Boundary element strategies and discretized Green’ s functions:

applications in composite materials and wave mechanics

by

Lingyun Pan

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Engineering Mechanics

Major Professor: Frank J. Rizzo

lowa State University
Ames, lowa

1997



Graduate College
lowa State University

Thisisto certify that the Doctora dissertation of
Lingyun Pan

has met the dissertation requirements of lowa State University

Major Professor

For the Mgjor Program

For the Graduate College



TABLE OF CONTENTS

GENERAL INTRODUCTION
BIE/BEM
Green's Functions
Applications
Dissertation Organization

References

CHAPTER 1. EXACT GREEN'SFUNCTIONS AND THE BOUNDARY ELEMENT

METHOD
Introduction
Exact Green's Functions and the BIE Process
Some Approximate Forms and Solution Strategies
Numerical Examples
An Alternative for Getting Discretized Green's Function from CBIE
The Library Idea

References

© N O N PP

12
12
13
16
18
19
22
23

CHAPTER 2. BEM ANALYSISFOR COMPOSITE MATERIALSAND A LIBRARY

OF GREEN'SFUNCTIONS
Abstract
Introduction
Method of Anaysis
BEM Formulation
Numerical Examples
A Library of Green's Functions
Acknowledgment

References

28
28
29
31
33
37
M
43
43



CHAPTER 3. SOME EFFICIENT BOUNDARY INTEGRAL STRATEGIESFOR

WAVE PROBLEMSIN AN ELASTODYNAMIC HALFSPACE 53
Abstract 53
Introduction 54
BIE Formulations 57
Truncation study for BIE Using the Stokes Solution 59
Lamb’s Formulation Revisited 62
An Even More Efficient and Faster Strategy: the Library 63
Some Useful Approximations 65
Conclusions 67
Acknowledgment 68
References 69

CHAPTER 4. PARALLEL IMPLEMENTATION OF A BOUNDARY ELEMENT
ANALYSISCODE FOR HALFSPACE ELASTODYNAMICS

PROBLEMS 80
Introduction 80
BIE Formulations 82
Serial Execution 84
Parallel Implementation 85
Conclusions 88
References 89

CHAPTER 5. ELASTODYNAMIC SCATTERING FROM A SURFACE-

BREAKING CRACK 96
Introduction 96
Problem Description And the BIE Formulation 97
Discretization Considerations And Numerical Results 103
Partitioning Method and Library Idea 107
Discussion 109

References 110



SUMMARY AND CONCLUSIONS

APPENDIX A. ELASTIC WAVE ANALYSISSPHEROID (EWAS) LIBRARY
USER’'SMANUAL

APPENDIX B. COEFFICIENT MATRICESFOR COMPOSITE UNIT CELL

ACKNOWLEDGMENTS

VITA

123

128

145

154

156



GENERAL INTRODUCTION

BIE/BEM

The Boundary Integral Equation (BIE) formulation of boundary value problems
(BVPs) in engineering, mathematics and applied science, and the Boundary Element Method
(BEM) of solution of the integral equations has been an effective and popular approach for
obtaining numerical data for real-world problems for more than thirty years. Mathematically,
the boundary integral formulation can be traced back to the work of Green, Gauss, Fredholm
and other classica mathematicians. It was Jaswon [1] and Symm [2] who first realized the
new role that Green’s boundary formula could play in the formulation and solution of practica
problemsin potential theory. Their work gave a new life to the study of integral equations
and indicated the beginning of the so-called direct BIE method.

The work of Jaswon on potential theory was extended to elasticity theory in the 1960's
by Rizzo [3]. In[3], the boundary integral equation for elasticity, known as the Somigliana's
boundary formula [4], which is the vector counterpart of Green's formula, was solved using a
similar collocation technique. Thiswork and subsequent works on elasticity [5,6,7,8] started
an era of applications of the BIE method in engineering fields and inspired a growing number
of researchersto work inthisarea. In the late 1970's, the name BEM was given to this
method in an attempt to make analogy with the Finite Element Method (FEM) (cf. severd
textbooks [9,10,11,12]). Since then, the method has experienced an increase in applicability,
efficiency, and popularity. With the latest advances in computer technology, the BIEM/BEM

has become a powerful numerical tool for analysis and design in almost every engineering



field. Detailed historical development and reviews of applications of the BIE/BEM can be

found in the books and review articles [13,14,15].

Green's Functions

Looking again at classica applied mathematics, the so called Green's function method
[16,17] is among the oldest and most direct methods for solving BV Ps governed by alinear
elliptic partial differential equation. Itiswell known that an exact Green's function G* exists
and may be used, in principle, to construct the solution of a BV P governed by alinear elliptic
partia differential equation for any reasonable domain. The only practical shortcoming with
this smple and beautiful method isthat it is not usualy easy to find the Green's function
explicitly for realistic geometries. Relatively few Green’s functions exist, in explicit analytical
form, and these are for fairly smple domains such as a halfspace, sphere, circular cylinder, etc.
For more complex geometries or practical configurations, the Green’s function is seldom
available. Considerable effort has been expended, from time to time, to construct the Green's
function in analytical, semianaytical or approximate forms, for certain specific problems; see
for example Boley [18].

Now the main ingredient of BIEM/BEM is a Green's function, namely the simplest
kind of Green's function, the so called freespace Green's function or fundamental solution to
the governing partial differential equation. It isthe use of this smplest Green's function which
makes the most significant anaytica step possible in the formulation of aBIE and in the
derivation of integral representations for the desired fieldsin terms of boundary values. Since
the two methods, BIEM/BEM and the Green's function method, are both methods for solving

boundary vaue problems governed by alinear eliptic partial differential equation, and since



BIEM/BEM involves the freespace Green's function, there must exist a very close relationship
between the two methods of solution. It is helpful to note in examining this relationship
further, that every exact or region-dependent Green's function, which is usually so hard to
construct, differs from the freespace one by aregular function w. Finding wiswhat is difficult
for most domains. If thiswere not so difficult, there would be little need for numerical
methods in general and the BIE/BEM in particular.

To continue the exploration of the mentioned relationship, some recent research on
the BIEM/BEM and Green's functions [19,20,21] found that the exact Green's function and
the unknown boundary variables on the boundary, in a given boundary value problem, satisfy
the same BIE but with a different known vector. As a consequence, the representation
integral for the BIE solution of the BV P may be written in a form which contains a precise
expression for the exact Green’s function. This observation provides away to construct a
numerical approximation to an exact Green’s function (a discretized Green’s function) for
problems in which an analytical Green’s function is not available. Indeed, it is apparent from
Chapter 1 of thisthesis that in using the BIE method to solve a given boundary vaue problem,
one hasin fact constructed the Green’s function for the domain. A number of ingredientsin
the BEM may now be interpreted as numerical approximations to the exact Green’s function.
When using the BEM to obtain the discretized Green’ s function, there is no restriction on the
configuration (2D or 3D), no restriction on boundary conditions, no restriction on the physical
nature of the problem aslong asit'saBVP governed by alinear dliptic partial differentia

equation. All of the BVPs considered in this thesis are in this category.



It is shown in Chapter 1 that for a BVP for adomain bounded by a single surface, the
inverse of the coefficient matrix (A ") is closely related to the discretized Green's function for
the BVP. The construction of thisinverse is the key and most computationally-intensive
ingredient in the usual BEM solution of aBVP. The BEM solution requires amesh, a
comprehensive computer code and all of the expertise to make the meshes and use the code in
order to get reliable solutions. The computer solution process itself involves mainly matrix
multiplications based on well established formulas for numerical quadrature.

Therefore, why not consider forming and storing at least A ' for common and/or
important boundary shapes and/or boundary conditions? This could be done by computer-
modeling experts. In effect, why not create a'library’ of numerical approximations to exact
Green's functions to be available for repeated use? Modern technology for storage of massive
amounts of data, on CDs or on central storage, accessible via networks, would suggest that at
least some heavy computing could be 'done in advance, the results of which could be made
available to non expert users. Such users, interested mainly in the data for particular physica
problems, could get such data, via'point and click' operations, in negligible time - the expert
modeling, i.e., creating the Green's function library, having been done in advance by others.

Details about the relation between A" and the discretized Green's function, for BVPs
with single surface boundary and strategies for using the discretized Green’s function to
obtain the solution to the BVP are addressed in Chapter 1. For problems which involve two
separate surfaces as the boundary, a sub-matrix of the coefficient matrix can be interpreted as
the main ingredient of the region dependent Green’s function. The process of using this

region dependent Green’s function is closely related to the partitioning method [20]. Thus for



problems with two surfaces as the boundary, such as hafspace problems, the library ideais
closely related to the partitioning of the system matrix. In Chapter 3, the library ideafor
halfspace problems using freespace fundamental solution amounts to: giving an accurate
discretization of the halfspace free surface, obtaining the coefficient sub-matrix for the
truncated halfspace surface model, and then storing its inverse (in fact the LU decomposition

of that coefficient sub-matrix) for repeated use.
Applications

In this thesis, two classes of problems are considered as applications of the BEM and
the discretized Green’ s function library. One is the application of the BEM to the analysis of
2D micromechanica behavior of fiber-reinforced composites. With the rapid development of
advanced composite materials and the wide application of such materialsin engineering, it is
desirable to model problems involving these materials by computer and to use powerful
numerical methods like the Finite Element Method (FEM) and the BEM for analysis. To
exploit the role of BEM and Green’ s functions for computer modeling of advanced materials
properties and behavior, a BEM model is developed to analyze 2D micromechanical behavior
of fiber-reinforced composites based on models for both perfectly-bonded and imperfectly-
bonded materialsin aunit cell. Theideaof alibrary of Green's functions and the entries for
the library for fiber-reinforced composites are discussed.

