution amounts to: giving an accurate

discretization of the halfspace free surface, obtaining the coefficient sub-matrix for the

truncated halfspace surface model, and then storing its inverse (in fact the LU decomposition

of that coefficient sub-matrix) for repeated use.

Applications

In this thesis, two classes of problems are considered as applications of the BEM and

the discretized Green’s function library.  One is the application of the BEM to the analysis of

2D micromechanical behavior of fiber-reinforced composites.  With the rapid development of

advanced composite materials and the wide application of such materials in engineering, it is

desirable to model problems involving these materials by computer and to use powerful

numerical methods like the Finite Element Method (FEM) and the BEM  for analysis.  To

exploit the role of BEM and Green’s functions for computer modeling of advanced materials

properties and behavior, a BEM model is developed to analyze 2D micromechanical behavior

of fiber-reinforced composites based on models for both perfectly-bonded and imperfectly-

bonded materials in a unit cell.  The idea of a library of Green's functions and the entries for

the library for fiber-reinforced composites are discussed.

The other class of problems considered here is the halfspace problem.  The BEM is

well known for its well-suitedness for exterior problems.  With the (radiation) conditions on

the surface at infinity incorporated analytically, only finite surface(s) need to be discretized

when the only other surface(s) in the problem are finite in extent.
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When BIE/BEMs are used for halfspace problems, such as occur frequently in

elastodynamics, fullspace (Stokes) fundamental solution and halfspace (Lamb) fundamental

solution can be used to formulate the BIE.  When the fullspace fundamental solution is used, a

truncated discretized model of the halfspace surface is required.  Alternatively, if the halfspace

fundamental solution, which models the entire halfspace surface analytically is used, no

truncation issues arise.  Nevertheless, both Stokes and Lamb approaches have advantages and

disadvantages.

The purposes of the application of the BEM to this class of problems are first to

present systematic strategies, based on the BEM for halfspace elastodynamics problems,

wherein the best features of the fullspace Stokes solution and halfspace Lamb’s solution are

exploited, and then to present library strategies for this class of problem which represent the

typical two-surface problem.

Radiation from a void inside the halfspace and the scattering from a halfspace surface-

breaking crack are considered in this thesis.  Although they all belong to the halfspace-

problem category, the necessity to use hypersingular integral equations for the crack problem

brings in more complexity both theoretically and numerically.  Nevertheless the conclusions

about effective strategies for both problems are quite consistent.  Specifically, when the

fullspace fundamental solution is used in the BIE formulation, the truncation on the halfspace

surface has a small effect on the boundary solution and quite a big effect on the solution at

field points.  So in order to get a reliable solution at field points, the halfspace Green’s

function rather than the fullspace one is advised to be used in the representation integral.
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Dissertation Organization

The body of this dissertation consists of five main chapters, a general introduction, a

summary and general conclusions, as well as two appendices. The five chapters consist of one

chapter which is a blend of two papers presented in technical conferences, three chapters

which are accepted or submitted or prepared for journal paper manuscripts, and a fifth chapter

which contains some relevant important research information.  Because of the inclusion of

manuscripts, all the labels for the equations, figures, tables and references are numbered

independently.  All the references for each main chapter are at the end of each chapter and

each follows the required format for the particular journal.  A general reference which

contains the citation in the general introduction is at the end of the general introduction.  All

the figures are at the end of the manuscripts, just as they are in the manuscript sent to the

journal.  This structure follows the format requirement for a thesis including journal

manuscripts.

Chapter 1 is a blend of two papers which appear in the proceedings of the BEM IVII

Conference and 24th Midwest Mechanics Conference.  It is entitled  “Exact Green's functions

and the boundary element method” in which the precise equivalence between an exact Green’s

function and the solution of the boundary integral equation is illustrated and made explicit.

Some strategies about how to use the discretized Green’s function to obtain the solution of

the problem are suggested.  Numerical examples using these strategies are also presented.

Chapter 2 is a paper accepted and to appear in the journal Computers & Structures. It

is entitled  “BEM analysis for composite materials and a library of Green's functions”.  In this

paper a BEM model is developed to analyze 2D micromechanical behavior of fiber-reinforced
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composites based on models for both perfectly-bonded and imperfectly-bonded materials in a

unit cell.  Also some suggestions for a Green's function library, for this class of problems, are

given.

Chapter 3 is a paper submitted to Computer Methods in Applied Mechanics and

Engineering.  It is entitled  “Some efficient boundary integral strategies for wave problems in

an elastodynamic halfspace”.  Here, both fullspace (Stokes) fundamental solution and

halfspace (Lamb) fundamental solution are used to formulate the BIE to attack the halfspace

problem.  Some new insight into this class of problems was gained during the research.

Strategies are suggested to exploit the best features of the fullspace Stokes and halfspace

Lamb solutions.  The partitioning method is also implemented and the efficiency of the library

is demonstrated.

Chapter 4 is a continuation of the work done in Chapter 3.  A 'coarse-grained' parallel-

computing scheme is designed and implemented to cope with the intensive computational

work when the halfspace Green’s function is used in the BIE formulation.  A 'nearly perfect'

speedup is obtained and this indicates that BIE/BEM is very well suited for parallel

computing.

Chapter 5 is about a slightly different halfspace-scattering problem.  It involves

elastodynamic scattering from a surface-breaking crack.  A hypersingular boundary integral

equation (HBIE) is introduced and used because of the presence of the crack.  A consistent

conclusion with that in Chapter 3 is obtained, i.e., truncation on the halfspace surface, as

needed for the use of the fullspace fundamental solution, has little effect on the boundary
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solution, while it has a big effect on the solution at field points.  Results are presented in the

form of crack-opening displacement (COD), and farfield scattering amplitudes.

Additionally, there is an Appendix A which is a user’s manual entitled ‘Elastic wave

analysis spheroid (EWAS) library user’s manual’.  This material is included to illustrate the

library idea of discretized Green's functions, for single-surface problems.  This scattering

library has been constructed for elastodynamic scattering  from families of oblate-spheroidal

voids, of various eccentricities, for waves of different frequencies.  With this library, the

elastodynamic scattered field at arbitrary points, from shapes and frequencies in the library,

due to arbitrary incident waves, is just a matter of matrix multiplication.  This finds use by

physicists engaged in nondestructive evaluation at Iowa State University.

Finally, Appendix B contains all of the detailed information about the coefficient

matrices for composite analysis, using either an entire-cell model or a one-quadrant model,

which is not presented in Chapter 3.
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CHAPTER 1

EXACT GREEN’S FUNCTIONS AND THE BOUNDARY

ELEMENT METHOD

A paper presented at 24th Midwest Mechanics Conference

Lingyun Pan and Frank J. Rizzo

Department of Aerospace Engineering and Engineering Mechanics

Iowa State University, Ames, IA 50011

Introduction

It is well known, e.g. Kellogg [1], Webster [2], that an exact Green's function G*

exists and may be used, in principle, to construct the solution of a boundary value problem

governed by a linear elliptic partial differential equation.  Alternatively, the solution of the

problem may be obtained via the boundary integral equation (BIE) formalism, where the BIE

employs only the free-space Green's function G or fundamental solution of the differential

equation.  Since it is evident that both approaches to the solution must be equivalent [3], one

may conjecture that, using the BIE one must have done the equivalent of constructing the

exact Green's function G*.

Indeed, here (see also [4],[5],[6]) it is explicitly shown that G*  and the unknown

boundary variable in the BIE method satisfy the same BIE, but with different right-hand sides.
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As a consequence, the representation integral for the BIE solution of the boundary value

problem may be written in a form which contains a precise expression for G*.  The

equivalence between the BIE process and constructing  G*  is thus made explicit.

A number of ingredients in the boundary element method (BEM) may now be

interpreted as numerical approximations to exact Green's functions.  Some strategies for

creating a library of such functions for repeated use are suggested.

Exact Green's Functions and the BIE Process

The essential aspects of the following arguments hold for linear elliptic boundary value

problems (BVP's); however, to fix ideas, consider finding a time-harmonic acoustic field u

which exists in the region D exterior to a single finite volume V with closed surface S as in

Figure 1.

The field u satisfies the scalar wave (Helmholtz) equation in D and satisfies a radiation

condition for indefinitely large distance R from V.  On S we assume ∂u ∂n = f  where f is a

prescribed function.  A representation integral for u may be written

2u(P) = [ f (q)
S

∫ G(q, P) − u(q )
∂

∂nq

G(q ,P)]dSq (1)

wherein

G(P,Q) = G(Q,P) =
− eikR

2πR
+ w(P,Q) (2)

is a Green's function with R = Q − P , where P, Q are arbitrary points in D and p, q are

arbitrary points on S; k is the acoustic wavenumber, w is an arbitrary regular solution to the
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wave equation, and the normal n points into D at q.  Equation (1) is readily obtained by

inserting u and G into Green's reciprocal identity.

Now suppose that G in eqn (1) is an exact Green's function G*  defined such that

∂G* (q, P)

∂nq

= 0      or      
∂

∂nq

(
−e

ikR

2πR
) +

∂w(P,q)

∂nq

= 0     (3)

whenever q ∈  S .  Using G* instead of G, representation (1) simplifies considerably to

2u(P) = f (q)G* (q, P)dSq

S

∫ (4)

which is now the explicit solution to the posed BVP rather than a mere representation, if G* is

assumed known, since unprescribed u(q) does not appear in (4).

Note that finding G* is tantamount to finding w which satisfies the wave equation

subject to the boundary condition (3).  This task is comparable in difficulty to finding u itself

subject to ∂u ∂n = f .  This is why, no doubt, the idea of an exact Green's function has not

received more attention for practical problems.

Instead, the BIE/BEM has been the method of choice for many problems of the

present type, and the method, in essence, proceeds as follows.  Choose the simplest w in (2),

namely w = 0, and take the limit in representation (1) as P → p .  The familiar result is the BIE

u( p) + u(q)
∂G(q, p)

∂nq
S

∫ dSq = f (q)G(q, p)dSq

S

∫ .  (5)

Symbolically, eqn (5) may be written

Au = Bf (6)

where A and B are the indicated integral operators.  The unknown function u on S may be

obtained formally as the solution of the BIE, namely
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u = A−1Bf . (7)

Thus, using (7) we may write the solution for u(P) as

  

2u(P) = f (q)G(q,P)dSq

S
∫ − A−1

Bf

u
1 2 3 

S
∫ (q)

∂G(q,P)

∂nq

dSq . (8)

Comparing (8) with (4), we find two representations for the solution to our boundary

value problem; (8) explicitly involves the inverse operator A-1 acting upon the function Bf,

whereas, (4) explicitly involves the exact Green's function G*.

To more closely see the equivalence between (8) and (4), it is instructive to

reintroduce the integral form of the operator Bf into (8), and in the process interchange the

order of the inner integration with the operation A-1.  The result is

2u(P) = f (q)G(q,P)dSq

S
∫ − f (q ) A−1G(q,l)

∂G(l,P)

∂nl

dSl

S
∫

 
 
 

 
 
 S

∫ dSq  (9)

where l ∈  S.   Next, factoring out a common f(q) we have

2u(P) = f (q) G(q,P) − A−1G(q, l)
∂G( l, P)

∂nl

dSl

S

∫
 
 
 

  

 
 
 

  
S

∫ dSq . (10)

Now if (10) and (4) are both correct, the term in brackets in (10) must be G*

To see that the term in brackets is, in fact, G*, apply Green's reciprocal theorem to G

and G*, to get

2G* (P,Q) = 2G(P,Q) − G *(l, P)
∂G(l,Q)

∂nl
S
∫ dSl  (11)

where we recall that ∂G* (l,P) ∂n = 0 .  Next take the limit in (11) as Q → s ∈ S  to get (cf.

Boley [5])
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G *(P,s) + G *(l,P)
∂G(l,s)

∂nl
S
∫ dSl = 2G(P,s ) (12)

or symbolically

AG* = 2G . (13)

From (12) (and (13)) and (6) (and (7)) we see that both u and G* satisfy the same BIE

with different right hand sides.  Solving (13) for G* as (cf. Tewary [6])

G* = 2A−1G (14)

and substituting under the integral sign in (11), we obtain, after interchanging P with Q(or q)

G *(P,q) = G(P, q) − A−1G(l, q)

S
∫ ∂G( l, P)

∂nl

dSl . (15)

Expression (15) for G* is precisely that in brackets in equation (10) such that (10) and

(4) are identical.

It is explicit, therefore, that in using the BIE method to solve a given boundary value

problem for the scalar wave equation, one has in fact constructed the Green's function for

the domain.  The key ingredient in both methods is the solution to essentially the same BIE,

which is expressible as A-1.

Some Approximate Forms and Solution Strategies

From the observations above, the boundary element method may be thought of as a

systematic way of approximating the BIE (6) by systems of algebraic equations.  In so doing,

A and B may be interpreted as (square) matrix approximations to the integral operators based

on a discretization of the domain surface S, with u and f familiar (column matrix) numerical

approximations to the continuous boundary variables.
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Therefore, it is clear that for a given discretization, we may form and invert a matrix A,

and via (14), we would have an approximate representation for G *(qN , P) for a given choice

of surface nodes qN.  To use this G *(qN , P) to get the solution u(P) based on (4), it would be

necessary to get representations for G *(qG , P)  at Gaussian quadrature points qG , in order to

do the quadrature indicated in (4) numerically.  That quadrature is expressible in the form

2u(P) = G * (P,qG) f (qG ). (16)

In (16),  f(qG) is a column of discrete values of f at the Gauss points qG on S and

G *(P,qG)  is a row matrix of values of Gauss-weighted G* evaluated at the same qG for

chosen P.  To get the values of G* at the Gauss points from values at nodal points,

interpolation using shape functions were employed.  There are two strategies for doing the

interpolation.

One is to interpolate the product of f and G* as:

f q G q P N f q G q PG G i
i

Ni Ni( ) * ( , ) ( ) * ( , ) .=
=
∑

1

8

(17)

The other is to interpolate f and G*  separately as

f q N f qG i
i

Ni( ) ( ) ,=
=
∑

1

8

(18)

G q P N G q PG i
i

Ni*( , ) * ( , ) .=
=
∑

1

8

(19)

It seems that the second strategy might give better results than the first strategy.  This

matter is addressed further in the numerical examples to follow.
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Numerical Examples

In order to illustrate the idea of a discretized Green’s function and the strategies for

using a discretized Green’s function, several numerical examples are discussed .  The first one

is the problem of sound radiation from a pulsating sphere (See Figure 2).

The exact analytical solution for the acoustic pressure at a distance r from the center

of the sphere of radius a pulsating with a uniform radial velocity Ua is:

p r
a

r
U

iZ ka

ika
ea

ik r a( ) .( )=
+

− −0

1
(20)

where Z0 is the characteristic impedience of the medium.

The pressure at two interior points at different radial locations (r=5a, r=10a) are

calculated.  Table 1 shows the results from conventional BIE (see eqn (8)), from strategy

1(see eqn (17)) and strategy 2(see eqn (18)) by using the discretized Green’s function.

The same accuracy is obtained by strategy 1 and 2 because this problem has a spherical

symmetry which makes the field uniform over all elements.  The interpolation in both

strategies 1 and 2 do not introduce any approximation error.

In another example, a uniform flow over a sphere is considered (See Figure 3).  The

velocity potential Φ  satisfies Laplace’s equation.  To satisfy the condition at infinity, the

potential Φ  is divided into two parts, Φ Φ1 2,

Φ Φ Φ= +




















= +
−

Ur
r

r

r

r0
0 0

2

1 2

1

2
cosθ (21)

Φ1 = Ur cosθ (22)



19

Table 1 Magnitude of the pressure in the field

Location From CBIE From G*

Strategy 1 (eqn 17) Strategy 2 (eqn 18)

r = 5 a 0.141 0.141 0.141

r = 10 a 0.0705 0.0707 0.0707

Φ2 0
0

2
1

2
=









−

Ur
r

r
cosθ (23)

where Φ1  is the velocity potential associated with the uniform stream, while Φ2 the velocity

potential associated with the doublet, U is the velocity of the flow.  So in the BEM

calculation, only the doublet Φ2  which is zero at infinity is calculated as the solution to the

BVP when 
∂
∂
Φ2

n
 is specified over the entire boundary (on the surface of the sphere).  The

results in Table 2 confirmed that strategy 2 is better than strategy 1, but when a finer mesh is

used, they all converge to the results from the CBIE.

An Alternative for Getting the Discretized Green's Function from the CBIE

As a more familiar alternative to (16), we have the  approximate form of (1) that

comes directly from the BEM as usually coded, i.e.,
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Table 2 Comparison between CBIE, startegy 1 and 2 for fluid flow problem

Point

Coordinates Analytical

solution for

Φ2

12 elements mesh results 80 element mesh results

r θ

(degrees)

CBIE Strategy

1

Strategy

2

CBIE Strategy

1

Strategy

2

A 1.5 150 -0.19259 -0.15797 -0.15926 -0.16544 -0.18603 -0.18639 -0.18630

B 1.5 120 -0.11111 -0.09182 -0.06612 -0.08175 -0.10906 -0.10858 -0.10859

C 2 150 -0.10813 -0.08921 -0.09000 -0.09093 -0.10497 -0.10506 -0.10504

D 2 120 -0.06250 -0.05162 -0.04501 -0.04860 -0.06131 -0.06104 -0.06106
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2u(P) = G(P,q
G

) f (q
G
) − Gn (P,q

G
)u(q

G
) (24)

where the superscript n indicates the normal derivative of G and, wherein,

u(qN ) = A−1Bf (qN ) . (25)

In (25), function values at qG are given in terms of values at qN via the shape functions.

Thus, it is possible to factor out  f  in (25), to write

{ }2 1u P G P q G P q CA BC f qG
n

G
T

G( ) ( , ) ( , ) ( )= − −   (26)

where C and CT are rectangular matrices dependent upon the shape functions and

coordinates qG.  In (26) we can identify an approximate form of G* as the term in

brackets, just as we did with the comparable analytical expressions. The bracket-term in

(26) is equivalent in character to G* in (16), but there is an important strategic difference:

to get G* values at  qG (for chosen P), in (16) requires some kind of approximate

representation of G* over S, as mentioned above; whereas comparable G* values via (26)

or (24) require no such representation.  Indeed, since both G and Gn in (26) and (24) have

analytical form, each may readily be evaluated anywhere.  Specifically, since with the

conventional BEM, u(qN) is obtained via (25), only u(qG)  need be expressed as usual, with

standard shape functions, in terms of nodal values.  Thus (24) rather than (26) is usually

used by the BEM community to get u(P).  To exploit the apparent simplicity of (16), with

its need for perhaps special representations of G*, versus the more complicated (24) or

(26), emanating from the standard BIE with no such need, deserves more study.  Either

way, it is possible, with today's technology, to take the following somewhat radical point

of view.
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The Library Idea

The key and most computationally-intensive ingredient in the usual BEM solution

of a BVP of the present type is the construction of A-1.  This requires a mesh, a code to

form A and B, and then the effort to find A-1 (or, equivalently, the LU decomposition of

A).  The rest of the solution process involves mainly matrix multiplication based on

formulas for numerical quadrature.  Therefore, why not consider forming and storing at

least A-1, and possibly B (depending on the tradeoff on using (16) versus (24) or (26)), for

common and/or important shapes S?  In effect, why not create a library of numerical

approximations to exact Green's functions for repeated use?

Modern technology for storage of massive amounts of data, on CDs or on central

storage, accessible via networks, would suggest that such a library is now possible.  At

least some heavy computing could be 'done in advance', the results of which could be

made available to non expert users via the library.

Some details for the formation of a Green's function library may be found in [4]

and [7].  Also, a library of A-1  matrices has been constructed for elastodynamic scattering

[8] from families of oblate-spheroidal voids, of various eccentricities, for waves of

different frequencies.  With this library, the elastodynamic scattered field at arbitrary

points, from shapes and frequencies in the library, due to arbitrary incident waves, is just a

matter of matrix multiplications.  Library entries for other scatters, e.g., cracks, inclusions,

are already in existence or are being formed - all of which find use by physicists engaged in

nondestructive evaluation at Iowa State University.  Partially-exact Green's functions,

which model only (a common or especially complicated) part of a surface are also being
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formed, for repeated use, for fiber reinforced composites, acoustic and electromagnetic

field problems.  Much unnecessary duplication in computing can be avoided in this way.

Additional reference and information about the library idea for specific applications

may be found in subsequent chapters of this thesis.
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 Figure 1   An acoustics example
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Figure 2   Sound radiation from a pulsating sphere
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Figure 3   Uniform flow over a sphere
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CHAPTER 2

BEM ANALYSIS FOR COMPOSITE MATERIALS AND A

LIBRARY OF GREEN'S FUNCTIONS

A paper to appear in the journal Computers and Structures

Lingyun Pan,     Daniel  O. Adams,    Frank J. Rizzo

Department of Aerospace Engineering and Engineering Mechanics

Iowa State University, Ames, IA 50011

Abstract

With the rapid development of advanced composite materials and the wide application

of such materials in engineering, it is desirable to model problems involving these materials by

computer and to use powerful numerical methods like the Finite Element Method (FEM) and

the Boundary Element Method ( BEM ) for analysis.  In this paper, a BEM is developed to

analyze 2D micromechanical behavior of fiber-reinforced composites based on models for

both perfectly-bonded and imperfectly-bonded materials in a unit cell.  For composites with

perfect bond between matrix and fibers, it is shown that our predictions coincide well with

comparable quantities obtained in physical experiments and by FEM analysis.  For imperfectly-

bonded composites, it is found that variation of the interphase parameters (thickness, stiffness)

causes pronounced changes in the overall effective moduli and also in the state of stress in the
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composites.  Also in this paper, the idea of a library of Green's Functions for fiber-reinforced

composites is discussed.  With such a library, users could quickly generate data useful in

design with very little knowledge of methods for computational modeling in general or of the

BEM in particular.

1. Introduction

Considerable research has been done on the analysis of the micromechanical properties

of fiber reinforced composites since the development of advanced composite materials.

Perhaps the most widely used analytical approach for estimating the properties of composite

materials is the rule of mixtures, which can reasonably predict Young’s and shear moduli of

the composite material when the composite has a strong bond between fiber and matrix.

However the perfect bonding assumption is not suitable in the presence of an interphase,

which may have developed during the manufacturing process due to chemical reactions

between the contacting fiber and matrix material.  Also, surface treatments are typically

applied to the fibers to improve interface sensitivity composite material properties, but an

analytical estimation of the influence of  surface treating has not been available to people

involved in surface studies.

Several finite element models have  been developed for the purpose of considering the

presence of an interphase [1, 2].  Among these is the finite element model developed by

Adams at the University of Wyoming [1], in which an additional layer of very fine finite

elements was used at the fiber-matrix interface to model the interphase zone.  Thus, the unit

cell of the composite basically consists of three different materials (fiber, matrix and interphase

zone).
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There also has been some research done on the analysis of the micromechanical

properties of fiber reinforced composites using the Boundary Element Method [3,4] with the

usual well-known advantages of reduction of dimension by one.  That is, with the BEM, only

the boundary needs to be discretized.  Further, for the purpose of determining overall effective

moduli, the information in the domain generated by FEM is not really required. Thus, the

same level of accuracy for the desired information can be achieved by BEM vs. FEM with less

computational effort.  In both Refs. [3] and [4] constant boundary elements were used and

good agreement with analytical solutions were found.  Furthermore  it was shown that the

BEM is very effective when an imperfect interface condition is considered [4].  However, as

there seems to be no user-friendly BEM software in wide use by the composite community,

the power of this numerical method has been restricted.

One purpose of our research is to develop a BEM to analyze two-dimensional

micromechanical behavior of fiber-reinforced composites based on models for both perfectly-

bonded and imperfectly-bonded materials in a unit cell.  Another purpose is to eventually form

a library of Green's Functions for the most-needed and most-often-used fiber volume

fractions, fiber/matrix combinations and interphase conditions as (possibly) identified by the

composite-materials community.  With this Green's function library, users in the community

could determine the effects of design parameters (e.g. to establish effective coating-

thicknesses for fibers) and the effects of damage and different manufacturing processes on the

overall mechanical properties of fiber-reinforced composites.  With the library, all of this could

be done with very little knowledge of methods for computational modeling in general, or of

the BEM in particular.  Most significant, perhaps, is that with all of the heavy computing and
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the expertise needed for that computing exercised in advance, and results put in storage for

repeated use, the mentioned analysis could be performed with negligible user effort in

negligible time.

Specifically in this paper, a BEM is developed to analyze two-dimensional

micromechanical behavior of fiber-reinforced composites based on models for both perfectly-

bonded and imperfectly-bonded materials in a unit cell.  For composites with perfect bond

between matrix and fibers, it is shown that such quantities as the overall effective moduli,

displacement field, and state of stress, as computed with the BEM, coincide well with

comparable quantities obtained in physical experiments and by FEM analysis.  For imperfectly-

bonded composites, a model is used with continuous tractions across the interface and a linear

relation between displacement differences and the conjugate tractions across the interface.  It

is found that variation of the interphase parameters (thickness, stiffness) causes pronounced

changes in the overall effective moduli and also in the state of stress in the composites.

2. Method of Analysis

The composite material is assumed to consist of a square array of unidirectionally

oriented fibers in an infinite elastic matrix as shown in Fig. 1.  Assuming  a square fiber

packing array, the composite material could be represented by a unit volume cell as indicated

by the dashed lines in Fig. 1 and 2(a), or even by only one quadrant of the unit cell, if the

loading condition is also symmetric as shown in Fig. 2(b).  For consistency and conciseness,

the entire unit cell model will be used in this paper, while the method of analysis also applies

to the one-quadrant model in the calculation of effective tension modulus.  In the one-

quadrant model, symmetries could be utilized to set the boundary conditions.
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The composite body is assumed to be loaded at infinity.  For example, to determine the

effective transverse tension modulus, the body is assumed to be loaded at infinity by uniform

normal stress σ 0  in the x coordinate direction, as shown in Fig. 1.  When the composite is

subjected to transverse normal load applied at a distance from the element being analyzed, a

complex state of stress is induced in the composite.  This is the result of the dissimilar material

properties for the fiber and the matrix and also because of interactions between the fiber being

analyzed and adjacent fibers.  Thus, the stress distribution along the boundary of the unit cell

will not be uniform, although the average normal stress must equal the corresponding average

applied stress from equilibrium considerations.  However, because of symmetry, the original

square unit cell remains rectangular when only transverse normal load is applied.  Thus the

normal displacement of each point on a given boundary of the unit cell is identical.  Because

of the assumed symmetry about both coordinate axes, no shear stress exist along the

boundaries of the unit cell, thus the boundary conditions are specified as

u t on ABx y= =1 0

t u C on BCx y= = −0 2/

u t on CDx y= =0 0

t u C on DAx y= =0 2/ (1)

as shown in Fig. 3, where ux,  uy are the displacement components in the x, y directions,

respectively, and tx, ty  are traction components in the x, y directions.  The additional constant

C will be determined by an additional equilibrium condition :
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σ y
BC

x a dx( , ) =∫ 0  . (2)

For the purpose of determining the shear modulus, boundary conditions are given as:

u t on ABy x= =0 0

u u on BCx y= =1 0

u t on CDy x= =0 0

u u on DAx y= =0 0  (3)

as shown in Fig. 4.

3. BEM Formulation

Considering the unit cell as shown in Fig. 2(a), it is well known [5] that the Boundary

Integral Equation (BIE) for the fiber can be written as

1

2
1

u p u q T p q t q U p q ds qj i
S

ij i ij( ) [ ( ) ( , ) ( ) ( , )] ( )= −∫ (4)

where p as well as q are on S1, see Fig. 2(a), the index i ( or j ) is equivalent to x, y when it

varies from 1 to 2,  ui(q) are the displacements on the fiber side of the interface, and ti(q) are

the tractions exerted by the matrix on the fiber.   Tij, Uij are fundamental tensors derived from

the point-force solution of the elasticity equations for the plane strain problem [5].  The

normal points away from the region of the fiber.

For the matrix, both S1 and S2, see Fig. 2(a), form the boundary of this material. Thus

for p and q on S1 and S2, the BIE takes the form
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1

2
1 2

v p v q T p q s q U p q ds qj i
S S

ij i ij( ) [ ( ) ( , ) ( ) ( , )] ( )= −
+
∫ . (5)

Again the normal points away from the region, vi(q) are the displacements on the matrix

boundary, and si(q) are the tractions by the fiber on the matrix.

In addition to these two BIEs, we need an interface condition because both

displacements and tractions are unknown on the interface.

For a perfect interface between fiber and matrix, it is well known that the interface

conditions are continuity of displacements and tractions across the interface, i.e.

u q v qi i( ) ( )− = 0

t q s qi i( ) ( )+ = 0  . (6)

For an imperfect interface, the flexibly-bonded interface was chosen among many proposed

interface models [6,10], to simulate the interface condition between the fiber and matrix.  This

interface model is in fact a ‘spring contact’ type which allows both slip and separation.  It is

assumed that the tractions are continuous across the interface, while the displacement may be

discontinuous from fiber to matrix, and the displacement differences are linearly related to the

conjugate tractions on the interface.  The proportionality constants characterize the stiffness

of the interphase.  In mathematical form:

[ ] [ ]t u= =0 2Ft (7)

where square brackets denote discontinuities across the interface.