The other class of problems considered here is the halfspace problem. The BEM is
well known for its well-suitedness for exterior problems. With the (radiation) conditions on
the surface at infinity incorporated analytically, only finite surface(s) need to be discretized

when the only other surface(s) in the problem are finite in extent.



When BIE/BEMs are used for halfspace problems, such as occur frequently in
elastodynamics, fullspace (Stokes) fundamental solution and halfspace (Lamb) fundamental
solution can be used to formulate the BIE. When the fullspace fundamental solution is used, a
truncated discretized modd of the halfspace surface isrequired. Alternatively, if the halfspace
fundamental solution, which models the entire hafspace surface analytically is used, no
truncation issues arise. Nevertheless, both Stokes and Lamb approaches have advantages and
disadvantages.

The purposes of the application of the BEM to this class of problems are first to
present systematic strategies, based on the BEM for halfspace elastodynamics problems,
wherein the best features of the full space Stokes solution and halfspace Lamb’s solution are
exploited, and then to present library strategies for this class of problem which represent the
typical two-surface problem.

Radiation from a void inside the halfspace and the scattering from a halfspace surface-
breaking crack are considered in thisthesis. Although they all belong to the halfspace-
problem category, the necessity to use hypersingular integral equations for the crack problem
brings in more complexity both theoretically and numerically. Nevertheless the conclusions
about effective strategies for both problems are quite consistent. Specifically, when the
fullspace fundamental solution is used in the BIE formulation, the truncation on the halfspace
surface has a small effect on the boundary solution and quite a big effect on the solution at
field points. Soin order to get areliable solution at field points, the halfspace Green's

function rather than the fullspace one is advised to be used in the representation integral .



Dissertation Organization

The body of this dissertation consists of five main chapters, a genera introduction, a
summary and general conclusions, as well as two appendices. The five chapters consist of one
chapter which is ablend of two papers presented in technical conferences, three chapters
which are accepted or submitted or prepared for journal paper manuscripts, and afifth chapter
which contains some relevant important research information. Because of the inclusion of
manuscripts, al the labels for the equations, figures, tables and references are numbered
independently. All the references for each main chapter are at the end of each chapter and
each follows the required format for the particular journal. A general reference which
contains the citation in the general introduction is at the end of the general introduction. All
the figures are at the end of the manuscripts, just as they are in the manuscript sent to the
journa. This structure follows the format requirement for a thesis including journa
manuscripts.

Chapter 1 isablend of two papers which appear in the proceedings of the BEM VI
Conference and 24th Midwest Mechanics Conference. Itisentitled “Exact Green's functions
and the boundary element method” in which the precise equivalence between an exact Green's
function and the solution of the boundary integral equation isillustrated and made explicit.
Some strategies about how to use the discretized Green’ s function to obtain the solution of
the problem are suggested. Numerical examples using these strategies are also presented.

Chapter 2 is a paper accepted and to appear in the journal Computers & Sructures. It
isentitted “BEM analysis for composite materials and alibrary of Green's functions’. In this

paper aBEM model is developed to analyze 2D micromechanical behavior of fiber-reinforced



composites based on models for both perfectly-bonded and imperfectly-bonded materialsin a
unit cell. Also some suggestions for a Green's function library, for this class of problems, are
given.

Chapter 3 is a paper submitted to Computer Methods in Applied Mechanics and
Engineering. Itisentitled “Some efficient boundary integral strategies for wave problemsin
an elastodynamic halfspace’. Here, both full space (Stokes) fundamental solution and
halfspace (Lamb) fundamental solution are used to formulate the BIE to attack the halfspace
problem. Some new insight into this class of problems was gained during the research.
Strategies are suggested to exploit the best features of the fullspace Stokes and halfspace
Lamb solutions. The partitioning method is aso implemented and the efficiency of the library
is demonstrated.

Chapter 4 is a continuation of the work done in Chapter 3. A 'coarse-grained' parallel-
computing scheme is designed and implemented to cope with the intensive computational
work when the halfspace Green' s function is used in the BIE formulation. A 'nearly perfect’
speedup is obtained and this indicates that BIE/BEM is very well suited for parallel
computing.

Chapter 5 is about adightly different halfspace-scattering problem. It involves
elastodynamic scattering from a surface-breaking crack. A hypersingular boundary integral
equation (HBIE) isintroduced and used because of the presence of the crack. A consistent
conclusion with that in Chapter 3 is obtained, i.e., truncation on the halfspace surface, as

needed for the use of the fullspace fundamental solution, has little effect on the boundary



solution, while it has a big effect on the solution at field points. Results are presented in the
form of crack-opening displacement (COD), and farfield scattering amplitudes.

Additionally, thereis an Appendix A which isauser’s manual entitled ‘ Elastic wave
anaysis spheroid (EWAYS) library user’smanua’. This material isincluded to illustrate the
library idea of discretized Green's functions, for single-surface problems. This scattering
library has been constructed for elastodynamic scattering from families of oblate-spheroidal
voids, of various eccentricities, for waves of different frequencies. With thislibrary, the
elastodynamic scattered field at arbitrary points, from shapes and frequencies in the library,
due to arbitrary incident waves, isjust a matter of matrix multiplication. This finds use by
physicists engaged in nondestructive evaluation at lowa State University.

Finally, Appendix B contains al of the detailed information about the coefficient
matrices for composite analysis, using either an entire-cell model or a one-quadrant model,

which is not presented in Chapter 3.
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CHAPTER 1

EXACT GREEN'SFUNCTIONS AND THE BOUNDARY

ELEMENT METHOD

A paper presented at 24th Midwest Mechanics Conference

Lingyun Pan and Frank J. Rizzo
Department of Aerospace Engineering and Engineering Mechanics

lowa State University, Ames, |A 50011

I ntroduction

It iswell known, e.g. Kellogg [1], Webster [2], that an exact Green's function G*
exists and may be used, in principle, to construct the solution of a boundary value problem
governed by alinear dliptic partial differential equation. Alternatively, the solution of the

problem may be obtained via the boundary integral equation (BIE) formalism, where the BIE

employs only the free-space Green's function G or fundamental solution of the differential
equation. Sinceit is evident that both approaches to the solution must be equivalent [3], one
may conjecture that, using the BIE one must have done the equivalent of constructing the
exact Green's function G*.

Indeed, here (see dso [4],[5],[6]) it is explicitly shown that G* and the unknown

boundary variable in the BIE method satisfy the same BIE, but with different right-hand sides.



13

As a consequence, the representation integral for the BIE solution of the boundary value
problem may be written in aform which contains a precise expression for G*. The
equivalence between the BIE process and constructing G* is thus made explicit.

A number of ingredients in the boundary element method (BEM) may now be
interpreted as numerical approximations to exact Green's functions. Some strategies for

creating alibrary of such functions for repeated use are suggested.

Exact Green's Functions and the BI E Process

The essentia aspects of the following arguments hold for linear liptic boundary value
problems (BVP's); however, to fix ideas, consider finding a time-harmonic acoustic field u
which existsin the region D exterior to a single finite volume V with closed surface Sasin
Figure 1.

The field u satisfies the scalar wave (Helmholtz) equation in D and satisfies a radiation
condition for indefinitely large distance R from V. On Swe assume Tuw/in= f wherefisa

prescribed function. A representation integral for u may be written

2u(P) = ()f (6)G(a. P)- u(q)."ln G(q.P)]ds (1)
wherein
_JRR
G(P,Q) =G(Q,P) = 2or w(P,Q) (2
PR

isaGreen's function with R=|Q- P|, where P, Q are arbitrary pointsin D and p, q are

arbitrary pointson S k is the acoustic wavenumber, wis an arbitrary regular solution to the
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wave equation, and the normal n pointsinto D at . Equation (1) is readily obtained by
inserting u and G into Green's reciprocal identity.

Now suppose that G in egn (1) is an exact Green's function G* defined such that

1C"@P) o o L e MWPa_, 3

in, fin, 2pR in,

whenever q 1 S. Using G* instead of G, representation (1) simplifies considerably to
2u(P) = (¥ (@)G* (g, P)ds (4)
S

which is now the explicit solution to the posed BV P rather than a mere representation, if G* is
assumed known, since unprescribed u(q) does not appear in (4).

Note that finding G* is tantamount to finding w which satisfies the wave equation
subject to the boundary condition (3). Thistask is comparable in difficulty to finding u itself
subject to Ju/n= f. Thisiswhy, no doubt, the idea of an exact Green's function has not
received more attention for practical problems.

Instead, the BIE/BEM has been the method of choice for many problems of the
present type, and the method, in essence, proceeds as follows. Choose the simplest win (2),

namely w = 0, and take the limit in representation (1) as P® p. The familiar result isthe BIE

1G (qp)

u(p) + O(Q) oo 0% = O(Q)G(q pds,. (5)

Symbolically, egn (5) may be written
Au = Bf (6)
where A and B are the indicated integral operators. The unknown function u on Smay be

obtained formally as the solution of the BIE, namely



15

u= A'Bf. 7
Thus, using (7) we may write the solution for u(P) as

2UP) = (5L - (B s, ®

Comparing (8) with (4), we find two representations for the solution to our boundary
value problem; (8) explicitly involves the inverse operator A™* acting upon the function Bf,
wheresas, (4) explicitly involves the exact Green's function G*.