[ ]t
t q s q

t q s q
s s

n n

=
+
+









( ) ( )

( ) ( )
 (8)

[ ]u
u q v q

u q v q
s s

n n

=
−
−









( ) ( )

( ) ( )
 (9)
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t =








t q

t q
s

n

( )

( )
. (10)

F is called the flexibility matrix which has diagonal form

F =










M

M
s

n

0

0

M
h

M
h

or
h

Es n= =
+µ λ µ2

where λ µand  are the Lame moduli of a thin elastic layer of thickness h modeling the bond

between the fiber and matrix. This include the limiting case of perfect bonding when µ  is set

to infinity or h is set to zero.

To avoid an unrealistic radial overlap of the two materials in the interfacial zone, when

t qn ( ) ≤ 0 we let

t q s q u q v q

t q s q u q v q M t
n n n n

s s s s s s

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ = =
+ = − =

0

0 2
 (13)

otherwise we use eqn (7).

Eqns (7) and (13) are in the local normal and tangential coordinate system.  Assuming

the normal at q is 
v
n n nx y= =( ) (cos , sin ), α α , as shown in Fig. 5, the interface conditions in

a global xy coordinate system are

[ ] [ ]
u v

u v
T

M

M
T

t

t
x x

y y

s

n

x

y

−
−









=


















−2 1  (14)

or in the region where radial overlap occurred
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[ ] [ ]
u v

u v
T

M
T

t

t
x x

y y

s x

y

−
−









=


















−2
0

1 . (15)

[T] is the coordinate transformation matrix

[ ]T =
−









sin cos

cos sin

α α
α α

. (16)

These relations are sufficient to determine all boundary tractions ti(q), si(q) and all boundary

displacements ui(q), vi(q) at all points q on both S1 and S2 from a specification on the outer

boundary S2.  Once all boundary functions are determined, the average tensile stress is

calculated by

σ σx x
AB

a
a y dy= ∫

1

2
( , )  . (17)

The effective tension modulus for the plane strain problem is obtained by

Es
x

x

=
σ
ε

.

ν
ε

εs
y

x

C= − = (18)

where εx  is the strain which can be evaluated from the prescribed boundary condition on edge

AB.

In order to compare with analytical results, we need to calculate the intrinsic material

properties from our plane strain numerical results.  The relation between the material elastic

moduli and the plain strain tension moduli is
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E Es

s
s=

+
+

1 2

1 2

ν
ν( )

. (19)

The displacement components and stress components at any arbitrary interior point P of the

fiber or the matrix can be obtained easily by the integral identity:

u P u q T P q t q U P q ds qj i
S

ij i ij( ) [ ( ) ( , ) ( ) ( , )] ( )= −∫ . (20)

The stresses at internal points are calculated by

σ λδ µ
∂
∂

∂

∂ij ij l l
i

j

j

i

kij

S

k kij k

u
u

x

u

x

D P q t q S P q u q ds q

= + +

= −∫

' ( )

[ ( , ) ( ) ( , ) ( )] ( )
 (21)

where the third order tensor components Dkij and Skij correspond to derivatives of the

fundamental solution [7].  In eqns (20) and (21) S is the boundary for the domain.  For P

inside the fiber, S S= 1 , for P inside the matrix S S S= ∪1 2 .

4. Numerical Examples

Numerical experiments were performed for several fiber/matrix combinations and fiber

volume fractions to calculate the effective transverse tension modulus and shear modulus for

fiber reinforced composites.  Good agreements are obtained comparing our results with other

numerical calculations and experimental data.  Listed below are some typical examples using

quadratic boundary elements.  In our calculations for the entire unit cell model, a 96 element,

192 node mesh was used.  For the one-quadrant model, similar results were obtained using a

40 element mesh.
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The first example involves calculation of effective transverse tension modulus for a

glass/epoxy composite material.  The material constants are :

for glass fiber                       E psif f= × =105 10 0 226. .ν

for epoxy resin matrix          E psim m= × =05 10 0 356. .ν .

Calculations were performed for three volume fractions-- 19.63%, 45%, 60%.  Our

computed values of effective transverse moduli are plotted in Fig. 6.  The solid line is the

result obtained by the self-consistent cell model , the broken line is the result by Herman , the

‘o’ are the boundary element calculations made by N. Oshima [3].  Constant boundary

elements were used in his calculations.  It is seen that our results, indicated by ‘+’ are in good

agreement with all the results presented in Ref [3] as shown in Fig. 6.

Another example is calculated in order to compare our effective transverse tension

modulus predictions with the Halpin-Tsai’s equations and Finite Element Analysis

calculations.  Fig. 7 shows the present prediction for effective transverse tension modulus for

various reinforcements/matrix stiffness ratios.  The solid lines are the results of Adams and

Doner’s Finite Element Analysis [9] and the result from the Halpin-Tsai equations [8] are also

presented in Fig. 7 by circles.  We  plot only our results for fiber volume fractions (Vf) which

are less than 70%.  For composites with fiber volume fractions higher than 70%, nearly

singular integrals, as a consequence of the proximity of boundary S1 and S2, can causes

unacceptable numerical errors. Although we can solve this problem to some extent by using

smaller elements or higher order quadrature, we feel that this is not an effective way to deal

with high fiber volume fraction composites. Instead we could use another basic cell model,
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like the hexagonal unit cell or the equilateral triangle unit cell. Fortunately, however, for most

fiber reinforced composite materials, Vf  is less than 70%.

One more example is calculated for the perfect bonding interface to determine the

transverse shear modulus for Kevlar/epoxy composites with 3 different fiber volume fractions.

The calculated results are listed in Table. 1.  The upper and lower bound solutions predicted

by Hashin [12], by Teply and Dvorak [11] and by Yeh [2] (using finite element analysis) are

also listed in the tables for comparison.  It can be seen that our results are in good agreement

with them. The present BEM result is slightly lower than the FEM result probably because the

displacement based FEM usually gives a stiffer prediction than the exact value.  The material

constants used are :

Table 1 Transverse shear modulus (GPa) of Kevlar/epoxy composites

Vf 0.2 0.4 0.6

Hashin’s model

    upper bound

    lower bound

1.313

1.297

1.571

1.526

1.872

1.814

Teply and Dvorak’s model

    upper bound

    lower bound

1.305

1.280

1.540

1.506

1.844

1.799

Yeh’s FEM calculation 1.297 1.529 1.82

Present BEM Calculation 1.294 1.513 1.798
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for Kevlar fiber, E GPaf f= =7 00 0 3. .ν

for epoxy resin matrix, E GPam m= =300 0 35. .ν .

To study the effect of interface conditions on effective modulus and state of stress, the

numerical calculations were carried out for carbon/epoxy composites.  The material constants

are :

for carbon fiber, E GPaf f= =1375 0 25. .ν

for epoxy resin matrix, E GPam m= =1862 0 33. .ν .

In the computation, Mn and Ms were taken as

M
h

E

k b

k E
k

b

E
M

h k b

k
k

b
n

m m
s

m m

= = = = = =2

1

2

1

,
µ µ µ

   .

where b is the radius of the fiber. Five different values of k, 0, 0.1, 1, 10, 100 were

considered.  These values represent a decreasingly-stiff interphase with k = 0  corresponding

to a perfect bond.  In the range of linear elasticity, the stress-strain curve is linear.  Fig. 8

shows the stress-strain relations for the five values of k.  As expected, the slope is steepest for

a perfect bond, and the composite is stiffer for a stiffer interface.

The stress distribution for σ x a y for y a( , ) 0 ≤ ≤  is also plotted in Fig. 9.  This is the

stress distribution in the matrix material along the edge AB of the unit cell.  For a perfect

bond, the largest σx occur at y = 0 which is the middle of the edge AB.  As the stiffness of the

interface decrease substantially, the maximum stress moves to y = a which is the edge of the

matrix, as can be seen for k=100.  Thus for a perfect bond, the load is mainly carried by the

fiber.  As the interphase stiffness decreases, the load carried by matrix increases.
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5. A Library of Green’s Functions

In two of our previous papers [13,14], it has been shown that the main inverted

coefficient matrix in any BEM may be regarded as a discretized Greens function which

characterizes a material body and actually provides the solution for a specific boundary value

problem.  With such a matrix, a variety of boundary data, in the form of loads, incident waves,

or other input data, which 'cause' a field of interest, are 'entered' as a column matrix.  The

desired field then is simply given by matrix multiplication with the mentioned inverted matrix

or discretized Green's function.

For example, an elastodynamic scattering library has been formed and is used by

physicists engaged in nondestructive evaluation at Iowa State University [15].  Entries in this

library include inverted BEM matrices which characterize spheroidal voids in infinite elastic

solids.  These voids have a number of aspect ratios. The flatter ones are intended to simulate

realistic open cracks, and various material properties are included, which pertain to commonly

occurring solids used in aircraft.  With this library, computer modelers easily impinge the

various voids with elastodynamic waves of their choice, and pick up the scattered signal at

desired locations.  This is done making no meshes, no waiting for the solutions of large

systems of equations, and indeed with no real knowledge of BEM codes or modeling strategy.

All that is required is to enter chosen incident waves, and specify scattered wave locations, in

an easy pre-specified format.  Scattered signals are output in only the amount of time needed

to multiply a square matrix by a column matrix and a row-times-column multiplication.

Physical experiments have been modeled and 'what-if' numerical experiments may be
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conducted, with negligible time and effort, using the library for common void scatterers in

common materials.

What we are suggesting here is to form a similar library of Greens functions, with

similar advantages, for the use by composite material community.

For example, for fiber reinforced composites, library entries could be based on any of,

or any combination of, the following factors:

1. Various Fiber Volume Fractions

2. Various Constituent Stiffness Ratios Ef/Em

3. Different Interface Conditions

4. Amount of Debonding Around the Interface Perimeter

Library entries based on other criteria could be created, but all such entries should be

chosen in the interest of and in consultation with the composites community.

The first entries probably should reflect the most-needed and most-often-used

parameters, in present use, and in proposed design of new materials. Again, the goals are easy

and quick numerical simulations for calculating such things as effective muduli and peak

interface stresses.  Simulating the effects of the most common types of damage expected, with

existing and new materials, should be especially welcome.  Simulating the effects of

thicknesses of fiber coatings, and thus the response characteristics of various interface

conditions should be welcome as well. The main point is that all modeling, with the Library in

hand, could be done by composites workers who need not necessarily be experts in any kind

of computer modeling.
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Other BEM libraries, for elastostatic analysis as needed by design community, are also

being constructed at Iowa State University. All such libraries benefit from cooperation

between BEM researchers and industry or researchers in other areas.
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Fig. 5  Transformation between local sn and global xy coordinate system
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Fig. 6.  Eeff/Em  vs. the volume fraction Vf (From Ref. [3])
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Fig. 7.  Eeff/Em vs. Ef/Em (From Ref. [9])
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Fig. 8.  Stress-strain curves for different k
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Fig. 9 Matrix stress distribution along edge AB(x = a)
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Abstract

When Boundary Integral Equation/ Boundary Element Methods (BIE/BEMs) are used

for halfspace problems, such as occur frequently in elastodynamics, the fullspace (Stokes)

fundamental solution or halfspace (Lamb) fundamental solution can be used to formulate the

BIE.  When the fullspace fundamental solution is used, a truncated discretized model of the

halfspace surface is required.  Alternatively, if the halfspace fundamental solution which

models the entire halfspace surface analytically is used, no truncation issues arise.
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Nevertheless, both Stokes and Lamb approaches have advantages and disadvantages.  This

paper presents systematic strategies, based on the BEM for 3D halfspace elastodynamic

problems, wherein the best features of formulations based on the Stokes and the Lamb

solutions are exploited.  Strategies are illustrated and numerical results are given for point

sources and radiation from a spherical void in a halfspace.

1. Introduction

Boundary Integral Equation/Boundary Element Methods (BIE/BEMs) have proven to

be powerful tools for formulating and numerically attacking exterior boundary value problems.

In this paper the BIE method refers to the formulation of a problem in terms of integral

equations defined on the boundaries of a domain.  The BEM refers to the procedure used to

discretize the integral equations, using boundary elements, and the procedure used to solve

the integral equations numerically.  These tools have certain advantages over domain-based

numerical methods for such problems.  With the (radiation) conditions on the surface at

infinity incorporated analytically, only finite surface(s) need to be discretized when the only

other surface(s) in the problem are finite in extent.  With domain-based numerical methods,

such as the finite element method, element-modeling of an entire infinite domain is, of course,

impossible.  Simply truncating the finite-element model of the infinite domain is usually

inadequate.  Thus, special features are introduced into these methods to model such a domain

and to satisfy the radiation condition [1].

However, when a BEM is used for halfspace problems, such as occur frequently in

elastodynamics, and the fullspace (Stokes) fundamental solution is used to formulate the BIE,

a truncated discretized model of the halfspace surface is required. (Usually, a discretized
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model of a finite surface, such as a buried finite obstacle, is needed as well).  Therefore, a

truncation problem can exist in modeling a halfspace problem, even with boundary methods.

However, with Stokes and the BEM, the truncation issue is different than with say finite

elements.  With finite elements the domain itself and not just a bounding surface must be

truncated; thus the nature of each kind of truncation is different in a very basic way.  Indeed, a

good boundary solution can usually be obtained with the BEM even with severe truncation of

the halfspace surface.  This truncation may be simple, i.e., no special layer of ‘infinite’

elements to simulate the ‘rest of the halfspace surface’ need be used.

Alternatively, if the BEM procedure uses the Lamb fundamental solution, which

models the complete halfspace surface analytically, no truncation issues even arise.  But, since

Lamb’s solution is available in an analytical form which requires (numerical) evaluation of

infinite integrals with respect to frequency, the CPU time spent on just forming a boundary

integral equation is increased significantly and often prohibitively.  Further, for some

combination of locations of source point and field point, it is especially difficult or, with

certain algorithms, impossible to evaluate the Lamb solution.

Problems of radiation and scattering in a halfspace have been under investigation via

BIE/BEM for some time.  In the time domain, the BIE has been used for halfspace dynamics

problems [2,3] for linear and nonlinear problems.  In both studies, the Stokes solution was

employed, and discretization over the halfspace surface was required.  In the frequency

domain, the BIE was used for the foundation problems in a halfspace [4] for studying the

dynamic response of rectangular foundations.  Again, the Stokes solution was used, and a

truncation on the halfspace surface was needed.  However, in [5] and [6] the Lamb solution
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was used to formulate the axisymmetric BIE for a layered viscoelastic halfspace to avoid

discretization of the halfspace surface.  A BIE formulation using Lamb’s solution for elastic

halfspace problems, free from principal-value integrals, was proposed in [7].  In a follow-up

study [8], halfspace problems were considered by BIE formulations using both Stokes’ and

Lamb’s tensors.  Comparisons were done by checking boundary solutions obtained with both

kernels.  However, truncation effects on the boundary solution, as well as on the solution for

interior points were not addressed.

In summary, all of the researchers cited above attacked the halfspace problem by the

BIE either by using the Stokes solution, making a truncated discretization on the halfspace

surface, getting a fairly good solution on the boundary, or by using the Lamb solution without

concern for computational efficiency.  Several questions arise then regarding the BEM for

halfspace problems; such as, can good results be obtained everywhere by using the Stokes

solution alone?  Is it always better to just use the BIE formulation using the Lamb solution?

Is there a way to take advantage of both formulations to attack halfspace problems if

questions of practicality and efficiency must govern?  An attempt is made to answer these

questions in this paper.

Specifically, we present systematic strategies, based on the BEM for halfspace

elastodynamic problems, wherein the best features of the Stokes solution and the Lamb’s

solution are exploited.  This research is motivated by a general class of problems related to

responses due to explosions or other disturbances inside an underground structure.  Here we

restrict ourselves to time-harmonic radiation problems, even though we can study scattering
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problems in a similar manner and can deal with transient problems through the Fourier

transform and the Laplace transform [9].

Most of our strategies are illustrated and numerical results are presented for point

sources in a halfspace and radiation from a spherical void in a halfspace.

2. BIE Formulations

Consider a homogeneous, isotropic, elastic halfspace bounded by a flat halfspace

surface SH  at z =0, which is traction free, as shown in Figure 1.  The elastic material fills the

halfspace z ≥ 0 .  There is a finite obstacle B inside the halfspace with a surface S2.  In the

region B', exterior to B but within the halfspace, we assume that an elastic field exists in the

form of a time harmonic displacement vector ui(p,ω), which must satisfy the familiar Navier

equation,

( ) , ,c c u c u uj ji i jj i1
2

2
2

2
2 2 0− + + =ω (1)

where c1 and c2 are dilatational- and shear-wave speeds, respectively, ω is the circular

frequency, and body forces are assumed to be zero.  This field is assumed to arise from a

prescription of boundary data on S2

Next, a Somigliana integral formula based on the Stokes point force solution may be

derived ( see [7]), and written as:

[ ]C p u p T p q u q U p q t q ds qij j ij j ij jS SH

( ) ( ) ( , ) ( ) ( , ) ( ) ( )= −
+∫

2

(2)

in which Uij and Tij are Stokes’ displacement and traction tensors, respectively, which describe

the fields at a point q due to a time harmonic point force of frequency ω at a point p in a
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fullspace [7].  Here we assume no incident wave in B' and Cij(p) is the coefficient tensor of the

free term (again see [7]) and is a function of the location of p.  When p is inside B', eqn. (2) is

a representation integral which gives the solution at p in terms of boundary values of

u q t qj j( ), ( )  on both SH  and S2,  and C pij ij( ) = δ .  When p is on the boundary, either SH  or

S2, eqn. (2) is a BIE in which half of the pair of variables u q t qj j( ), ( )  are prescribed for a

well-posed problem.  The BIE (2) can be solved for the other half of the boundary data.

Indeed, in the BIE process, the first step is to put p on the boundary; the BIE is then

solved for the unknown boundary data.  In the second step, the solution at any point inside the

domain B' can be obtained from the representation integral.  In both steps, all of the integrals

are evaluated numerically, so a discretization is needed on both the halfspace surface and the

finite surface.  Since SH  is infinite, only a truncated finite area S1 would be discretized.  Thus

truncation arises when solving the BIE as well as when obtaining the solution at a field point.

Denote the neglected area on the halfspace surface as S∞ (see, Figure 1), i.e.

S S SH = ∪ ∞1 ,  and for all problems of interest in this paper, t qj ( ) ≡ 0  on SH .  Thus, the BIE

eqn. (2) can be expanded as:

[ ]C p u p T p q u q U p q t q ds q

T p q u q ds q T p q u q ds q

ij j ij j ij j
S

ij
S

j ij
S

j

( ) ( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( ) .

= −

+ +

∫

∫ ∫
∞

2

1

(3)

The last term is associated with the neglected area S∞.  For p located on S2 or S1, and q on S∞,

we find that the contribution of this last term may be neglected without detriment to the
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accuracy of the boundary solution, provided S1 has at least a minimum size.  This matter is

discussed in some detail in the next section.

Now if instead of the Stokes tensor Uij and Tij, Lamb’s tensorsUij
H  and Tij

H  are used,

the Somigliana integral need only be taken over S2 because the presence of the traction-free

halfspace surface is accounted for in Lamb’s tensors.  That is, T p qij
H ( , ) = 0, whenever q is on

SH  ( see [14] ).  Thus, the Somigliana integral formula has the simple form:

[ ]C p u p T p q u q U p q t q ds qij j ij
H

j ij
H

jS
( ) ( ) ( , ) ( ) ( , ) ( ) ( ) .= −∫

2 (4)

There is no truncation issue because the integral is taken only over the finite surface S2.

However, the computation of Lamb’s halfspace Green’s function for (4) as a BIE is very time

consuming.  To give an idea of the CPU time difference between formulating and solving the

BIE using the Stokes solution, and formulating and solving the BIE again using the Lamb

solution, an experiment was performed for a sphere, in a fullspace, with an 8 element

discretization.  It took 2.8 seconds to solve the BIE using the Stokes solution.  When the

Lamb solution was used, the CPU time was 820 seconds.  Thus we were motivated to look

carefully at the Stokes formulation despite the shortcomings, conceptually at least, of

truncation.

3. Truncation Study for the BIE Using the Stokes Solution

To investigate truncation effects on boundary solutions and results at field points via

Stokes, the problem of a point load in a halfspace was considered first.  Displacements on the

halfspace surface obtained as the boundary solution in the Stokes BIE should then be identical
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to the corresponding displacements given by the halfspace Green’s function Uij
H .  Because of

the absence of S2  and the existence of the point source, the Stokes BIE (3) reduces to:

[ ]C p u p T p q u q U p q t q ds q U p p F pij j ij j ij jS ij j( ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( , ) ( )= − +∫
1

0 0
(5)

in which p0 is the location of the point source;  Fj  is the magnitude or strength vector of the

point source.

The point source is one unit below the halfspace surface,  and is in the z direction for

all the results presented here.  This makes F F1 2 0= = , F3 1=  in eqn. (5).  In Figure 2, we

show the comparison between our boundary solutions and exact point force solutions for the

magnitude and phase angle of u1 and u3 components along x direction on the halfspace surface.

The results presented there are for a point source in titanium alloy ( c m s1 6340= / ,

c m s2 3030= / ,  Poisson’s ratio ν=0.352. ) when the discretized area S1 is chosen as a 12x12

square area. (Later we will show that a much smaller discretized area S1 can be used to obtain

a good solution).  The shear wave number is kt=0.449,  The discontinuity in the phase-angle

plot is caused by the jump in +180o/-180o.  Note that the validity of our BEM analysis is

confirmed by the good agreement between our computed results and that given by the

analytical solution Uij
H .

In Figure 3, we show the variation of the magnitude of scattered field u3 along the x

direction for four different sizes of the discretized area 2Lx2L of L=3, 4, 6, 12 respectively,

over the halfspace surface.  It is seen that the results converge very well.  Very good results

can be obtained by using a relatively small discretization (L=3).  The main effect of a larger

discretization is to obtain some extension of the curve over the added-discretized portion of
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SH .  That is, the increase in accuracy of the boundary values of u3 over a given discretized

model of SH , by making that model larger, seems to be small.

Observations made about data from point source results are very important because

the radiation from any kind of a shape in the halfspace could be viewed as the radiation by a

distribution of point sources.  To confirm this, we studied the radiation from a spherical void

which is used to simulate a spherical wave in the halfspace.

Consider a spherical cavity of radius  r which is buried at a distance d inside a

homogeneous, elastic half-space and which is radiating harmonic dilatational waves into the

halfspace, such that tr =1.0, tθ = tφ =0.0.

Since the magnitude of spherical waves decreases with distance from the source, the

reflected waves due to the presence of the halfspace surface also have a diminishing effect as

they travel through the medium.  Thus,  it is expected as the distance d increases, the surface

data on the sphere should approach the corresponding fullspace solution.  This observation

can be viewed as a check for the algorithm and coding (analytical comparison data are not

available for this problem), and the expected behavior is apparent from Figure 4, in which the

polar variation of the boundary solutions on plane y = 0 for several different depth of the

sphere when k rp = 0 913.  ( kp is the dilatational wave number),  poisson’s ratio ν = 0 25.  are

plotted.  It can be seen when d ≥  8r, the surface data are quite close to the corresponding

fullspace solution.

Figure 5 shows the variation of u1 and u3 components on the halfspace surface

obtained using three different sizes of discretization 2Lx2L on the SH  surface.  It is again very
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clear that we pick up more information as we increase the size of the discretization.  However,

values of new data compared with values of previously-obtained data again show little change.

The situation for interior points is, however, different.  Calculation for u1 and u3  at

various locations of interior points, for the largest discretization of SH , were performed and

compared to the analytical solution for point load case.  The general conclusion, for interior

points, is that we can obtain good results for points only under the “shadow” of the halfspace

discretization.  Figure 6 shows the result for interior points one unit below the halfspace

surface from x =2 to x =25 due to the point load in the halfspace.  It can be seen that beyond x

=10 the result from BEM deviates considerably from the Lamb solution.

Therefore, while we can obtain very satisfactory boundary data over the discretized

surfaces with reasonable truncation of SH , via the Stokes BIE, we can not obtain satisfactory

field data at distances much beyond the edge of the truncated SH .  It is obviously impractical

to use ever-larger models of SH  just to get desired field data at large distances from the

sources of disturbance.  Thus, what can be done?

4. Lamb’s Formulation Revisited

We mentioned earlier that using the Lamb solution in forming and solving a BIE

would be prohibitive for any problem requiring a substantial amount of discretization over S2

because of the CPU time involved to get function evaluations for the many p-Gaussian

quadrature point combinations involved.  Note, we speak of prohibitive CPU time despite the

fact that discretization of (a portion of ) SH  is not even an issue with Lamb.  However,

suppose we get good boundary displacements over S2 with a fairly small discretization
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(reasonable truncation) of SH , as we have shown that we can do.  Then if we ask for field

data, remote from S2 , via eqn. (4) used as a representation integral for comparatively few

points p , the costs are very reasonable indeed.  In fact, we may view this as an ideal

compromise, the best of both worlds in a sense:  specifically, use Stokes, with a reasonable

truncation of SH , to form and solve the relevant BIE; thus obtain uj(p) on S2  accordingly,

efficiently, and in reasonable time; then use Lamb in the representation integral to get the

farfield data which requires boundary data over S2  only.  A similar strategy was used in [15]

for scattering from a halfspace surface-breaking crack problem.

Figure 7 shows the interior results calculated by using Stokes in the BIE and using

Lamb in the representation integral (indicated by + ) compared with the results from using

Lamb’s solution in both the BIE and the representation integral.  Also in Figure 7 is the

uncorrected results if Stokes is used both in the BIE and in the representation integral.  It is

very obvious that those uncorrected results denoted by circles deviate from the good results

even for field points which are close to the origin.

5. A More Efficient and Faster Strategy: the Library

The efficiency of using the Stokes-plus-Lamb strategy described above can be

improved by incorporating the idea of a ‘Green’s function Library’ ( see [11,12] ).  For

problems with two surfaces as the boundary, such as halfspace problems (S2 plus SH ) ,  a sub-

matrix of the coefficient matrix is the essential part of the partial Green’s function for the

problem.  The library idea is closely related to partitioning of the system matrix.
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The BIE in discretized form for the halfspace problem, using the Stokes tensors, can

be written as:

A A

A A

u

u

f

f
11 12

21 22

1

2

1

2










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





=
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


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

where A11 are coefficients related to collocation(source point p) on S1, and integration

(integration point q) on S1;  A12 are coefficients related to collocation on S1 and integration on

S2;  A21 are coefficients associated to collocation on S2 and integration on S1;  A22 are

coefficients associated to collocation on S2 and integration on S2 ;  In the recent papers[11,12],

it has been shown that A11
1−  is in fact the essential ingredient in a ‘discretized Green’s function’

for the halfspace problem.

Indeed, suppose we attempt to solve this system of equations via partitioning, i.e. form

A12, A21, and A22 and write the following reduced system of equations:

( ){ } { }A A A A u f A A f22 21 11
1

12 2 2 21 11
1

1− = −− − .  (7)

Then obtain u1 by

{ } { }u A f A u1 11
1

1 12 2= −− .  (8)

Suppose further that the discretization on the halfspace surface is bigger than the

discretization on the finite surface.  The size of A11 is then much bigger than the size of A22.

The most computationally intensive part of the solution via eqns (7) and (8) then is the

formation and inversion of A11.  This leads to the idea of making an accurate discretization of

the halfspace surface, obtaining A11
-1, and storing this large matrix so that it can be reused

over and over again with different S2.  This idea is becoming attractive as storage and retrieval

of mass-amounts of data become easier and cheaper.  Also only the boundary data on S2 is of
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interest when using Lamb.  Thus, we do not really need to go through eqn. (8) to get u1.  In

actual implementation, the matrix saved is not the inverse of A11, but the LU decomposition of

A11.

As an illustration of the benefits of this partitioning-library strategy, Table 1 shows

some CPU times for a typical halfspace problem solved in two ways.  It can be seen that by

doing partitioning, the CPU time is approximately 1/10 of the CPU time needed for solving

the whole problem in one step.