To more closely see the equivalence between (8) and (4), it isinstructive to
reintroduce the integral form of the operator Bf into (8), and in the process interchange the

order of the inner integration with the operation A*. Theresultis

2u(P) = (S @GP, - d(q) o o(ah e F’)dayolsq ©
where | T S Next, factoring out a common f(q) we have
l
2u(P)—O(q).G(q P)- Oxle(ql)“G( P)dsyd% (10)

f b

Now if (10) and (4) are both correct, the term in brackets in (10) must be G*
To see that the term in brackets is, in fact, G*, apply Green's reciproca theorem to G

and G*, to get

2G* (P,Q)= 2G(P,Q)- c‘y*(l,P)“‘;(' Qg (11)

where we recall that §G* (I,P)/fin=0. Next takethelimitin (11) asQ® s 1 S to get (cf.

Boley [3])
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G*(P,s)+c\)3*(l,P)%r:|’S)dS=ZG(P,S) (12)
or symbolically
AG* =2G. (13)

From (12) (and (13)) and (6) (and (7)) we see that both u and G* satisfy the same BIE
with different right hand sides. Solving (13) for G* as (cf. Tewary [6])

G*=2A"'G (14)
and substituting under the integral signin (11), we obtain, after interchanging P with Q(or q)

< I,
G*(P.9)=G(P.0)- (§ G(Lq)% ds. (15)

Expression (15) for G* is precisely that in brackets in equation (10) such that (10) and
(4) areidentical.

It isexplicit, therefore, that in using the BIE method to solve a given boundary value
problem for the scalar wave equation, one has in fact constructed the Green's function for
the domain. The key ingredient in both methods is the solution to essentially the same BIE,

which is expressible as A™.
Some Approximate Forms and Solution Strategies

From the observations above, the boundary element method may be thought of as a
systematic way of approximating the BIE (6) by systems of algebraic equations. In so doing,
A and B may be interpreted as (square) matrix approximations to the integral operators based
on adiscretization of the domain surface S with u and f familiar (column matrix) numerical

approximations to the continuous boundary variables.
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Therefore, it is clear that for a given discretization, we may form and invert a matrix A,
and via (14), we would have an approximate representation for G * (q, P) for agiven choice
of surface nodes gy. To usethis G* (q,, P) to get the solution u(P) based on (4), it would be
necessary to get representations for G* (g, P) at Gaussian quadrature points g, in order to
do the quadrature indicated in (4) numerically. That quadrature is expressible in the form

2u(P) =G* (P,qc) f (Ac)- (16)

In (16), f(gs) isacolumn of discrete values of f at the Gauss points gs on Sand
G*(P,q;) isarow matrix of values of Gauss-weighted G* evaluated at the same g for
chosen P. To get the values of G* at the Gauss points from values at nodal points,
interpolation using shape functions were employed. There are two strategies for doing the
interpolation.

Oneisto interpolate the product of f and G* as.

f(46)G* (ds,P) = & N, (4u)G* (qu,P) - (17)

i=1

The other isto interpolate f and G* separately as

f(ge)=a Nf(ay). (18)
G* (G, P) =@ N.G* (dy.P). (19)

It seems that the second strategy might give better results than the first strategy. This

matter is addressed further in the numerical examples to follow.
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Numerical Examples

In order to illustrate the idea of a discretized Green’s function and the strategies for
using a discretized Green’s function, several numerical examples are discussed . Thefirst one
is the problem of sound radiation from a pulsating sphere (See Figure 2).

The exact analytical solution for the acoustic pressure at a distance r from the center

of the sphere of radius a pulsating with auniform radia velocity U, is.

_E IZOka - ik(r-a)
p(r) = r Ua1+ikae '

(20)
where Z, is the characteristic impedience of the medium.

The pressure at two interior points at different radia locations (r=5a, r=10a) are
calculated. Table 1 shows the results from conventiona BIE (see egn (8)), from strategy
1(see egn (17)) and strategy 2(see egn (18)) by using the discretized Green’ s function.

The same accuracy is obtained by strategy 1 and 2 because this problem has a spherical
symmetry which makes the field uniform over all elements. The interpolation in both
strategies 1 and 2 do not introduce any approximation error.

In another example, auniform flow over a sphereis considered (See Figure 3). The

velocity potential F satisfies Laplace’ s equation. To satisfy the condition at infinity, the

potential F isdivided into two parts, F,, F,

€ 1em o U
F =Ur,cosq é—+-¢c—=+ U=F, +F, (21)

g 2860

F, =Ur cosq (22)
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Table 1 Magnitude of the pressurein the field

Location From CBIE From G*

Strategy 1 (egn 17) Strategy 2 (egn 18)
r=5a 0.141 0.141 0.141
r=10a 0.0705 0.0707 0.0707

-2
0]

1 a
F, ==Ur,cosqc—= (23)
2 0 &bﬂ

2

where F, isthe velocity potential associated with the uniform stream, while F ; the velocity

potential associated with the doublet, U is the velocity of the flow. Soin the BEM

calculation, only the doublet F, which iszero at infinity is calculated as the solution to the

F
BVP when ﬂﬂnz is specified over the entire boundary (on the surface of the sphere). The

resultsin Table 2 confirmed that strategy 2 is better than strategy 1, but when afiner mesh is

used, they all converge to the results from the CBIE.

An Alternative for Getting the Discretized Green's Function from the CBIE

Asamore familiar aternative to (16), we have the approximate form of (1) that

comes directly from the BEM as usually coded, i.e.,
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Table 2 Comparison between CBIE, startegy 1 and 2 for fluid flow problem

Coordinates Anaytica 12 elements mesh results 80 element mesh results
Point solution for
F 2

r q CBIE Strategy | Strategy CBIE Strategy | Strategy

(degrees) 1 2 1 2
A |15]150 -0.19259 -0.15797 | -0.15926 | -0.16544 | -0.18603 | -0.18639 | -0.18630
B |15]120 -0.11111 -0.09182 | -0.06612 | -0.08175 | -0.10906 | -0.10858 | -0.10859
C |2 |150 -0.10813 -0.08921 | -0.09000 | -0.09093 | -0.10497 |-0.10506 | -0.10504
D |2 |120 -0.06250 -0.05162 | -0.04501 | -0.04860 | -0.06131 |-0.06104 | -0.06106
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2u(P) =G(P,q,) f(q) - G"(P.,a5)u(q,) (24)
where the superscript n indicates the normal derivative of G and, wherein,

u(ay) = A'Bf (ay) - (25)
In (25), function values at qc are given in terms of values at gy via the shape functions.
Thus, it is possible to factor out f in (25), to write

2u(P) ={G(P,4) - G"(P,ds)CA'BCT} T () (26)
where C and C' are rectangular matrices dependent upon the shape functions and
coordinates gs. In (26) we can identify an approximate form of G* asthetermin
brackets, just as we did with the comparable analytical expressions. The bracket-termin
(26) isequivaent in character to G* in (16), but there is an important strategic difference:
to get G* valuesat qg (for chosen P), in (16) requires some kind of approximate
representation of G* over S, as mentioned above; whereas comparable G* vaues via (26)
or (24) require no such representation. Indeed, since both G and G" in (26) and (24) have
anaytical form, each may readily be evaluated anywhere. Specificaly, since with the
conventional BEM, u(qy) is obtained via (25), only u(gs) need be expressed as usual, with
standard shape functions, in terms of nodal values. Thus (24) rather than (26) is usually
used by the BEM community to get u(P). To exploit the apparent simplicity of (16), with
its need for perhaps special representations of G*, versus the more complicated (24) or
(26), emanating from the standard BIE with no such need, deserves more study. Either
way, it is possible, with today's technology, to take the following somewhat radical point

of view.
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TheLibrary I dea

The key and most computationally-intensive ingredient in the usual BEM solution
of a BVP of the present type is the construction of A™*. This requires a mesh, a code to
form A and B, and then the effort to find A™* (or, equivalently, the LU decomposition of
A). The rest of the solution process involves mainly matrix multiplication based on
formulas for numerical quadrature. Therefore, why not consider forming and storing at
least A™, and possibly B (depending on the tradeoff on using (16) versus (24) or (26)), for
common and/or important shapes S? In effect, why not create a library of numerica
approximations to exact Green's functions for repeated use?

Modern technology for storage of massive amounts of data, on CDs or on central
storage, accessible via networks, would suggest that such alibrary is now possible. At
least some heavy computing could be 'done in advance, the results of which could be
made available to non expert users viathe library.