6. Some Useful Approximations

Some useful approximations might be appropriate for the halfspace problem.  First, if

the finite obstacle is deep enough below the halfspace surface, we can approximate the

boundary  solution on the surface of the finite obstacle by solving a fullspace problem,

Table 1 CPU time comparison for partitioning using Library idea

Method/Task  CPU time (seconds)
CPU time for solving the problem in one step
144 elements on the halfspace surface, 8 elements on the sphere

1920

CPU time via Partitioning
Form A11   870
LU decomposition   866
Pre-effort (form A11 and save LU decomposition of A11) 1636

Form A22, A21, A12     70
read LU decomposition of A11       7.8
Calculate new coefficient matrix and right hand side     95.5
Solve the reduced equations       0.05

Total CPU time for partitioning              173



66

and then this approximation gives very good results.  Figure 8 shows the interior results

calculated in this way for d=8r compared with the results from using Lamb’s solution.  This

approximation gives good results for both the magnitude and the phase angle even for farfield

points.  Further, we found that certain asymptotic techniques for special locations of the field

points are often warranted.  For example, we found that the scattered field on the halfspace

surface exhibits very good Rayleigh wave features when the distance from the origin gets

large.  This can be seen from Figure 9 in which the scattered field on the halfspace surface is

plotted.  The two main characteristics of the Rayleigh wave, i.e. the magnitude of the

displacement decays very slowly and a 900 phase angle difference exists between u1 and u3, are

very apparent.  For the field caused by the radiation from a spherical void, even though the

Rayleigh wave is not evident in the near field, it is found that, at certain larger distance from

the origin, the scattered field also exhibits the Rayleigh wave characteristics.  Thus, if the

major part of the field on the halfspace surface comes from the Rayleigh wave for large

distance from the origin, it is possible to use the Rayleigh wave representation and boundary

solutions from the BIE to approximate the farfield on the surface.  However, specific

strategies for using the boundary data from BEM to construct an appropriate Rayleigh wave

representation is itself an interesting topic for future research.
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7. Conclusions

Both BIE formulations, i.e. via Stokes’ and Lamb’s solutions, are used to attack

halfspace problems, and compared with each other.  Each has its own advantages and

disadvantages.

It is found that when Stokes is used, the halfspace-surface truncation affects both the

boundary solution and the solution at field points.  However, it is also found that this

truncation has a small effect on the boundary values themselves, i.e., very good boundary

solutions can be obtained with a small size of discretization on the halfspace surface.  On the

other hand, the truncation has a big effect on the results for field points, especially those field

points which are out of the "shadow" of the halfspace surface discretization.  This is true even

though important ingredients in the remote field point values are the truncation-insensitive

boundary values.  It is also found that when Lamb is used, the CPU times are usually

prohibitive.

In this paper then, to counter the negative effects of truncation with Stokes and to

address the excessive CPU issue with Lamb, we suggest the following: use Stokes to

formulate the BIE and obtain good boundary solutions over the truncated halfspace plus a

finite surface;  then use Lamb's solution in the representation integral to evaluate results at

field points.  In this way, there are no adverse truncation effects on the results for field points,

since the boundary solution on the finite surface is good, as stated, and the finite surface is the

only one which must be integrated over with Lamb.  For the relatively few function

evaluations of Lamb's solution required in getting field point values only, CPU time is seldom

a problem.
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We also suggest that when using the fullspace fundamental solution in the BIE,

considerable time and effort can be saved by pre-computing the coefficient matrix for the

truncated halfspace surface model and storing its inverse (in reality the LU decomposition of

that coefficient matrix) for repeated use.  The Green’s function Library idea, with the

coefficient matrix for a fine discretization on the halfspace surface which is identified as the

main ingredient of the partial Green’s function, precomputed and stored, gives an even more

efficient and faster way to attack halfspace problems.

Further, we found that certain approximations are applicable for the halfspace

problem.  For example, when the finite surface S2 is deep enough below the halfspace surface,

we can approximate the boundary solution on the surface of  S2 by solving a fullspace

problem, and then obtaining the field in the halfspace by using Lamb's solution.  Also some

asymptotic techniques for special locations of the field points are often warranted.  For

example, if the major part of the field on the halfspace surface comes from the Rayleigh wave,

we can use the Rayleigh wave representation and boundary solutions from the BIE to

approximate the farfield on the surface.
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S S SH = ∪ ∞1

Figure 1   The halfspace problem
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Figure 2   Comparison of boundary solutions from L=12 discretization

with Lamb’s solution for point loading (d=1)



73

Figure 3   Truncation effect of point source response
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Figure 4   Depth test for radiation from spherical void
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Figure 5   Truncation effect for radiation from a spherical void
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Figure 6   Field values at interior points (point load)
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Figure 7   Results from strategy proposed in this paper for interior points
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Figure 8   Results by using large depth approximation
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Figure 9   Rayleigh wave features for field due to point loading
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CHAPTER 4

PARALLEL IMPLEMENTATION OF A BOUNDARY

ELEMENT ANALYSIS CODE FOR HALFSPACE

ELASTODYNAMICS PROBLEMS

Introduction

An effective way to cope with the computationally-intensive issue of halfspace

elastodynamic problems is to take advantage of computer technology.  Among the many

efficient special advances in computing is the one called parallel computing.

Since the early 1970s, computers consisting a number of separate processors,

called parallel processors, began to appear.  It has been apparent that parallel computing

can provide an effective and efficient way to solve large-scale structural analysis problems

and other problems which take long time to be solved via serial methodology [1].

Specifically for the Boundary Element Method (BEM), there are a number of

papers on the parallel computing [2,3,4,10].  All researchers agree that BEM is very

suitable for parallel programming because of the scalability of the method, i.e. the

structure of BEM make it easy to divide the whole task into several parallel small

independent tasks.  For halfspace elastodynamics problems via the BEM, it is known that

the amount of CPU time for forming the coefficient matrix is the major problem when

Lamb’s halfspace Green’s function is used to formulate the BIE.  This is due to the fact

that Lamb’s solution is available in an analytical form [5,6] which requires (numerical)



81

evaluation of infinite integrals with respect to frequency, the CPU time spent on just

forming a boundary integral equation is increased significantly and often prohibitively..

The purpose of this research is to provide a parallel scheme for BEM analysis for the

halfspace problem, and to explore the great advantages of parallel computing with BEM.

The parallel computing for the present work was carried out on the IBM SP-2 in

the national supercomputing center at Cornell University using PVM.  PVM stands for

parallel virtual machine which is a software system that permits a heterogeneous collection

of UNIX workstations networked together to act as a single parallel computer [7].

Communication between processors takes place by message-passing in which data or

other information are transferred between processors.  The main advantage of PVM is its

affordability and the substantial computing power of individual workstations.

The major work here is to design a parallel algorithm for BEM for the halfspace

problem, and to reorganize and rewrite the code in the PVM environment to obtain a

maximum performance gain.

There are two major steps in the BEM process for any problem:

1. Forming the coefficient matrix; this involves collocating at each nodal point,

then numerically integrating over each boundary element.  The coefficient matrix defines a

governing linear system of equations for boundary value problem at hand.

2. Solving the linear system of equations.

The CPU time spent on each step is determined by the size of the problem and the

kernels used in the BIE.  Usually the size of the system equation increases nonlinearly with

the size of the problem, so does the CPU time spent on solving the linear system of
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equations.  For large scale problems, step 2 will dominate.  Thus parallization procedures

for solving the linear algebraic system is essential.  Fortunately, there is a large amount of

work in the area of parallel-solving for linear algebra equations.  Efficient algorithms such

as parallel LU decomposition as well as standard routines can be obtained [8,9].

When the halfspace Green’s function is used in the BIE formulation of a halfspace

problem, the CPU time spent on step 1 dominates even for a very small-size problem

based on few boundary elements. Thus the emphasis in this research is basically on the

parallelization of step 1.  Specifically, in this section, a parallel scheme is designed for the

boundary element analysis code for elastodynamics problems using halfspace Green’s

function via PVM. The problem of radiation from a sphere in the halfspace is considered.

BIE Formulations

Consider a homogeneous, isotropic, elastic halfspace bounded by a flat halfspace

surface SH  at z =0, which is traction free, as shown in Figure 1.  The elastic material fills

the halfspace z ≥ 0 .  There is a finite obstacle B inside the halfspace with a surface S.  In

the region B', exterior to B but within the halfspace, we assume that an elastic field exists

in the form of a time harmonic displacement vector ui(p,ω), which must satisfy the familiar

Navier equation,

( ) , ,c c u c u uj ji i jj i1
2

2
2

2
2 2 0− + + =ω (1)

where c1 and c2 are dilatational- and shear-wave speeds, respectively, ω is the circular

frequency, and body forces are assumed to be zero.  This field is assumed to arise from a

prescription of boundary data on S.



83

The BIE for elastodynamic problems using halfspace Green’s functions can be

written as

[ ]C p u p T p q u q U p q t q ds q uij j ij
H

j ij
H

jS i
inc( ) ( ) ( , ) ( ) ( , ) ( ) ( )= − +∫ (2)

where T p q U p qij
H

ij
H( , ), ( , )  are traction and displacement Green’s functions for a halfspace

problem, also called Lamb’s solution; u q t qj j( ), ( ) are the displacement and traction

respectively at point q;  S is the boundary of the inhomogenity in the halfspace, usually the

surface of the finite obstacle.  For radiation by a sphere in the halfspace, S is the surface of

the sphere, and ui
inc = 0 .  Here we restrict ourselves to a radiation problem.  The parallel

scheme is equally applicable to a scattering problem.  In eqn. (2) Cij(p) is the coefficient

tensor of the free term (cf. [11]) and is a function of the location of p.  When p is inside

B’, eqn. (2) is a representation integral which gives the solution at p in terms of boundary

values of u q t qj j( ), ( )  on S,  and C pij ij( ) = δ .  When p is on the boundary S, eqn. (2) is a

BIE in which half of the pair of variables u q t qj j( ), ( )  are prescribed for a well posed

problem.  The BIE (2) can be solved for the other half of the boundary data.

Indeed, in the BIE process, the first step is to put p on the boundary; the BIE is

then solved for the unknown boundary data.  In the second step, the solution at any point

inside the domain B’ can be obtained from the representation integral.

If we discretize the boundary and collocate at nodal points, the discretized form of

the BIE is obtained as

[ ]{ } [ ]{ }A u q B t qN N( ) ( ) .= (3)
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For a well posed elastodynamics problem, either uj or tj at any nodal point is given,

so by rearranging the above equation, retaining the unknown variables on the left hand

side of the equations, while moving all the known terms to the right hand side, we have

the following linear algebraic equations:

[ ]{ } { }A unknowns q RHSN
' ( ) .= (4)

After solving the above simultaneous equations for the unknowns at nodal points,

all of the boundary values for uj and tj  at all nodal points are obtained. Then we can

calculate displacement or stresses at any field point by the boundary integral

representation eqn. (2) with C pij ij( ) = δ .

Serial Execution

The flowchart of the serial BEM code is as shown in Figure 2.  The serial code

includes 58 subroutines, and consists of 9970 lines of statement.

The test example is the problem of radiation from a sphere in the halfspace. The

surface of the sphere is discretized into 8 triangular elements as shown in Figure 3.

A crude mesh was used for the sphere merely because this research was done as a

class project.  There exists a limitation about the problem size.

A profile study which can list the CPU times for each procedure indicates that

most of the CPU time is spend in the functions called by subroutine cte3 in which the

coefficient matrix is formed.  To accurately record the CPU time, this serial code was

executed on the Loadlevel where it is guaranteed that only one job is run at a time.  It

originally takes about 300 seconds to run the test problem.  In order to concentrate on the
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parallization, no serial optimization was done for the serial code.  Instead, the intrinsic-O3

optimization flag was used when the code was compiled. This performs both the -O level

optimizations and performs additional optimizations that are memory or compile-time

intensive.  The serial CPU time is then reduced to about 160 seconds (See Table 1).

Parallel Implementation

The boundary element analysis code is well suited for parallel execution for the

following reasons:

1. The BEM code is coarse grained or has a large-scale granularity which means

that large tasks can be performed independently in parallel.  This is true especially for the

code which use the halfspace Green’s function, where forming the coefficient matrix costs

most of the CPU time ( >99.9% for the test example); and most of this part of the code

can be run in parallel.

2. The BEM code also has a very good scalability in the part of it which consumes

most of the CPU time.  This means it is easy to separate the job into several jobs to be run

on each processor parallely and independently.  The task of forming the coefficient matrix

is divided into several small tasks such that each small task calculates several columns of
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Table 1 CPU time and performance for serial and parallel execution

Wall clock time
(seconds)

Speed up

Serial  without -O3 option

Run 1 302

Run 2 296

Run 3 296

Run 4 296

Run 5 302

 Serial with -O3 option

Run 1 160

Run 2 160

Run 3 159

Run 4 159

Run 5 160

Parallel execution with -O3 option

Run  1 23

Run  2 22

Run  3 22

Run  4 21 7.57

Run  5 23
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the coefficient matrix.  For example, in the numerical example here, each processor forms

the columns which correspond to the integration over one element.

3. The BEM code has parallel-data independence in the part of the code which

consumes most of the CPU time.  The data in the coefficient matrix are parallel

independent too. Given the information of connectivity of a specific element and all the

nodal points, each processor can calculate part of the coefficient matrix independently, and

can send it back separately.  This means each processor does not need to wait for data

from other processors during the process.

Here are some considerations in parallel implementation:

1.  The so-called Host/node configuration was used in this project, the host was

responsible for the I/O process and passing necessary data to each node. Each node

performed the integration over one boundary element for all nodal points. i.e. the node

formed several columns of the coefficient matrix, and sent the results back to the host.

Then the host performed the assembling of the coefficient matrix, solving of the system of

equations and postprocessing of the results.  Details are as indicated in the parallel code

flowchart (see Figure 4).

2.  Load balancing issues

By load balancing, we mean the assignment of tasks to the processors of the

system is done in such a way that each processor is kept doing useful work as much as

possible.  The following are some considerations regarding load balancing.

a. Eight tasks were spawned at the beginning of the host program such that while

the host program reads in model data, nodes can start to do some pre-calculations as to
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calculate the shape functions and gaussian quadrature information etc.  These pre-

calculations are independent of the model data

b. The model data and boundary conditions are sent separately in two messages to

allow some overlapping. i.e. while nodes were unpacking the data, host can read in some

more data.

Based on the above considerations, the flowchart of the parallel code is as in

Figure 4.  As mentioned, the radiation problem from a sphere in the halfspace is

considered.  An eight-element mesh as shown in Figure 3 is used.  In the parallel

execution, eight workstations were used to solve this problem.  A nearly perfect speedup

(7.57) is obtained,  The speedup is defined as the ratio of the execution time for a single

processor and the execution time using multiple processors.  Ideally, the speedup by using

n processors could reach n, but the attainable speedup depends on the degree to which the

serial program can be divided into independent (and parallel) tasks. The speedup also

depends on the number and size of the messages passed and on the ratio of

communication and computation time.

Conclusions

By parallelizing the BEM code for halfspace elastodynamics problems, a very good

speedup is obtained in this exercise.  All of the work associated with this exercise indicates

that boundary element analysis code is easy parallelize because of its coarse granularity,

easy scalability and good data independence.  Parallel computing can provide a way to

solve halfspace scattering problems effectively and efficiently.
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Figure 1   The halfspace problem
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Figure 2   Serial code flow chart
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Figure 3   Sphere discretization
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Figure 4   Parallel code flow chart
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Figure 3   Parallel code flow chart (continued)
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CHAPTER 5

ELASTODYNAMIC SCATTERING FROM A

SURFACE-BREAKING CRACK

Introduction

Scattering of elastic waves by planar cracks is an important area of investigation in

applied mechanics, especially in quantitative non-destructive evaluation (NDE).  However,

there are few solutions to three-dimensional scattering problems, and these are almost all for

the special case of scattering by an internal penny-shaped crack [1].  A number of references

using numerical methods, such as boundary elements, finite differences etc., can be found in

[1].