Some details for the formation of a Green's function library may be found in [4]
and [7]. Also, alibrary of A* matrices has been constructed for elastodynamic scattering
[8] from families of oblate-spheroidal voids, of various eccentricities, for waves of
different frequencies. With thislibrary, the elastodynamic scattered field at arbitrary
points, from shapes and frequenciesin the library, due to arbitrary incident waves, isjust a
matter of matrix multiplications. Library entries for other scatters, e.g., cracks, inclusions,
are dready in existence or are being formed - all of which find use by physicists engaged in
nondestructive evaluation at lowa State University. Partialy-exact Green's functions,

which model only (a common or especially complicated) part of a surface are aso being
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formed, for repeated use, for fiber reinforced composites, acoustic and electromagnetic
field problems. Much unnecessary duplication in computing can be avoided in this way.
Additional reference and information about the library idea for specific applications

may be found in subsequent chapters of thisthesis.
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Figure1 An acoustics example
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Figure2 Sound radiation from a pulsating sphere
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Figure 3 Uniform flow over a sphere
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CHAPTER 2

BEM ANALYSISFOR COMPOSITE MATERIALSAND A

LIBRARY OF GREEN'SFUNCTIONS

A paper to appear in the journal Computers and Structures

Lingyun Pan, Danie O. Adams, Frank J. Rizzo
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lowa State University, Ames, |A 50011

Abstract

With the rapid development of advanced composite materials and the wide application
of such materialsin engineering, it is desirable to mode problems involving these materials by
computer and to use powerful numerical methods like the Finite Element Method (FEM) and
the Boundary Element Method ( BEM ) for analysis. In this paper, aBEM is developed to
analyze 2D micromechanical behavior of fiber-reinforced composites based on models for
both perfectly-bonded and imperfectly-bonded materialsin a unit cell. For composites with
perfect bond between matrix and fibers, it is shown that our predictions coincide well with
comparable quantities obtained in physical experiments and by FEM analysis. For imperfectly-
bonded composites, it is found that variation of the interphase parameters (thickness, stiffness)

causes pronounced changes in the overall effective moduli and also in the state of stressin the
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composites. Also in this paper, the idea of alibrary of Green's Functions for fiber-reinforced
compositesis discussed. With such alibrary, users could quickly generate data useful in
design with very little knowledge of methods for computational modeling in general or of the

BEM in particular.

1. Introduction

Considerable research has been done on the analysis of the micromechanica properties
of fiber reinforced composites since the devel opment of advanced composite materials.
Perhaps the most widely used analytical approach for estimating the properties of composite
materiasis the rule of mixtures, which can reasonably predict Y oung’s and shear moduli of
the composite material when the composite has a strong bond between fiber and matrix.
However the perfect bonding assumption is not suitable in the presence of an interphase,
which may have developed during the manufacturing process due to chemical reactions
between the contacting fiber and matrix material. Also, surface treatments are typically
applied to the fibers to improve interface sensitivity composite material properties, but an
analytical estimation of the influence of surface treating has not been available to people
involved in surface studies.

Severdl finite element models have been developed for the purpose of considering the
presence of an interphase[1, 2]. Among these is the finite element model developed by
Adams at the University of Wyoming [1], in which an additional layer of very fine finite
elements was used at the fiber-matrix interface to model the interphase zone. Thus, the unit
cell of the composite basically consists of three different materials (fiber, matrix and interphase

zone).
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There aso has been some research done on the analysis of the micromechanical
properties of fiber reinforced composites using the Boundary Element Method [3,4] with the
usua well-known advantages of reduction of dimension by one. That is, with the BEM, only
the boundary needs to be discretized. Further, for the purpose of determining overal effective
moduli, the information in the domain generated by FEM is not really required. Thus, the
same level of accuracy for the desired information can be achieved by BEM vs. FEM with less
computational effort. In both Refs. [3] and [4] constant boundary elements were used and
good agreement with analytical solutions were found. Furthermore it was shown that the
BEM is very effective when an imperfect interface condition is considered [4]. However, as
there seems to be no user-friendly BEM software in wide use by the composite community,
the power of this numerical method has been restricted.

One purpose of our research isto develop a BEM to analyze two-dimensional
micromechanical behavior of fiber-reinforced composites based on models for both perfectly-
bonded and imperfectly-bonded materialsin a unit cell. Another purposeisto eventually form
alibrary of Green's Functions for the most-needed and most-often-used fiber volume
fractions, fiber/matrix combinations and interphase conditions as (possibly) identified by the
composite-materials community. With this Green's function library, users in the community
could determine the effects of design parameters (e.g. to establish effective coating-
thicknesses for fibers) and the effects of damage and different manufacturing processes on the
overall mechanical properties of fiber-reinforced composites. With the library, all of this could
be done with very little knowledge of methods for computational modeling in general, or of

the BEM in particular. Most significant, perhaps, is that with all of the heavy computing and
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the expertise needed for that computing exercised in advance, and results put in storage for
repeated use, the mentioned analysis could be performed with negligible user effort in
negligible time.

Specifically in this paper, a BEM is developed to analyze two-dimensiona
micromechanical behavior of fiber-reinforced composites based on models for both perfectly-
bonded and imperfectly-bonded materialsin aunit cell. For composites with perfect bond
between matrix and fibers, it is shown that such quantities as the overall effective moduli,
displacement field, and state of stress, as computed with the BEM, coincide well with
comparable quantities obtained in physical experiments and by FEM analysis. For imperfectly-
bonded composites, amodel is used with continuous tractions across the interface and a linear
relation between displacement differences and the conjugate tractions across the interface. It
isfound that variation of the interphase parameters (thickness, stiffness) causes pronounced

changes in the overall effective moduli and aso in the state of stressin the composites.

2. Method of Analysis

The composite material is assumed to consist of a square array of unidirectionally
oriented fibersin an infinite elastic matrix as shown in Fig. 1. Assuming a square fiber
packing array, the composite material could be represented by a unit volume cell as indicated
by the dashed linesin Fig. 1 and 2(a), or even by only one quadrant of the unit cell, if the
loading condition is also symmetric as shown in Fig. 2(b). For consistency and conciseness,
the entire unit cell model will be used in this paper, while the method of analysis also applies
to the one-quadrant model in the calculation of effective tension modulus. In the one-

guadrant model, symmetries could be utilized to set the boundary conditions.
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The composite body is assumed to be loaded at infinity. For example, to determine the
effective transverse tension modulus, the body is assumed to be loaded at infinity by uniform

normal stress s , in the x coordinate direction, as shown in Fig. 1. When the composite is

subjected to transverse normal load applied at a distance from the e ement being analyzed, a
complex state of stressisinduced in the composite. Thisisthe result of the dissimilar material
properties for the fiber and the matrix and aso because of interactions between the fiber being
analyzed and adjacent fibers. Thus, the stress distribution aong the boundary of the unit cell
will not be uniform, although the average normal stress must equal the corresponding average
applied stress from equilibrium considerations. However, because of symmetry, the original
square unit cell remains rectangular when only transverse normal load is applied. Thusthe
normal displacement of each point on a given boundary of the unit cell isidentical. Because
of the assumed symmetry about both coordinate axes, no shear stress exist along the
boundaries of the unit cell, thus the boundary conditions are specified as

u =11t =0 on AB

t,=0 u,=-C/2 on BC

u =0 1t =0 on CD

t =0 u, =C/2 on DA (D)

as shown in Fig. 3, where uy, u, are the displacement componentsin the x, y directions,
respectively, and t,, t, are traction componentsin the x, y directions. The additional constant

C will be determined by an additional equilibrium condition :
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&, (xa)dx=0. )

For the purpose of determining the shear modulus, boundary conditions are given as.

u =0t =0 on AB
u =1 u,=0 on BC
u =0 1t=0 onCD
u=0 u,=0 on DA 3

asshownin Fig. 4.
3. BEM Formulation

Considering the unit cell as shown in Fig. 2(a), it iswell known [5] that the Boundary

Integral Equation (BIE) for the fiber can be written as
Z0,() = Ju @T, (P0)- £, (@)U, (P.Q)Is(0) @
S

where p aswell asgareon S}, see Fig. 2(a), theindex i (or j ) isequivalent to X, y when it
variesfrom 1 to 2, ui(q) are the displacements on the fiber side of the interface, and ti(q) are
the tractions exerted by the matrix on the fiber. T, U;; are fundamental tensors derived from
the point-force solution of the elasticity equations for the plane strain problem [5]. The
normal points away from the region of the fiber.

For the matrix, both S, and S, see Fig. 2(a), form the boundary of this material. Thus

forpandgon S, and S, the BIE takes the form
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%vj (p)= AV (@T,(p,a) - s (@U; (p,q)lds(q). (5)
S+S,

Again the norma points away from the region, vi(q) are the displacements on the matrix
boundary, and s(q) are the tractions by the fiber on the matrix.

In addition to these two BIEs, we need an interface condition because both
displacements and tractions are unknown on the interface.

For a perfect interface between fiber and matrix, it iswell known that the interface
conditions are continuity of displacements and tractions across the interface, i.e.

u(a)- vi(@=0

ti(@)+s(q)=0. (6)
For an imperfect interface, the flexibly-bonded interface was chosen among many proposed
interface models [6,10], to smulate the interface condition between the fiber and matrix. This
interface model isin fact a*spring contact’ type which allows both dlip and separation. Itis
assumed that the tractions are continuous across the interface, while the displacement may be
discontinuous from fiber to matrix, and the displacement differences are linearly related to the
conjugate tractions on the interface. The proportionality constants characterize the stiffness
of the interphase. In mathematical form:

[t] =0 [u] = 2Ft (7)

where square brackets denote discontinuities across the interface.

1,(0) +5,(0)

=7 7 8
=6 @+ s @) ©)
[ ] _1Ug(@) - vs(@) i ©)

1@ - @b
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lt @u
t it, (Q)% (10

F is caled the flexibility matrix which has diagona form

_éMg Ou

F=ey U
e nU

M, h M, = h or h
m | +2m E

where | and m are the Lame moduli of athin elastic layer of thickness h modeling the bond
between the fiber and matrix. This include the limiting case of perfect bonding when m is set

to infinity or h is set to zero.
To avoid an unredlistic radia overlap of the two materials in the interfacial zone, when

t.(q) £0 welet

th(@) +5(@ =0  u,(a)=v,(q) (13)
ts(@) +s(@) =0 us(a)- vs(a) = 2Mtg

otherwise we use egn (7).
Eqgns (7) and (13) are in the local normal and tangential coordinate system. Assuming

thenormal at qis n =(n, n,) =(cosa, sina), asshown in Fig. 5, the interface conditionsin

aglobal xy coordinate system are

iu, - €M it
%uy_vg- 2[T] g U[]'tg (14)

or in the region where radial overlap occurred
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g . (15)
[T] isthe coordinate transformation matrix

ésina - cosau

[T]=6 o (16)
gosa sina

These relations are sufficient to determine all boundary tractions ti(q), s(g) and al boundary

displacements ui(q), vi(q) at al points g on both S, and S, from a specification on the outer

boundary S. Once al boundary functions are determined, the average tensile stress is

calculated by

1.
T g Gx(@Y)dy . (17)

[7)]

The effective tension modulus for the plane strain problem is obtained by

5
E, =>X.

eX
n=-Y-c (18)
(= Y=

e

where g, is the strain which can be evaluated from the prescribed boundary condition on edge
AB.

In order to compare with analytical results, we need to calculate the intrinsic material
properties from our plane strain numerical results. The relation between the material elastic

moduli and the plain strain tension moduli is
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1+2n, —

Eszs. (19)

The displacement components and stress components at any arbitrary interior point P of the

fiber or the matrix can be obtained easily by the integral identity:
u; (P) = du (@) T;(P,q) - t (@U;(P,q)lds(q) - (20)
S
The stresses at internal points are calculated by

Tu Ty,
Sij =1 dijul‘l +n('ﬂ_x+'ﬂ_xj)
j i

= Dy (P.a)t, (a) - S;(P,q)u, (9)]ds(q)

(21)

where the third order tensor components Dy; and Sg; correspond to derivatives of the
fundamental solution [7]. In egns (20) and (21) Sisthe boundary for the domain. For P

inside the fiber, S= S, for P inddethematrix S=S E S,.

4. Numerical Examples

Numerical experiments were performed for several fiber/matrix combinations and fiber
volume fractions to calculate the effective transverse tension modulus and shear modulus for
fiber reinforced composites. Good agreements are obtained comparing our results with other
numerical calculations and experimental data. Listed below are some typical examples using
guadratic boundary elements. In our calculations for the entire unit cell model, a 96 element,
192 node mesh was used. For the one-quadrant model, similar results were obtained using a

40 e ement mesh.
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The first example involves calculation of effective transverse tension modulus for a

glass/epoxy composite material. The material constants are :

for glass fiber E( =105"10° ps n; =022

for epoxy resin matrix E,=0510° ps n,=035.

Calculations were performed for three volume fractions-- 19.63%, 45%, 60%. Our
computed values of effective transverse moduli are plotted in Fig. 6. The solid lineisthe
result obtained by the self-consistent cell model , the broken lineis the result by Herman , the
‘0’ are the boundary element calculations made by N. Oshima[3]. Constant boundary
elements were used in his calculations. It is seen that our results, indicated by ‘+ are in good
agreement with all the results presented in Ref [3] as shown in Fig. 6.

Another exampleis calculated in order to compare our effective transverse tension
modulus predictions with the Halpin-Tsai’ s equations and Finite Element Analysis
calculations. Fig. 7 shows the present prediction for effective transverse tension modulus for
various reinforcements/matrix stiffnessratios. The solid lines are the results of Adams and
Doner’s Finite Element Analysis[9] and the result from the Halpin-Tsai equations[8] are also
presented in Fig. 7 by circles. We plot only our results for fiber volume fractions (V) which
are lessthan 70%. For composites with fiber volume fractions higher than 70%, nearly
singular integrals, as a consequence of the proximity of boundary S, and S;, can causes
unacceptable numerica errors. Although we can solve this problem to some extent by using
smaller elements or higher order quadrature, we feel that thisis not an effective way to deal

with high fiber volume fraction composites. Instead we could use another basic cell model,
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like the hexagonal unit cell or the equilateral triangle unit cell. Fortunately, however, for most
fiber reinforced composite materials, V; isless than 70%.

One more exampleis calculated for the perfect bonding interface to determine the
transverse shear modulus for Kevlar/epoxy composites with 3 different fiber volume fractions.
The calculated results are listed in Table. 1. The upper and lower bound solutions predicted
by Hashin [12], by Teply and Dvorak [11] and by Yeh [2] (using finite element analysis) are
aso listed in the tables for comparison. It can be seen that our results are in good agreement
with them. The present BEM result is dightly lower than the FEM result probably because the
displacement based FEM usually gives a stiffer prediction than the exact value. The material

constants used are :

Table 1 Transverse shear modulus (GPa) of Kevlar/epoxy composites

Vs 0.2 0.4 0.6
Hashin's model
upper bound 1.313 1571 1.872
lower bound 1.297 1.526 1.814

Teply and Dvorak’ s model

upper bound 1.305 1.540 1.844
lower bound 1.280 1.506 1.799
Yeh's FEM calculation 1.297 1.529 1.82

Present BEM Calculation 1.294 1.513 1.798
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for Kevlar fiber, E; =700 GPa n, =03

for epoxy resn matrix, E, =300 GPa n_, =0.35.

To study the effect of interface conditions on effective modulus and state of stress, the
numerical calculations were carried out for carbon/epoxy composites. The material constants
are:

for carbon fiber, E; =1375 GPa n, =025

for epoxy resn matrix, E,, =1862 GPa  n,, =033.

In the computation, M, and M were taken as

M :D: =k— , M :D:
E m

n

where b is the radius of the fiber. Five different values of k, 0, 0.1, 1, 10, 100 were
considered. These values represent a decreasingly-stiff interphase with k =0 corresponding
to aperfect bond. Inthe range of linear elasticity, the stress-strain curveislinear. Fig. 8
shows the stress-strain relations for the five values of k. As expected, the slope is steepest for
a perfect bond, and the composite is stiffer for a stiffer interface.

The stress distribution for s , (a,y) for O£ y £ a isalso plotted in Fig. 9. Thisisthe
stress distribution in the matrix material along the edge AB of the unit cell. For a perfect
bond, the largest s, occur at y = 0 which isthe middle of the edge AB. As the stiffness of the
interface decrease substantially, the maximum stress movesto y = a which is the edge of the
matrix, as can be seen for k=100. Thus for a perfect bond, the load is mainly carried by the

fiber. Asthe interphase stiffness decreases, the load carried by matrix increases.
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5. A Library of Green’s Functions

In two of our previous papers [13,14], it has been shown that the main inverted
coefficient matrix in any BEM may be regarded as a discretized Greens function which
characterizes amaterial body and actually provides the solution for a specific boundary value
problem. With such a matrix, avariety of boundary data, in the form of loads, incident waves,
or other input data, which 'cause’ afield of interest, are 'entered' as a column matrix. The
desired field then is simply given by matrix multiplication with the mentioned inverted matrix
or discretized Green's function.

For example, an eastodynamic scattering library has been formed and is used by
physicists engaged in nondestructive evaluation at lowa State University [15]. Entriesin this
library include inverted BEM matrices which characterize spheroidal voids in infinite elastic
solids. These voids have a number of aspect ratios. The flatter ones are intended to simulate
realistic open cracks, and various materia properties are included, which pertain to commonly
occurring solids used in aircraft. With thislibrary, computer modelers easily impinge the
various voids with elastodynamic waves of their choice, and pick up the scattered signal at
desired locations. Thisis done making no meshes, no waiting for the solutions of large
systems of equations, and indeed with no real knowledge of BEM codes or modeling strategy.
All that isrequired is to enter chosen incident waves, and specify scattered wave locations, in
an easy pre-specified format. Scattered signals are output in only the amount of time needed
to multiply a square matrix by a column matrix and a row-times-column multiplication.

Physical experiments have been modeled and ‘what-if' numerical experiments may be
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conducted, with negligible time and effort, using the library for common void scatterersin
common materials.

What we are suggesting here isto form asimilar library of Greens functions, with
similar advantages, for the use by composite material community.

For example, for fiber reinforced composites, library entries could be based on any of,
or any combination of, the following factors:

1. Various Fiber Volume Fractions

2. Various Constituent Stiffness Ratios E/En,

3. Different Interface Conditions

4. Amount of Debonding Around the Interface Perimeter

Library entries based on other criteria could be created, but all such entries should be
chosen in the interest of and in consultation with the composites community.

The first entries probably should reflect the most-needed and most-often-used
parameters, in present use, and in proposed design of new materials. Again, the goals are easy
and quick numerical smulations for calculating such things as effective muduli and peak
interface stresses. Simulating the effects of the most common types of damage expected, with
existing and new materials, should be especially welcome. Simulating the effects of
thicknesses of fiber coatings, and thus the response characteristics of various interface
conditions should be welcome as well. The main point is that all modeling, with the Library in
hand, could be done by composites workers who need not necessarily be expertsin any kind

of computer modeling.
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Other BEM libraries, for elastostatic analysis as needed by design community, are also
being constructed at lowa State University. All such libraries benefit from cooperation

between BEM researchers and industry or researchers in other areas.
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Fig. 5 Transformation between local sn and global xy coordinate system
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Fig. 6. E«/En vs. the volume fraction V; (From Ref. [3])
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Fig. 7. E«/EmVs. E/En, (From Ref. [9])
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Fig. 8. Stress-strain curves for different k
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Fig. 9 Matrix stress distribution along edge AB(x = a)
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Abstract

When Boundary Integral Equation/ Boundary Element Methods (BIE/BEMS) are used
for halfspace problems, such as occur frequently in elastodynamics, the fullspace (Stokes)
fundamental solution or halfspace (Lamb) fundamental solution can be used to formulate the
BIE. When the fullspace fundamental solution is used, a truncated discretized model of the
halfspace surface isrequired. Alternatively, if the halfspace fundamental solution which

models the entire halfspace surface analytically is used, no truncation issues arise.