The problem of scattering from a surface-breaking crack is of particular interest to

NDE,  and considerable effort has been devoted to obtaining numerical data for this problem.

But most of  the research has been done under two-dimensional (2D) assumptions, for

example [2-4].  However, it was pointed out in [5] that if the crack dimensions are

comparable to the width of the interrogating beam, the full three-dimensional problem must be

considered.

The BEM is especially good for this class of problem because, as a numerical tool, it is

valid under 2D or 3D assumptions, either semi-circular cracks or more general crack shapes,

cracks which are inclined or perpendicular to the free surface, and in the low frequency,

intermediate frequency or even high frequency range, if proper care is taken.
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Problem Description And the BIE Formulation

The problem considered here is the scattering of a wave by a surface-breaking crack in

the halfspace.

Consider a homogeneous, isotropic, elastic halfspace bounded by a flat halfspace

surface SH at z=0, which is traction free, as shown in Figure 1.  Elastic material fills the

halfspace z ≥ 0 .  There is a semi-circular crack which is normal to and breaks the halfspace

surface.  We first consider the case in which the crack is insonified by a SV wavefield incident

at an angle of θ =45o (see Figure 2 for definition of θ).  Because of the radiation condition, we

solve this original problem in two steps as depicted in Figure 1.  By convention, the crack

surface is denoted by S2,  the truncated area on the halfspace surface is S1.

In step 1, we assume there is no crack, and the halfspace is under the load of the

incident wave.  Both the displacement ui
I  and traction ti

I  on the fictitious crack surface can

be obtained analytically [12].  Then in step 2, − ti
I  is applied on the crack surface, and the

problem in step 2 becomes the problem for a halfspace with a surface-breaking crack under

the load of crack-surface traction only.  This problem can be solved by the boundary element

method.  It can be seen that the superposition of these two steps is equivalent to the original

problem.

For crack problems or problems with a thin-body domain, the hypersingular boundary

integral formulation (HBIE) is needed since the conventional BIE (CBIE) alone breaks down

because of the degeneracy of the main coefficient matrix [7].  Incidentally, the HBIE is also

used in dynamic analysis [6] to overcome the so called fictitious-frequency difficulties [8].

While the HBIE is very useful in solving problems with cracks or thin bodies, the process of
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using HBIE presents more analytical and numerical difficulties than does the CBIE because

the HBIE is one order higher in singularity for the kernel functions than those in the CBIE.

The HBIE can be obtained by taking spatial gradients of the CBIE and multiplying the

resulting equation with the elastic modulus tensor Eiklm  and the direction cosine of the normal

vector at the source point n k0  [14].  The resulting HBIE for a radiation problem, involving

tractions and displacements explicitly, has the form

[ ]t p K p q t q H p q u q ds qi S ij j ij j( ) ( , ) ( ) ( , ) ( ) ( )= −∫ (1)

where the kernels are

K p q E
U p q

x
nij iklm

lj

m
k( , )

( , )
,=

∂

∂ 0
0 (2)

H p q E
T p q

x
nij iklm

lj

m
k( , )

( , )
=

∂

∂ 0
0 (3)

where U p qlj ( , )  and T p qlj ( , )  are kernels for the CBIE.  Details about the derivation of HBIE

and the expression for the kernels can be found in [14].

For the halfspace surface-breaking crack problem, the boundary consists of four

portions, i.e., S S S S SR= ∪ ∪ ∪+ −
1 2 2  as in Figure 2.

The HBIE for the surface-breaking crack problem can be then expanded as

[ ]
[ ]
[ ]
[ ]

t p K p q t q H p q u q ds q

K p q t q H p q u q ds q

K p q t q H p q u q ds q

K p q t q H p q u q ds q

i ij j ij jS

ij j ij jS

ij j ij jS

ij j ij jS R

( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( , ) ( ) ( ) .

= −

+ −

+ −

+ −

∫
∫
∫
∫

+ + + + +

− − − − −

+

−

1

2

2

(4)

Note
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K P Q K P Qij ij( , ) ( , ) ,+ −=

H P Q H P Qij ij( , ) ( , ) .+ −= −

If we define

∆u q u q u qj j j( ) ( ) ( ) ,≡ −+ −

as the displacement discontinuity across the two crack surfaces, and

Σt q t q t qj j j( ) ( ) ( ) ,≡ ++ +

as the sum of tractions on the two crack surfaces.  Also notice that as R → ∞ ,

[ ]K p q t q H p q u q ds qij j ij jSR

( , ) ( ) ( , ) ( ) ( ) .− →∫ 0 (5)

The HBIE for the surface-breaking crack problem can be written as

[ ]
[ ]

t p K p q t q H p q u q ds q

K p q t q H p q u q ds q

i ij j ij jS

ij j ij jS

( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( , ) ( ) ( ) .

= −

+ ∑ −

∫
∫ +

1

2

∆
(6)

For the present loading condition, t q q S t q q Sj j( ) , , ( ) ,= ∀ ∈ ∑ = ∀ ∈0 01 2 .  By moving all

of the terms to one side of the equation, the HBIE used here in particular is

t p H p q u q ds q H p q u q ds qi ij j
S

ij j

S

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) .+ + =∫ ∫
+

1 2

0∆ (7)

If u q u qj j( ), ( )∆  are taken as the variables on S1 (the halfspace surface) and S2
+ (the

crack surface) respectively, the HBIE Eqn (7) can be written in a compact form:
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t p H p q q ds qi ij j
S

( ) ( , ) ( ) ( )+ =∫ φ 0 (8)

where S S S= ∪ +
1 2 , and

φ

φ
j j

j j

q u q q S

q u q q S

( ) ( ), ,

( ) ( ), .

= ∀ ∈

= ∀ ∈ +

1

2∆
(9)

Eqns (8) and (9) indicate that for problems with a crack, if the HBIE is used, only one

surface of the crack needs to be discretized and collocated.  After solving this equation, what

we obtain on the crack surface is the displacement discontinuity instead of the displacement

itself.

The kernels in the HBIE are singular in r with orders

K P Q O
r

ij( , ) ( ) ,=
1
2

H P Q O
r

ij( , ) ( ) ,=
1
3

that is, one order higher than those in the CBIE.  The first and second integrals in Eqn (1) are

thus interpreted (et. seq.) as Cauchy principal values [16] and Hadamard finite parts [17,18],

respectively.

Regularization of the HBIE formula (8) is needed before discretization in order to use

Gaussian quadrature to evaluate the integrals.  However, because only one surface of the

crack needs to be modeled, the integral identities used for global regularization for problems

having a closed surface boundary no longer hold [15].  The global regularization can not be

used anymore; instead the local regularization using line integrals is needed.  The detailed

process of local regularization can be found in [9].
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To get the local-regularized form of HBIE eqn. (8), first write it as

t p H p q q ds q H p q q ds qi ij j
S S

ij j
S

( ) ( , ) ( ) ( ) ( , ) ( ) ( )+ + =
−
∫ ∫φ φ
∆ ∆

0 (10)

where S  is the boundary formed by singular elements which have the collocation point p as

one of the nodal points; S- ∆S  is the rest of the boundary.  The first integral in eqn (10) is

regular, the second integral can be regularized locally as:

H p q ds H p H p q ds

H p q p ds q

H p ds q

H p ds q

ij j ij ij
S

ij j

j p

S

ij
S

ij
S

p

( , ) ( ) ( ) [ ( , ) ( , )] ( ) ( )

( , ) ( ) ( ) ( )( ) ( )

( ) ( , ) ( )

( ) ( , )( ) ( ) .

φ

φ φ
∂ξ

ξ

φ

∂φ
ξ ξ

α
α α

α
α α

∆ ∆

∆

∆

∆

∫ ∫

∫

∫

∫

= −

+ − − −










+

+ −

(11)

where H p qij ( , )  is the static kernel, and the last two integrals are computed using a line

integral [9].

Notice for the present problem that,

t p p S

t p t p p S

i

i i
I

( ) , ,

( ) ( ), .

= ∀ ∈

= − ∀ ∈ +

0 1

2

The discretized form of  equation (10) can be written in matrix form as

A A

A A

u

u t
11 12

21 22

1

2 2

0
















=






∆ I  (12)

Where:

A11   is the coefficient matrix when collocating on S1 and integrating on S1,

A22   is the coefficient matrix when collocating on S2  and integrating on S2 ,
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A12 , A21  are cross terms when collocating and integrating on different surfaces.

u1 is the displacement vector on the halfspace surface, and ∆u2 is the crack opening

displacement vector on the crack surface.

The solution of equation (12) yields the crack opening displacement vector over the

S2  elements and the displacement vector on the flat surface of the halfspace.

After the crack-opening displacement is obtained, the scattered fields in the farfield or

any points inside the halfspace can be computed by using the boundary integral representation,

i.e.

u P T P q u q ds qj
s

ij
H

S
j( ) ( , ) ( ) ( ) .= ∫

2

∆ (13)

in which Tij
H is the halfspace Green’s function as in [20].  Thus the integration is taken only

over the finite surface S2 since the presence of the traction-free halfspace surface is accounted

for in the halfspace Green’s function.  That is, T p qij
H ( , ) = 0, whenever q is on SH  ( cf. [21] ).

The scattering amplitudes can then be calculated from the scattered displacement field [23].

Also, Auld’s electromechanical reciprocity relationship [22, 23] can be used to predict

the flaw induced signal change δΓF  in the received signal due to the presence of a flaw.  δΓF

is found to be a function of particle velocity u
•

 and stress tensor 
t
τ  for state “a” --transmitting

transducer illuminating the medium with the flaw present, and for state “b”--receiving

transducer acting as a transmitter with the flaw absent.  Specifically,

δ τ τΓF a
S

b b aP
u u n ds= ⋅ − ⋅ ⋅
• •

∫
1

4
[ ]

t t r
(14)

where P is the incident electrical power.  S is any closed surface which contains the flaw and
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can be the flaw surface itself in the BEM calculation [23];. 
v
n  is the normal direction of the

surface S.  In the frequency domain

δ ω
ω

τ τΓF a
S

b b a

i

P
u u n ds( ) [ ] .= ⋅ − ⋅ ⋅∫4

t t r
(15)

In this paper, we present the normalized Auld voltages, as

δ ω τ τΓF a
S

b b au u n ds( ) [ ] .= ⋅ − ⋅ ⋅∫
t t r

(16)

To better model the crack tip behavior, we use the square-root built in eight-node

quadrilateral (nonconforming) elements along the crack tip [24].

N c c c c

c c c c

= + + + + + + +

+ + + + + + + +
1 2 3 4

5
2

6
2

7
2

8

1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

η ξ η η ξ η

ξ η η ξ η ξ η
(17)

The basis functions in equation (17) are selected such that N  goes to zero at the crack

tip.

Discretization Considerations And Numerical Results

Numerical experiments with discretizations of  S1  over circular regions with radii 2a,

3a, 5a, 7a, 8a and also over the elliptical region 2.5a x 3a, as a truncated model of SH  have

been done (See Figure 3).  Table 1 shows the maximum amplitudes of the crack opening

displacement (COD) and the amplitude of the AULD voltage for three different discretizations

for Kta= 1.  The solid is taken to be Aluminum ( C m s C m sL S= =6320 3080/ , / ).  It is

observed that for low to intermediate frequency scattering from a crack, a discretization which

models 2.5ax3a of the free surface, as in Figure 3, gives convergent results.  The discretization

in Figure 3 has 68 elements on the flat surface and 26 elements on the crack surface.  The



104

characteristic mesh size is chosen such that no element spans a distance greater than 1/6 of the

wave length of the incident wave.  Smaller elements along the crack tip on the crack surface

as well as in the vicinity of the crack edge on the halfspace surface were used in order to

capture the singularity along the crack tip.

Nonconforming elements as in Figure 4 were used because of perceived smoothness

requirements needed with HBIEs [8].  The size of the coefficient matrix of the problem

increases rapidly with the number of nonconforming elements since the total number of nodes

for a discretization of M nonconforming elements is exactly 8*M, if only 8-node quadrilateral

elements are used, while for a discretization using conforming elements, the number of nodes

is approximately 3*M.  Thus the ability to increase M in the nonconforming case is restricted,

before memory and CPU demands become excessive.  How to justify use of conforming

elements with the HBIE such that we can use more elements for the same size of the problem

is therefore a future research area of considerable interest [19].

Figure 5 shows COD variations on the crack surface. The semi-circle in Figure 5

represents the semi-circular cross section of the crack.  Both the COD variation along the

mouth of the crack and the depth of the crack are plotted in Figure 5. Since non-conforming

elements are used, the results at nodal points are extrapolated to the corner point to make the

plot.  The discontinuity in two adjacent elements is thus an artifact of the non-conforming

elements.
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Table 1  Maximum CODs for some discretizations

Mesh

Description

Modeled area on the

halfspace surface

Elements Maximum COD

at nodal points

Result from AULD

integration

on the halfspace

surface

on the crack

surface

48 element mesh 5ax5a 36 12 0.5718 0.0290

68 element mesh 7ax7a 48 20 0.5912 0.0299

94 element mesh 3ax2.5a 68 26 0.5877 0.0296
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It can be seen that the largest amplitude of the COD occurs along the depth of the

crack and in-between the crack edge and the crack mouth.  This is reasonable considering the

loading and the boundary conditions at the crack edge and crack mouth.

Figure 8 and Figure 9 show the magnitudes of the P-wave and S-wave farfield

scattering amplitude respectively.  These are obtained through the following process:  first the

farfield scattered displacement is calculated using the crack opening displacements on the

crack surface in eqn. (13); then the scattered displacement is decomposed into P-wave and S-

wave components; finally the farfield P-wave and S-wave scattering amplitudes are obtained

according to the definition of scattering amplitude (See [1] or [23]).  In Figure 8 and Figure 9,

the variation of the magnitudes of these scattering amplitudes, for the observation angle

0 90< ≤Ψ  (See Figure 2 for the definition of Ψ ), is plotted.  The plots in Figure 8 and

Figure 9 can be extended to 90 1800 ≤ <Ψ  because of the symmetry about the z-axis.

Ψ = 00  and Ψ = 1800  corresponding to the observation points on the halfspace surface.  The

data at those two points are not available because when calculating the field for such points on

the halfspace surface, chances are that some integration points are very close to the halfspace

surface too.  In the halfspace Green’s function code we used for the present research, such a

combination of P (interior point) and q (Gaussian quadrature point on the elements on the

crack surface) will cause numerical instability.  Three curves in each figure come from the

three different discretizations, and thus different sizes of truncation for the halfspace surface.