54

Nevertheless, both Stokes and Lamb approaches have advantages and disadvantages. This
paper presents systematic strategies, based on the BEM for 3D halfspace el astodynamic
problems, wherein the best features of formulations based on the Stokes and the Lamb
solutions are exploited. Strategies are illustrated and numerical results are given for point

sources and radiation from a spherical void in a halfspace.

1. Introduction

Boundary Integral Equation/Boundary Element Methods (BIE/BEMS) have proven to
be powerful tools for formulating and numerically attacking exterior boundary value problems.
In this paper the BIE method refers to the formulation of a problem in terms of integral
equations defined on the boundaries of adomain. The BEM refers to the procedure used to
discretize the integral equations, using boundary elements, and the procedure used to solve
the integral equations numerically. These tools have certain advantages over domain-based
numerical methods for such problems. With the (radiation) conditions on the surface at
infinity incorporated analytically, only finite surface(s) need to be discretized when the only
other surface(s) in the problem are finite in extent. With domain-based numerical methods,
such as the finite e ement method, element-modeling of an entire infinite domain is, of course,
impossible. Simply truncating the finite-element model of the infinite domain is usualy
inadequate. Thus, special features are introduced into these methods to model such adomain
and to satisfy the radiation condition [1].

However, when aBEM is used for halfspace problems, such as occur frequently in
elastodynamics, and the fullspace (Stokes) fundamental solution is used to formulate the BIE,

atruncated discretized model of the halfspace surface is required. (Usualy, a discretized
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model of afinite surface, such as a buried finite obstacle, is needed as well). Therefore, a
truncation problem can exist in modeling a halfspace problem, even with boundary methods.
However, with Stokes and the BEM, the truncation issue is different than with say finite
elements. With finite elements the domain itself and not just a bounding surface must be
truncated; thus the nature of each kind of truncation is different in avery basic way. Indeed, a
good boundary solution can usually be obtained with the BEM even with severe truncation of
the halfspace surface. This truncation may be smple, i.e., no special layer of ‘infinite
elements to simulate the ‘rest of the halfspace surface’ need be used.

Alternatively, if the BEM procedure uses the Lamb fundamental solution, which
models the complete halfspace surface analytically, no truncation issues even arise. But, since
Lamb’s solution is available in an anaytical form which requires (numerical) evaluation of
infinite integrals with respect to frequency, the CPU time spent on just forming a boundary
integral equation isincreased significantly and often prohibitively. Further, for some
combination of locations of source point and field point, it is especialy difficult or, with
certain agorithms, impossible to evaluate the Lamb solution.

Problems of radiation and scattering in a halfspace have been under investigation via
BIE/BEM for sometime. In the time domain, the BIE has been used for hafspace dynamics
problems [2,3] for linear and nonlinear problems. 1n both studies, the Stokes solution was
employed, and discretization over the halfspace surface was required. In the frequency
domain, the BIE was used for the foundation problems in a hafspace [4] for studying the
dynamic response of rectangular foundations. Again, the Stokes solution was used, and a

truncation on the halfspace surface was needed. However, in [5] and [6] the Lamb solution
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was used to formulate the axisymmetric BIE for alayered viscoelastic halfspace to avoid
discretization of the halfspace surface. A BIE formulation using Lamb’s solution for elastic
halfspace problems, free from principal-value integrals, was proposed in [7]. In afollow-up
study [8], halfspace problems were considered by BIE formulations using both Stokes' and
Lamb’stensors. Comparisons were done by checking boundary solutions obtained with both
kernels. However, truncation effects on the boundary solution, as well as on the solution for
interior points were not addressed.

In summary, al of the researchers cited above attacked the halfspace problem by the
BIE either by using the Stokes solution, making a truncated discretization on the halfspace
surface, getting afairly good solution on the boundary, or by using the Lamb solution without
concern for computational efficiency. Several questions arise then regarding the BEM for
halfspace problems; such as, can good results be obtained everywhere by using the Stokes
solution alone? Isit aways better to just use the BIE formulation using the Lamb solution?
Is there a way to take advantage of both formulations to attack halfspace problems if
guestions of practicality and efficiency must govern? An attempt is made to answer these
guestions in this paper.

Specifically, we present systematic strategies, based on the BEM for halfspace
elastodynamic problems, wherein the best features of the Stokes solution and the Lamb’s
solution are exploited. Thisresearch is motivated by a general class of problems related to
responses due to explosions or other disturbances inside an underground structure. Here we

restrict ourselves to time-harmonic radiation problems, even though we can study scattering
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problemsin a similar manner and can deal with transient problems through the Fourier
transform and the Laplace transform [9].
Most of our strategies are illustrated and numerical results are presented for point

sources in a halfspace and radiation from a spherica void in a halfspace.
2. BIE Formulations

Consider a homogeneous, isotropic, elastic halfspace bounded by aflat halfspace
surface S, at z=0, which istraction free, as shown in Figure 1. The elastic material fills the
halfspace z3 0. Thereisafinite obstacle B insde the halfspace with asurface S,. In the
region B', exterior to B but within the halfspace, we assume that an elastic field existsin the
form of atime harmonic displacement vector u;(p,w), which must satisfy the familiar Navier
eguation,

(cf- c)u;; +cou ; +wiy =0 (1)
where ¢, and ¢, are dilatational- and shear-wave speeds, respectively, wisthe circular
frequency, and body forces are assumed to be zero. Thisfield is assumed to arise from a
prescription of boundary dataon S

Next, a Somiglianaintegral formula based on the Stokes point force solution may be

derived ( see[7]), and written as.

Cy (P (M) = Q. [T (P, (@) - U, (p.a)t, (@] (e @

inwhich U;; and T; are Stokes' displacement and traction tensors, respectively, which describe

the fields at a point g due to atime harmonic point force of frequency wat apoint pina
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fullspace [7]. Here we assume no incident wave in B' and Cjj(p) is the coefficient tensor of the
freeterm (again see[7]) and is afunction of the location of p. When pisinsdeB', egn. (2) is
arepresentation integral which gives the solution at p in terms of boundary values of

u; (), t;(q) onboth §, and S, and G, (p) =d;. When pison the boundary, either §, or
S, egn. (2) isaBIE in which half of the pair of variables u; (q), t;(q) are prescribed for a

well-posed problem. The BIE (2) can be solved for the other half of the boundary data.

Indeed, in the BIE process, the first step is to put p on the boundary; the BIE is then
solved for the unknown boundary data. In the second step, the solution at any point inside the
domain B' can be obtained from the representation integral. In both steps, al of the integrals
are evaluated numerically, so a discretization is needed on both the halfspace surface and the

finite surface. Since §, isinfinite, only atruncated finite area S; would be discretized. Thus

truncation arises when solving the BIE as well as when obtaining the solution at afield point.

Denote the neglected area on the halfspace surface as S, (see, Figure 1), i.e.

S, =SE S, andfor al problems of interest in this paper, t,(q) ° 0 on S,. Thus, the BIE
egn. (2) can be expanded as.

C;(P)u;(p) = c‘{Ti,-(p,q)uj (@) - U;(p,a)t; (a)|ds(q)
S

©)
+ OF; (. a)u; (@) ds(a) + @T; (P, a)u; (a) ds(a) -
s S

The last term is associated with the neglected area S,. For plocated on S; or S, and g on &,

we find that the contribution of this last term may be neglected without detriment to the
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accuracy of the boundary solution, provided S, has at least aminimum size. This matter is
discussed in some detail in the next section.

Now if instead of the Stokes tensor U and T, Lamb’stensorsU; and T, are used,

the Somiglianaintegral need only be taken over S, because the presence of the traction-free

halfspace surface is accounted for in Lamb’stensors. That is, Tin (p,q) = 0, whenever gison

S, (see[14] ). Thus, the Somiglianaintegral formula has the smple form:

C;(Pu;(p) = Q[T (p.a)uy, (@) - U (p,at; (a) |ds(a) -
u(p) = [T (PAY, @ - U} (p.a)t, (@)]ds(a) (4)

There is no truncation issue because the integral is taken only over the finite surface S,.
However, the computation of Lamb’s halfspace Green’s function for (4) asaBIE isvery time
consuming. To give an idea of the CPU time difference between formulating and solving the
BIE using the Stokes solution, and formulating and solving the BIE again using the Lamb
solution, an experiment was performed for a sphere, in afullspace, with an 8 element
discretization. It took 2.8 seconds to solve the BIE using the Stokes solution. When the
Lamb solution was used, the CPU time was 820 seconds. Thus we were motivated to ook
carefully at the Stokes formulation despite the shortcomings, conceptually at least, of

truncation.
3. Truncation Study for the BIE Using the Stokes Solution

To investigate truncation effects on boundary solutions and results at field points via
Stokes, the problem of a point load in a halfspace was considered first. Displacements on the

halfspace surface obtained as the boundary solution in the Stokes BIE should then be identical
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to the corresponding displacements given by the halfspace Green’ s function Ui}* . Because of

the absence of S, and the existence of the point source, the Stokes BIE (3) reduces to:

G (p)u;(p) = Q[Ti,- (p,a)u; (@) - U, (p.a)t; (a)[ds(a) +U; (P, p) F; (o) 5)

in which po isthe location of the point source; F; isthe magnitude or strength vector of the
point source.
The point source is one unit below the halfspace surface, and isin the z direction for

all the results presented here. Thismakes K =F, =0, F,=1inegn.(5). InFigure 2, we

show the comparison between our boundary solutions and exact point force solutions for the
magnitude and phase angle of u; and u; components along x direction on the halfspace surface.