It can be seen that the results from these three different discretizations converge very well.

The BEM was employed to investigate the halfspace surface-breaking crack problem

in [5] also, and constant elements were used.  Obviously this is a very crude approximation
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because of the discontinuities inherent in assuming both the displacement and traction constant

over elements.  The convergence of the numerical solution in [5] was based on the

convergence in the farfield only.  We report convergence in the COD data as well as the

farfield.

Also, here we use locally-quadratic boundary elements.  Moreover, unlike [5], we

prepare our hypersingular integrals for numerical integration before rather than after

discretization of the crack into elements.  This is more straightforward analytically and, no

doubt, this contributes to improved accuracy as well.

Partitioning Method and Library Idea

Because of the presence of the crack, we need a fine mesh to get good results, but a

fine mesh easily used up the memory of the computer because of the mentioned properties of

nonconforming elements.  To deal with this issue, note first that , as with the halfspace

scattering problem in [20], the existence of two separate boundaries gives us the explicit

matrix equation as in eqn. (12).  Thus, again, the idea of partitioning can be applied here.  A

slightly different way of doing partitioning is implemented here, than in Chapter 3, specifically

for the halfspace surface-breaking crack problem, in order to increase the capability to solve a

larger problem on the same computer.  Another algorithm is used to solve the problem in step

2 via three sub-steps.  In the first sub-step, we collocate only on the flat surface, form A11  and

A12 , and then find A11
1− (LU decomposition of A11 ) and finally store all of these matrices.  In

the second sub-step we collocate only on the crack surface, form A21  and A22 , and store
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them too.  In the final sub-step, we read in all of the sub-matrices and solve a reduced system

of equations to get the crack opening displacement ∆u2 .  Specifically:

Sub-step 1:

Collocating  on the flat surface, notice that

t p p Si( ) , .= ∀ ∈0 1 (18)

We get

[ ]{ } [ ]{ } { }A u A u11 1 12 2 0+ =∆ , (19)

{ } [ ] [ ]{ }u A A u1 11

1

12 2= −
−

∆ .  (20)

Sub-step 2:

Collocating on the  crack surface, notice that

t p t p p Si i
I( ) ( ) ,= − ∀ ∈ 2 (21)

Then we have  the discretized form of equation as:

[ ]{ } [ ]{ } { }A u A u t I
21 1 22 2 2+ =∆ . (22)

In this step, we form matrices  [ ]A21  and [ ]A22  only, and store them.

Sub-step 3:

when eqn.(20) is plugged into eqn. (22), we have

[ ]{ } [ ][ ] [ ]{ } { }A u A A A u t I
22 2 21 11

1
12 2 2∆ ∆− =−

(23)

[ ] [ ][ ] [ ]( ){ } { }A A A A u t I
22 21 11

1

12 2 2− =
−

∆ .  (24)
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In sub-step 3,  all the sub-matrices are read in,  a new coefficient matrix and new

known vector are calculated according to eqn. (24), and the crack opening displacements ∆u2

is calculated.

By doing the whole problem in three sub-steps, the memory requirement is reduced

because only two sub matrixes of the whole BIE coefficient matrix are formed in each sub-

step. The memory needed is then approximately half of the requirement of the old scheme, for

a given discretization.  That means we gain the capability to deal with a mesh which is almost

twice as fine as the  finest mesh in the old scheme.

The result of  a mesh with 126 elements in total, which is beyond the capacity of the

computer by using old scheme, is presented in Figure 6.  This mesh has the same pattern of

discretization on the top surface as in Figure 3 and a finer discretization on the crack surface

(See Figure 5).

Discussion

The problem of scattering from a halfspace surface-breaking crack is solved here using

the boundary element method.  The fullspace fundamental solution is used in the formulation

of the BIE.  Therefore the halfspace surface is also one of the boundary surfaces for this

problem, and consequently discretization and truncation on the halfspace surface are needed.

As in [20], it is obeserved that the boundary solutions converges very quickly.  However, the

field solution depends on the size of the truncation, if the fullspace fundamental solution is

also used in the representation integral.  This is consistent with the conclusions reported in

[20].  Thus, for the solutions at field points, an integral representation using the halfspace

Green’s function is needed, and convergence is also observed.
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The Green’s function library idea may be applied to this class of problems as follows:

make an accurate discretization of the halfspace surface, obtain A11
1− , and store this large

matrix so that it can be reused over and over again with different sizes and shapes of cracks.

As before, A11
1−  is the main ingredient in a so-called discretized Green’s function for the crack

problem.  This idea is becoming attractive as storage and retrieval of mass-amounts of data

become easier and cheaper.

Additional research for this category of halfspace surface-breaking crack problems is

clearly facilitated by the methods of this chapter.  As stated before,  the BEM as a numerical

tool, is valid for either 2D or 3D, semi-circular cracks or for more general shapes, and cracks

which are inclined or perpendicular to the free surface.
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Figure 1   Halfspace surface breaking crack problem
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Figure 2   Halfspace surface-breaking crack
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Figure 3   A typical mesh (94 elements in total)
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Figure 4   Triangular and quadrilateral nonconforming elements
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Figure 5   CODs from 3 different discretizations
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Figure 6   COD from 126 element mesh



120

Figure 7   126 element mesh
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Figure 8   Farfield P-wave scattering amplitude
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Figure 9   Farfield S-wave scattering amplitude
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SUMMARY AND CONCLUSIONS

In this work, we show the explicit relation between the BIE/BEM method of solution

and construction of the exact or region-dependent Green’s function, for problems governed by

linear elliptic partial differential equations.  The exact Green's function for the problem and the

unknown boundary variables on the boundary satisfy the same BIE but with a different known

vector.  As a consequence, the representation integral for the BIE solution of the BVP may be

written in a form which contains a precise expression for the exact Green’s function.  This

provides a way to construct a numerical approximation to an exact Green’s function (a

discretized Green’s function) for problems for which an analytical Green’s function is not

available.  Indeed, it is shown that in using the BIE method to solve a given BVP, one has in

fact constructed the discretized Green’s function for the domain.  A number of ingredients in

the BEM in combination may now be interpreted as a numerical approximation to the exact

Green’s function.

When using BEM to obtain the discretized Green’s function, there is no restriction on

the configuration (2D or 3D), no restriction on boundary condition and no restriction on the

physical nature of the problem as long as it is a problem governed by linear elliptic partial

differential equations.  Thus the BEM, a well developed numerical tool regarded as useful in a

particular way, can now be regarded explicitly as a vehicle to construct the discretized

Green’s function for any relevant problem.

Specifically, it is made clear that for a one-surface BVP, the inverse of the coefficient

matrix  ( A−1
) is the key ingredient in the discretized Green’s function for the BVP.  For
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problems with two surfaces as the boundary, a sub-matrix of the coefficient matrix can be

interpreted as the main ingredient of the partial Green’s function for the problem as well.

Finding the solution of a BVP using a partial Green’s function is facilitated by the partitioning

process described in Chapter 3.  Indeed, suppose that one of the surfaces is larger and more

complex than the other.  One can construct the inverse of the sub-matrix associated with the

large surface, and this is usually the key and most computationally-intensive ingredient in the

BEM solution of a BVP with two surfaces.  This requires a mesh, a code and expertise to get

a reliable sub-matrix inverse (really an LU decomposition).  The rest of the solution process

usually involves a simple mesh on a small simple surface, at most, plus matrix multiplications

based on formulas for numerical quadrature.   This strategy is equivalent to creating a library

of numerical approximations to exact partial-Green's functions for repeated use.  Modern

technology for storage of massive amounts of data, on CDs or on central storage, accessible

via networks, would suggest that at least some heavy computing of this type can be 'done in

advance', the results of which could be made available to non expert users.

The library idea for halfspace problems using the freespace fundamental solution

involves forming an accurate discretization on the halfspace surface, obtaining the part of the

coefficient matrix associated with the truncated halfspace surface model, and storing the

inverse (LU decomposition) of that coefficient matrix for repeated use.

Two classes of problems are considered here as the application of BEM and

discretized Green’s function library.  One is the application of the BEM to the analysis of 2D

micromechanical behavior of fiber-reinforced composites.  A BEM model for predicting 2D

micromechanical behavior of fiber-reinforced composites is developed based on models for
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both perfectly-bonded and imperfectly-bonded materials in a unit cell.  The idea of a library of

Green's functions and the entries for the library for fiber-reinforced composites is discussed.

The other class of problems considered here is the halfspace problem.  BIE

formulations using both the Stokes fundamental solution and the Lamb fundamental solution

are used and compared.  Strategies, based on the BEM for halfspace elastodynamics

problems, are suggested and demonstrated to take advantage of the best features of the

fullspace Stokes solution and halfspace Lamb’s solution.   The partitioning method is

employed to explore the practicality of the library idea for halfspace problems..

Also, the scattering from a halfspace surface-breaking crack is considered in this

thesis.  Although this problem also belongs to the halfspace problem category, the necessity to

use hypersingular integral equations for the crack problem brings more complexity both

theoretically and numerically.  Nevertheless, the conclusions about effective strategies for both

problems are quite consistent.  Specifically, when the fullspace fundamental solution is used in

the BIE formulation, the truncation on the halfspace surface has a small effect on the

boundary solution and quite a big effect on the solution at field points.  So in order to get a

reliable solution at field points, the halfspace Green’s function rather than the fullspace one is

advised to be used in the representation integral.  The conclusions about using the fullspace

Green’s function and halfspace Green’s function allows us to find boundary solutions using

fullspace fundamental solution with confidence, and then use the halfspace Green’s function to

find field quantities.

After accurate boundary values are obtained, it is possible to use some asymptotic

expressions to approximate field quantities.  In the halfspace problem,  how to use the
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Rayleigh wave representation and boundary solutions from the BIE to approximate the

farfield are indicated.  How to use the boundary data from the BEM to construct an

appropriate Rayleigh wave representation is an interesting topic by itself.  These are all topics

for future research.

Another interesting problem is the halfspace inclusion problem.  Imagine instead of a

void inside the halfspace, there exists an inhomogenety of another material inside the

halfspace.  This is also an important problem from non-destructive evaluation point of view.

For the halfspace surface-breaking crack problem, the HBIE formulation allows us to

solve for the scattered fields from cracks of any shape.  Future work in the area of inclined, or

curved, or multiple crack problems, with comparison with experimental data would be useful

and is in the planning stages.

Finally, it is interesting to the author to note that the classical mathematical ideas for

BVPs, leading to Green's function representations, integral formulas, and boundary integral

equations, etc. took on a new significance in about 1965 with the fairly-wide availability of the

digital computer.  'Old mathematics' developed for a different (largely analytical) purpose took

on a 'new dress' and a new practical significance.  The BEM has embodied that significance

for years.  Similarly, now in the middle 1990s, the BEM, with all of its customary need for

expertise and heavy computing demands takes on a new significance with the wide availability

of large amounts of  storage and rapid data transfer.  One can now, with some advance

planning, have a considerable amount of heavy computing done in advance, by experts, with

the results put in a library of discretized Green's functions.  The fruits of this activity by

experts is thus made available to non experts, for easy analysis and design of a variety of



127

physical systems.  Thus, 'computer modeling' via the library idea follows a long-time well-

understood trend in technological development, namely, 'a sophisticated tool is made available

for easy use, to users who need not have the knowledge, skills, resources, nor the inclination

to make the tool themselves.'   Developing a user-friendly interface for different categories of

problems is certainly an important development and this is ongoing at Iowa State right now.
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APPENDIX A

ELASTIC WAVE ANALYSIS SPHEROID (EWAS) LIBRARY

USER'S MANUAL

Contents

PART I     GENERAL INFORMATION ABOUT EWAS LIBRARY

PART II    SOFTWARE INSTALLATION

PART III  USING THE LIBRARY

PART IV  EXAMPLE / DEMONSTRATION

PART I     GENERAL INFORMATION ABOUT EWAS LIBRARY

Elastic Wave Analysis Spheroid Library (EWAS LIBRARY) is a library of coefficient

Matrices which govern the scattered elastic field from spheroidal voids( see figure 1(a) and

1(b)). Matrices for spheroids with geometries shown in Table 1, incident wave numbers which

range from 0.5 to 5,  are available for this preliminary version of EWAS library.  With the

associated library software, a user of this library can compute the elastic field from spheroidal

voids by simply typing the following information.

Type of wave

* Incident angle

* Wave number

* Geometry of the  spheroid
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Results include:

*Boundary quantities (total displacement) at boundary element  nodes

*The result from the AULD integral

*Scattered displacement for  particular exterior points

*Farfield scattering P-wave and S-wave amplitude plots

At present, the library software has the capability to deal with plane waves (P-waves

and S-waves) and Gauss-Hermit waves, and it is designed in such a way that if a user wants to

investigate some other kind of wave, the only thing necessary is to replace the subroutine

"pfield" with a new subroutine for calculating the displacement field and traction field at the

nodes.

Having done numerical experimentation and comparison, we choose a 96 element, 194

node boundary element discretization (see Figure 2(a) and 2(b)) for a nondimensional shear

wave number kta less than 6. A 192 element, 386 node boundary element discretization (see

Figure 3(a) and 3(b)) should be used when matrices are constructed for kta greater than or

equal to 6.  This will be done in the future.  This preliminary version of the EWAS library is

limited to the scattering of a plane wave from a spheroid in elastic media with poisson's ratio.

PART II    SOFTWARE INSTALLATION

The EWAS library includes a set of matrix data and the associated library software.

Matrix data should be put in directory ~/lib/spheroid/Matrix. Each matrix is of the size

2716924 bytes.  All the matrices are named  as elexyz096nn.mat where xyz are geometric

Table 1 Present shape and wavenumber
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eccentricity kta=1 kta=2 kta=3 kta=4 kta=5

1:1:1 Yes Yes Yes Yes Yes

3:3:1 Yes Yes Yes

5:5:1 Yes Yes Yes Yes Yes

parameters for x,y,z direction respectively, nn is the wavenumber.  For example,

ele33109601.mat is the matrix data file for a 3:3:1 spheroid, and the incident wavenumber kta

is 1.  The software includes a makefile called "Makefile" which performs the compiling and

linking for all codes, a batch file called "run" which performs the executing of the software,

plus the following listed modules.

* calsplib.f Main program

* splib.f Includes all the subroutines used in the underlying BEM code.

* pfield.f Includes subroutine "pfield" which is used to calculate the displacement

field and traction field at nodes.  It can be replaced by a user defined

incident wave.