The results presented there are for a point source in titanium alloy (¢, = 6340 m/ s,
C, = 3030 m/ s, Poisson’s ratio n=0.352. ) when the discretized area S, is chosen as a 12x12

square area. (Later we will show that a much smaller discretized area S, can be used to obtain
agood solution). The shear wave number is k=0.449, The discontinuity in the phase-angle
plot is caused by the jump in +180%-180°. Note that the validity of our BEM analysisis
confirmed by the good agreement between our computed results and that given by the
analytical solution U;".

In Figure 3, we show the variation of the magnitude of scattered field us along the x
direction for four different sizes of the discretized area 2Lx2L of L=3, 4, 6, 12 respectively,
over the halfspace surface. It is seen that the results converge very well. Very good results
can be obtained by using arelatively small discretization (L=3). The main effect of alarger

discretization is to obtain some extension of the curve over the added-discretized portion of
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S, . That is, theincrease in accuracy of the boundary values of u;over agiven discretized
model of S, , by making that model larger, seemsto be small.

Observations made about data from point source results are very important because
the radiation from any kind of a shape in the halfspace could be viewed as the radiation by a
distribution of point sources. To confirm this, we studied the radiation from a spherical void
which is used to smulate a spherical wave in the halfspace.

Consider a spherical cavity of radius r which isburied at adistanced insde a
homogeneous, elastic half-space and which is radiating harmonic dilatational waves into the
halfspace, such that t, =1.0, t;= t; =0.0.

Since the magnitude of spherical waves decreases with distance from the source, the
reflected waves due to the presence of the halfspace surface also have a diminishing effect as
they travel through the medium. Thus, it is expected as the distance d increases, the surface
data on the sphere should approach the corresponding fullspace solution. This observation
can be viewed as a check for the algorithm and coding (analytical comparison data are not
available for this problem), and the expected behavior is apparent from Figure 4, in which the
polar variation of the boundary solutions on planey = O for several different depth of the

sphere when kr = 0913 ( k; isthe dilatational wave number), poisson’sratio n = 025 are

plotted. It can be seenwhend 3 8r, the surface data are quite close to the corresponding
fullspace solution.
Figure 5 shows the variation of u; and uz components on the halfspace surface

obtained using three different sizes of discretization 2Lx2L onthe S, surface. It isagain very
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clear that we pick up more information as we increase the size of the discretization. However,
values of new data compared with values of previously-obtained data again show little change.

The situation for interior pointsis, however, different. Calculation for u,and u; at
various locations of interior points, for the largest discretization of S, , were performed and
compared to the analytical solution for point load case. The genera conclusion, for interior
points, is that we can obtain good results for points only under the “shadow” of the halfspace
discretization. Figure 6 shows the result for interior points one unit below the halfspace
surface from x =2 to x =25 due to the point load in the halfspace. It can be seen that beyond x
=10 the result from BEM deviates considerably from the Lamb solution.

Therefore, while we can obtain very satisfactory boundary data over the discretized
surfaces with reasonable truncation of S, , viathe Stokes BIE, we can not obtain satisfactory
field data at distances much beyond the edge of the truncated S, . It isobviously impractical
to use ever-larger modelsof S, just to get desired field data at large distances from the

sources of disturbance. Thus, what can be done?

4. Lamb’'s Formulation Revisited

We mentioned earlier that using the Lamb solution in forming and solving aBIE
would be prohibitive for any problem requiring a substantial amount of discretization over S;
because of the CPU time involved to get function evaluations for the many p-Gaussian
quadrature point combinations involved. Note, we speak of prohibitive CPU time despite the

fact that discretization of (aportion of ) §, isnot even an issue with Lamb. However,

suppose we get good boundary displacements over S; with afairly small discretization
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(reasonable truncation) of S, , as we have shown that we can do. Then if we ask for field

data, remote from S, viaegn. (4) used as a representation integral for comparatively few
points p , the costs are very reasonable indeed. In fact, we may view thisas an ided
compromise, the best of both worldsin asense: specifically, use Stokes, with a reasonable

truncation of §, , to form and solve the relevant BIE; thus obtain uj(p) on S, accordingly,

efficiently, and in reasonable time; then use Lamb in the representation integral to get the
farfield data which requires boundary dataover S; only. A similar strategy was used in [15]
for scattering from a halfspace surface-breaking crack problem.

Figure 7 shows the interior results calculated by using Stokesin the BIE and using
Lamb in the representation integral (indicated by + ) compared with the results from using
Lamb’s solution in both the BIE and the representation integral. Also in Figure 7 isthe
uncorrected resultsif Stokes is used both in the BIE and in the representation integral. Itis
very obvious that those uncorrected results denoted by circles deviate from the good results

even for field points which are close to the origin.
5. A More Efficient and Faster Strategy: the Library

The efficiency of using the Stokes-plus-Lamb strategy described above can be
improved by incorporating the idea of a‘Green’s function Library’ ( see[11,12] ). For

problems with two surfaces as the boundary, such as halfspace problems (S;plus S, ), asub-

matrix of the coefficient matrix is the essentia part of the partial Green’s function for the

problem. Thelibrary ideais closely related to partitioning of the system matrix.
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The BIE in discretized form for the halfspace problem, using the Stokes tensors, can
be written as:
eAr Aptiud 10
gAm AzzH% uzf\; ) ':\ fz[\;
where A;; are coefficients related to collocation(source point p) on S, and integration
(integration point ) on S;; A;, are coefficients related to collocation on S, and integration on
S; Ay are coefficients associated to collocation on S, and integration on S;; Ay, are

coefficients associated to collocation on $; and integration on S;; I1n the recent paperg[11,12],
it has been shown that A7 isin fact the essential ingredient in a* discretized Green's function’

for the halfspace problem.
Indeed, suppose we attempt to solve this system of equations via partitioning, i.e. form

Az, Az, and Ay, and write the following reduced system of equations:

(Azz - A21A1_11A12){U2} :{ fz - A21A1_11f1} : (7)
Then obtain u; by
{ul} = Al_ll{ fl - A12u2} . (8)

Suppose further that the discretization on the halfspace surface is bigger than the
discretization on the finite surface. The size of A;; isthen much bigger than the size of A,.
The most computationally intensive part of the solution via egns (7) and (8) then isthe
formation and inversion of Ay;. This leads to the idea of making an accurate discretization of
the halfspace surface, obtaining Ay, ™, and storing this large matrix so that it can be reused
over and over again with different S;. Thisideais becoming attractive as storage and retrieval

of mass-amounts of data become easier and cheaper. Also only the boundary dataon S; is of
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interest when using Lamb. Thus, we do not really need to go through egn. (8) to get u;. In
actual implementation, the matrix saved is not the inverse of A1, but the LU decomposition of
Aqs.

Asanillustration of the benefits of this partitioning-library strategy, Table 1 shows
some CPU times for atypica halfspace problem solved in two ways. It can be seen that by
doing partitioning, the CPU time is approximately 1/10 of the CPU time needed for solving

the whole problem in one step.
6. Some Useful Approximations

Some useful approximations might be appropriate for the halfspace problem. First, if
the finite obstacle is deep enough below the halfspace surface, we can approximate the

boundary solution on the surface of the finite obstacle by solving a fullspace problem,

Table 1 CPU time comparison for partitioning using Library idea

Method/Task CPU time (seconds)

CPU time for solving the problem in one step 1920
144 elements on the halfspace surface, 8 elements on the sphere

CPU time via Partitioning

Form Az 870
LU decomposition 866
Pre-effort (form Ay; and save LU decomposition of Ay;) 1636
Form Ay, Asq, A 70
read LU decomposition of Az 7.8
Calculate new coefficient matrix and right hand side 95.5
Solve the reduced equations 0.05

Total CPU time for partitioning 173
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and then this approximation gives very good results. Figure 8 shows the interior results
calculated in thisway for d=8r compared with the results from using Lamb’s solution. This
approximation gives good results for both the magnitude and the phase angle even for farfield
points. Further, we found that certain asymptotic techniques for special locations of the field
points are often warranted. For example, we found that the scattered field on the halfspace
surface exhibits very good Rayleigh wave features when the distance from the origin gets
large. This can be seen from Figure 9 in which the scattered field on the halfspace surface is
plotted. The two main characteristics of the Rayleigh wave, i.e. the magnitude of the
displacement decays very sowly and a 90° phase angle difference exists between u, and us, are
very apparent. For the field caused by the radiation from a spherical void, even though the
Rayleigh wave is not evident in the near field, it isfound that, at certain larger distance from
the origin, the scattered field also exhibits the Rayleigh wave characteristics. Thus, if the
major part of the field on the halfspace surface comes from the Rayleigh wave for large
distance from the origin, it is possible to use the Rayleigh wave representation and boundary
solutions from the BIE to approximate the farfield on the surface. However, specific
strategies for using the boundary data from BEM to construct an appropriate Rayleigh wave

representation isitself an interesting topic for future research.
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7. Conclusions

Both BIE formulations, i.e. via Stokes' and Lamb’s solutions, are used to attack
halfspace problems, and compared with each other. Each hasits own advantages and
disadvantages.

It isfound that when Stokes is used, the halfspace-surface truncation affects both the
boundary solution and the solution at field points. However, it is aso found that this
truncation has a small effect on the boundary values themselves, i.e., very good boundary
solutions can be obtained with a small size of discretization on the halfspace surface. On the
other hand, the truncation has a big effect on the results for field points, especialy those field
points which are out of the "shadow" of the halfspace surface discretization. Thisistrue even
though important ingredients in the remote field point values are the truncation-insensitive
boundary values. It isalso found that when Lamb is used, the CPU times are usually
prohibitive.