PART III   USING THE LIBRARY

After getting  everything set on the computer, a user can follow the steps below to run

the program for a particular task. (paragraphs which are in capital form are messages which

will be on screen when the program is running)

Step (1)  Type run
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There will be a message and prompt on  the screen as:

WELCOME TO THE ELASTIC WAVE ANALYSIS SPHEROID LIBRARY

THE LIBRARY HAS BEEN SET TO RUN FOR SCATTERING FROM A SPHEROID

PLEASE TYPE IN THE KT # AT WHICH YOU WANT TO RUN THE PROGRAM

(TYPE A SINGLE DIGIT NUMBER)

Then there will be the following prompt:

PLEASE SPECIFY THE GEOMETRY PARAMETERS OF THE SPHEROID

TYPE IN PARAMETERS FOR X Y Z DIRECTIONS

(TYPE THREE DIGITS SEPARATED BY TWO COMMAS )

(e.g. 1,1,1 FOR SPHERE, OR 3,3,1 FOR A 3:3:1 SPHEROID)

Then there will be the following message:

READING IN THE MATRIX FROM LIBRARY, PLEASE WAIT FOR A MOMENT.

The code is reading in a matrix from the matrix data file, it may take a couple of minutes.

Then a user will be asked the following question:

MORE THAN 1 INCIDENT WAVE?
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(TYPE IN y IF ANSWER IS YES, n IF ANSWER IS NO)

which means whether or not  more than one incident wave case needs to  be computed at one

time. If  y, follow step (2a), If  n, follow step(2b).

Step (2a) The following prompt will appear:

PLEASE TYPE IN THE TOTAL NUMBER OF INCIDENT WAVES

(A SINGLE OR DOUBLE DIGIT NUMBER)

Then there will be the following prompt:

YOU ASKED TO CALCULATE              INCIDENT WAVES.

NOW, FOR THE NO.        INCIDENT WAVE

PLEASE SPECIFY THE TYPE OF WAVE

( p IF P-WAVE, s IF S-WAVE)

then follow step (3p) for p-wave, step (3s) for s-wave.

Step (2b) The following message will appear:

PLEASE SPECIFY THE TYPE OF WAVE  ( p if P-WAVE, s if S-WAVE)
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then follow step (3p) for p-wave, step (3s) for s-wave.

Step (3p)  The user will need  to enter the incident angles THETA and PHI. The definition of

incident angles and polarization unit vector are  defined in Figure 1b. The following prompt

will appear:

YOU ARE USING A P-WAVE, PLEASE TYPE IN THETA AND PHI

(THETA--ANGLE BETWEEN THE INCIDENT WAVE AND X3 AXIS)

(PHI--ANGLE BETWEEN THE PROJECTION OF INCIDENT WAVE IN X1-X2 PLANE

AND X1 AXIS)

(TYPE TWO REAL NUMBERS SEPARATED BY A COMMA)

Step (3s) The user will be asked to type in incident angle THETA, PHI and ALPHA:

YOU ARE USING A S-WAVE, PLEASE TYPE IN THETA,PHI,ALPHA

(THETA--ANGLE BETWEEN THE INCIDENT WAVE AND X3 AXIS)

(PHI--ANGLE BETWEEN THE PROJECTION OF INCIDENT WAVE IN X1-X2 PLANE

AND X1 AXIS)

(ALPHA--POLARIZATION ANGLE FOR SHEAR WAVE)

(TYPE THREE REAL NUMBERS SEPARATED BY TWO COMMAS)

The next prompt will be:
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READY  TO GET BOUNDARY QUANTITIES AT NODES !

(TYPE go IF YOU WANT TO CONTINUE, OTHERWISE  TYPE no TO STOP)

If go, the next prompt will appear:

(If no, the program will stop and be ready to run again)

FOR THE WAVENUMBER, KT=                 KL=                       

THE BOUNDARY VALUES OF DISPLACEMENT HAVE NOW BEEN DETERMINED.

(THESE COULD BE PRINTED LATER IF DESIRED)

RESULT FROM AULD INTEGRATION IS                  .

Then the user will get the following prompt:

ARE YOU INTERESTED IN BACKSCATTERED AND SPECULAR SCATTERED

AMPLITUDE ONLY?

OR, ARE YOU INTERESTED IN OTHER DIRECTIONS AS WELL?

(TYPE a  FOR  BS AND SS ONLY,  TYPE b FOR OTHER DIRECTIONS)

Then proceed to step (4a) or (4b) accordingly.

Step (4a) The following message will appear:
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IS FARFIELD SUFFICIENT, IF SO TYPE IN 1000

IF NEARFIELD (SMALLER R) IS DESIRED, TYPE IN DESIRED NEARFIELD R

The farfield scattering amplitudes (or equivalent scattering amplitudes for nearfield), which

include the P-wave, Stheta-wave and Sphi-wave amplitudes will be presented on the screen.

Plots of farfield scattering amplitude at PHI incident as a function of THETA will appear for

all three waves if only one incident wave was chosen initially. Otherwise, the plots will appear

only for the last wave chosen.

Now follow step (5).

Step (4b) The following message will appear:

TYPE IN NUMBER OF POINTS DESIRED (WHOLE NUMBER)

Then there will be the following message on screen:

FOR  POINT 1, TYPE IN DESIRED R, THETA, PHI

( THREE REAL NUMBERS SEPARATED BY 2 COMMAS)

FOR  POINT 2, TYPE IN DESIRED R, THETA, PHI
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( THREE REAL NUMBERS SEPARATED BY 2 COMMAS)

    :

    :

The equivalent scattering amplitudes , which include the P-wave, Stheta-wave and Sphi-wave

equivalent amplitudes will be presented on the screen. Plots of farfield scattering amplitude at

PHI incident as a function of THETA will appear for all three waves if only one incident wave

was chosen initially. Otherwise, the plots will appear only for the last wave chosen.

Now follow step (5).

amplitudes for those desired points will be presented on the screen.

Then follow step (5).

Step (5)  If more than 1 incident case needs to be evaluated, there will be the following

message:

**************FINISH COMPUTING FOR NO 1 INCIDENT WAVE****************

YOU ASKED TO CALCULATE              INCIDENT WAVES.

NOW, FOR THE NO.        INCIDENT WAVE

PLEASE SPECIFY THE TYPE OF WAVE

( p IF P-WAVE, s IF S-WAVE)
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Then go back to step (3p) or (3s). The processes from step (3p) or (3s) to step (5) will need

to be repeated for each incident wave.

PART IV   EXAMPLE / DEMONSTRATION

Suppose we are interested in the backscattered amplitude by a 3:3:1 spheroid when

impinged by a unit P-Wave in x3 direction, the following steps are what a user needs to do:

(1) Type run

(2) Type 1

for  kta

(3) Type 3,3,1

for the geometry parameter for x,y,z direction.

(4) Type n

only one incident wave

(5) Type p

represents p-wave

 (6) Type 0,0

THETA=0 degree, PHI=0 degree

(7) Type go

let the program do the calculations

(8) Type a

backscattered and specular scattered scattering amplitudes are desired.

(9) Type 1000

farfield is sufficient.
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Note:

1) The answers you type are case sensitive, all  commands typed should be in lower case.

2) You can always press Ctrl and C key at same time to kill the process.  Start it again by

typing run.

References

1. P.J. Schafbuch, Application of the boundary element method to elastic wave scattering

problems in ultrasonic nondestructive evaluation, PhD Dissertation, Iowa State

University, 1991.
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Figure 1a   General scattering problem: Defect in fields  ( reproduced from [1] )
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Figure 1b    General scattering problem: Wave and polarization unit vector definitions

(reproduced from [1] )



141

Figure 2a
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Figure 2b
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Figure 3a
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Figure 3b
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APPENDIX B

COEFFICIENT MATRICES FOR COMPOSITE UNIT CELL

B.1. Entire-Cell Model

Figure B-1  Composite entire-cell model

For an entire-cell model as in Fig. B-1, if there are N1 Nodes on S1, N2 nodes on S2.

The BIE for the matrix material II is eqn. (5) in Chapter 2(repeated here).

c p v p v q T p q s q U p q ds qji i i
S S

ij i ij( ) ( ) [ ( ) ( , ) ( ) ( , )] ( ) .= −
+
∫

1 2

(5)

Notice that boundary conditions eqn(1) in Chapter 2 on BC and AD actually involve one

unknown C, the additional eqn(2) in Chapter 2  (repeated here),
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σ y
BC

x a dx( , ) =∫ 0 (2)

is needed,

Hence, there are in total 2*(N1+N2)+1 equations for the matrix material.  The

corresponding discretized equations in matrix form is as follows:

A

0

A

a

A

0

A

a

v

vs

s

BTT21 2

1

3 4

2

1

2

1 0

II II II II
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S

S
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
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










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







=








( )

( )

( )
, (B.1)

where v( )S1 is the displacement vector for nodes on S1 on the matrix side, the bold form is

used here to indicate vector/Matrix.  The superscript II represents material II (the matrix

material).  Similarly, vs( )S2  represents the unknowns for nodes on S2,  s( )S1  is the traction

vector for nodes on S1 on the matrix side, C is the unknown constant in boundary condition

eqn. (1) in Chapter 2.  BTT2 is the corresponding right hand side known vector for this set of

BIEs.

The first row in eqn. (B.1) represents the discretized BIEs for the matrix material,

while the second is the discretized form of the additional eqn. (2) in Chapter 2.

For the fiber material, the BIE is eqn. (4) in Chapter 2 (repeated here)

c p u p u q T p q t q U p q ds qji i i
S

ij i ij( ) ( ) [ ( ) ( , ) ( ) ( , )] ( ) .= −∫
1

(4)

The discretized form is
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[ ] { }A A
u

t
01 2

1

1

I I
S

S

( )

( )









= (B.2)

where u( )S1 is the displacement vector for nodes on S1 on the fiber side, t( )S1  is the traction

vector for nodes on S1 on the fiber side.  There are 2*N1 equations in Eqn(B.2).

The interface condition for nodal points on S1 are eqn. (14) and eqn. (15) in Chapter 2

(repeated here) depending on whether overlap occurs,
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when t i e v un n n> − >0 0, . . .
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−1

0
(15)

when t i e v un n n≤ − ≤0 0, . . .

Further, the interface condition for nodal point on S1 can be written in a single form

for the above two cases and also for a disbonding interface, if a new matrix B is introduced.

Let the interface condition be written as

v u

v u

B B

B B

t

t
x x

y y

x

y

−
−












=


















11 12

21 22

. (B.3)

It can be seen that at a normal interface where tn > 0 ,

B M M

B B M M

B M M

s n

s n

s n

11
2 2

12 21

22
2 2

= +
= = − +

= +

sin cos

sin cos sin cos

cos sin .

α α
α α α α

α α

(B.4)

At nodes where overlap occurs, i.e. tn ≤ 0 ,
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B M

B B M

B M

s

s

s

11
2

12 21

22
2

=
= = −
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(B.5)

At nodes where disbonding take place

B HUGE

B B

B HUGE

11

12 21

22

0

=
= =
=

(B.6)

where HUGE is a big number.

Notice also the traction interface conditions,

{ }
t s

t s
x x

y y

+
+



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



= 0 , (B.7)

the coupled equation for the full model can be arranged as
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. (B.8)

where I is the identity matrix.  Eqn (B.5) contains 2*N2+6*N1+1 unknowns and the same

number of equations.

B.2. One-Quadrant Model

For the 1/4 Model as in Fig. B-2, let S DO OE S ED S AB BC CE1 2 3= ∪ = = ∪ ∪, ,

the BIE for the fiber can be written as

c p u p u q T p q t q U p q ds qji i i
S S

ij i ij( ) ( ) [ ( ) ( , ) ( ) ( , )] ( )= −
+
∫

1 2

(B.9)
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Figure B.2 one-quadrant model

The following discretized BIE can be obtained:
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= (B.10)

again, superscript I indicates material I.

For the matrix material, the BIE is:

c p v p v q T p q s q U p q ds qji i i
S S

ij i ij( ) ( ) [ ( ) ( , ) ( ) ( , )] ( ) .= −
+
∫

2 3

(B.11)

The boundary condition for a quarter model for determining Young’s modulus is

similar to that for the entire-cell model except at two special points, namely D and E which

are both corner point as well as interface point.  The boundary condition is (D, E exclusive):
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u t on AB

t u C on BC

u t on CO

t u on OA

x y

x y

x y

x y

= =

= = −

= =

= =

1 0

0

0 0

0 0

(B.12)

Consider the boundary condition at D and E.  It has been noticed by researchers on

BEM that for such points, special attention is needed [1].  For example, at the special points

E, let E I  denotes node E on the fiber side, and E II  denotes node E on the matrix side as in

Figure B-3.

There are twelve unknowns at E I  and E II .  They are:

u E u E t E t E t E t E

v E v E s E s E s E s E

x I y I x I y I x I y I

x II y II x II y II x II y II

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

1 1 2 2

3 3 4 4

where superscripts 1, 2, 3, 4 are used to indicate the segment numbers which are the same as

the numbers in circles in Fig. B-3.  There are also twelve equations at such points E I  and

E II .  They are:

1. boundary conditions at E I  and E II .

u E v E t E s Ex I x II y I y II( ) , ( ) , ( ) , ( ) .= = = =0 0 0 01 4 (B.13)

2.  shear equality

t E s Ex I x II
2 30 0( ) , ( ) .= = (B.14)

3.  interface condition

t E s E

v E u E B t E

y I y II

y II y I y I

2 3

22
2

( ) ( )

( ) ( ) ( ) .

= −

− =
(B.15)
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collocations at E I  and E II  gives four equations.  Hence, there is just right number of

equations to determine all the unknowns at the corner-interface point.  Similarly, the same is

true for D.

In the implementation, both D and E are considered as interface points which have

eight unknowns at each point.  At E, they are:

u E u E t E t E

v E v E s E s E

x I y I x I y I

x II y II y II x II

( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ) .

1 2

3 4

The other four unknowns at E are specified as boundary conditions, i.e.

t E t E

s E s E

y I x I

x Ii y II
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3 4
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( ) ( ) .
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= =
(B.16)

By this arrangement, the traction discontinuity across the interface at E can be captured, i.e.

t E s Ex I x II
1 4( ) ( )≠ .  This traction discontinuity has been observed when fiber and matrix are

different materials.

In the code, the four interface conditions for E are
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0
(B.17)

Similarly, at D, the eight unknowns are
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 Figure B-3 corner-interface point

The boundary conditions are
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The interface conditions are given as
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Again, notice that the boundary conditions on BC involve an unknown C.  Thus an

additional equation, (same as eqn (2)) is needed.

σ y
BC

x a dx( , ) .=∫ 0 (2)

The discretized form can be arranged as:
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The interface condition at any interface points beside D and E are the same as for the

entire-cell model, namely, eqns (B.3--B.7).  The final system of equations for the 1/4 model

can be arranged as:
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