In this paper then, to counter the negative effects of truncation with Stokes and to
address the excessive CPU issue with Lamb, we suggest the following: use Stokes to
formulate the BIE and obtain good boundary solutions over the truncated halfspace plus a
finite surface; then use Lamb's solution in the representation integral to evaluate results at
field points. In thisway, there are no adverse truncation effects on the results for field points,
since the boundary solution on the finite surface is good, as stated, and the finite surface is the
only one which must be integrated over with Lamb. For the relatively few function
evaluations of Lamb's solution required in getting field point vaues only, CPU timeis seldom

aproblem.
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We a so suggest that when using the fullspace fundamental solution in the BIE,
considerable time and effort can be saved by pre-computing the coefficient matrix for the
truncated halfspace surface model and storing itsinverse (in reality the LU decomposition of
that coefficient matrix) for repeated use. The Green’s function Library idea, with the
coefficient matrix for afine discretization on the hafspace surface which isidentified as the
main ingredient of the partial Green’s function, precomputed and stored, gives an even more
efficient and faster way to attack halfspace problems.

Further, we found that certain approximations are applicable for the halfspace
problem. For example, when the finite surface S; is degp enough below the halfspace surface,
we can approximate the boundary solution on the surface of S, by solving afullspace
problem, and then obtaining the field in the halfspace by using Lamb's solution. Also some
asymptotic techniques for special locations of the field points are often warranted. For
example, if the mgjor part of the field on the halfspace surface comes from the Rayleigh wave,
we can use the Rayleigh wave representation and boundary solutions from the BIE to

approximate the farfield on the surface.
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Figure3 Truncation effect of point source response
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Figure4 Depth test for radiation from spherical void
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Figure6 Field valuesat interior points (point load)
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Figure 7 Results from strategy proposed in this paper for interior points
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Figure8 Results by using large depth approximation
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Figure 9 Rayleigh wave features for field due to point loading
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CHAPTER 4

PARALLEL IMPLEMENTATION OF A BOUNDARY

ELEMENT ANALYS SCODE FOR HALFSPACE

ELASTODYNAMICSPROBLEMS

I ntroduction

An effective way to cope with the computationally-intensive issue of halfspace
elastodynamic problems is to take advantage of computer technology. Among the many
efficient special advances in computing is the one called parallel computing.

Since the early 1970s, computers consisting a number of separate processors,
called parallel processors, began to appear. It has been apparent that parallel computing
can provide an effective and efficient way to solve large-scale structural analysis problems
and other problems which take long time to be solved via serial methodology [1].

Specifically for the Boundary Element Method (BEM), there are a number of
papers on the paralel computing [2,3,4,10]. All researchers agree that BEM is very
suitable for paralel programming because of the scalability of the method, i.e. the
structure of BEM make it easy to divide the whole task into several parallel small
independent tasks. For halfspace el astodynamics problems viathe BEM, it is known that
the amount of CPU time for forming the coefficient matrix is the magjor problem when
Lamb’s halfspace Green’s function is used to formulate the BIE. Thisis due to the fact

that Lamb’s solution is available in an analytical form [5,6] which requires (numerical)
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evaluation of infinite integrals with respect to frequency, the CPU time spent on just
forming a boundary integral equation isincreased significantly and often prohibitively..
The purpose of this research isto provide a parallel scheme for BEM analysis for the
halfspace problem, and to explore the great advantages of paralel computing with BEM.

The parallel computing for the present work was carried out on the IBM SP-2 in
the national supercomputing center at Cornell University using PYM. PVM stands for
parallel virtual machine which is a software system that permits a heterogeneous collection
of UNIX workstations networked together to act as a single parallel computer [7].
Communication between processors takes place by message-passing in which data or
other information are transferred between processors. The main advantage of PVM isits
affordability and the substantial computing power of individual workstations.

The major work hereisto design a parallel algorithm for BEM for the halfspace
problem, and to reorganize and rewrite the code in the PVM environment to obtain a
maximum performance gain.

There are two major stepsin the BEM process for any problem:

1. Forming the coefficient matrix; this involves collocating a each noda point,
then numerically integrating over each boundary element. The coefficient matrix defines a
governing linear system of equations for boundary value problem at hand.

2. Solving the linear system of equations.

The CPU time spent on each step is determined by the size of the problem and the
kernels used in the BIE. Usually the size of the system equation increases nonlinearly with

the size of the problem, so does the CPU time spent on solving the linear system of
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equations. For large scale problems, step 2 will dominate. Thus parallization procedures
for solving the linear algebraic system is essential. Fortunately, there is alarge amount of
work in the area of paralel-solving for linear algebra equations. Efficient algorithms such
as parallel LU decomposition as well as standard routines can be obtained [8,9].

When the halfspace Green’s function is used in the BIE formulation of a halfspace
problem, the CPU time spent on step 1 dominates even for avery small-size problem
based on few boundary elements. Thus the emphasisin this research is basically on the
paraleization of step 1. Specificaly, in this section, a parallel scheme is designed for the
boundary element analysis code for e astodynamics problems using halfspace Green's

function via PVM. The problem of radiation from a sphere in the halfspace is considered.
BIE Formulations

Consider a homogeneous, isotropic, elastic halfspace bounded by aflat halfspace
surface S, at z=0, which istraction free, as shown in Figure 1. The elastic material fills
the halfspace z3 0. Thereisafinite obstacle B inside the hafspace with asurface S In
the region B', exterior to B but within the halfspace, we assume that an elastic field exists
in the form of atime harmonic displacement vector u;(p,w), which must satisfy the familiar
Navier equation,

(cf- c)u;; +cou ; +wiy =0 (1)
where ¢, and ¢, are dilatational- and shear-wave speeds, respectively, wisthe circular
frequency, and body forces are assumed to be zero. Thisfield is assumed to arise from a

prescription of boundary dataon S
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The BIE for elastodynamic problems using halfspace Green’ s functions can be

written as

C,(p)u; (p) = Q[T (P.a)u, (@) - Uy (p.at, (o)ds(a) +u/™ @)
where TijH (p,9), Uin (p,q) aretraction and displacement Green’s functions for a halfspace
problem, also called Lamb’s solution; U; (q), t;(q) are the displacement and traction
respectively at point g; Sisthe boundary of the inhomogenity in the halfspace, usualy the
surface of the finite obstacle. For radiation by a sphere in the halfspace, Sis the surface of
the sphere, and U™ = 0. Here we restrict ourselvesto aradiation problem. The parallel
scheme is equally applicable to a scattering problem. In egn. (2) Cj(p) is the coefficient
tensor of the free term (cf. [11]) and isafunction of the location of p. When p isinsde
B, egn. (2) is arepresentation integral which gives the solution at p in terms of boundary
vauesof u;(q),t;(q) onS and C;(p) =d;. When pisontheboundary S egn. (2) isa
BIE in which half of the pair of variables u; (q), t;(q) are prescribed for awell posed

problem. The BIE (2) can be solved for the other half of the boundary data.

Indeed, in the BIE process, the first step isto put p on the boundary; the BIE is
then solved for the unknown boundary data. In the second step, the solution at any point
inside the domain B can be obtained from the representation integral.

If we discretize the boundary and collocate at nodal points, the discretized form of

the BIE is obtained as

[A{u(a)} =[BHt@y)} - 3)
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For awell posed elastodynamics problem, either u; or t; at any nodal point is given,
so by rearranging the above equation, retaining the unknown variables on the left hand
side of the equations, while moving al the known terms to the right hand side, we have

the following linear algebraic equations:
[A]{ unknowns(qN)} ={RHS} . (4)

After solving the above simultaneous equations for the unknowns at nodal points,
all of the boundary values for u; and t; at al nodal points are obtained. Then we can
calculate displacement or stresses at any field point by the boundary integral

representation egn. (2) with C;(p) =d;.

Serial Execution

The flowchart of the serial BEM code is as shown in Figure 2. The serial code
includes 58 subroutines, and consists of 9970 lines of statement.

The test exampleis the problem of radiation from a sphere in the halfspace. The
surface of the sphere is discretized into 8 triangular e ements as shown in Figure 3.

A crude mesh was used for the sphere merely because this research was done as a
class project. There exists alimitation about the problem size.

A profile study which can list the CPU times for each procedure indicates that
most of the CPU time is spend in the functions called by subroutine cte3 in which the
coefficient matrix isformed. To accurately record the CPU time, this serial code was
executed on the Loadlevel where it is guaranteed that only one job isrun at atime. It

originally takes about 300 seconds to run the test problem. In order to concentrate on the
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parallization, no serial optimization was done for the seria code. Instead, the intrinsic-O3
optimization flag was used when the code was compiled. This performs both the -O level
optimizations and performs additional optimizations that are memory or compile-time

intensive. The serial CPU time is then reduced to about 160 seconds (See Table 1).
Parallel | mplementation

The boundary element analysis code is well suited for parallel execution for the
following reasons:

1. The BEM code is coarse grained or has a large-scae granularity which means
that large tasks can be performed independently in parallel. Thisistrue especidly for the
code which use the halfspace Green’ s function, where forming the coefficient matrix costs
most of the CPU time ( >99.9% for the test example); and most of this part of the code
can berunin paralld.

2. The BEM code aso has a very good scalability in the part of it which consumes
most of the CPU time. Thismeansit is easy to separate the job into severa jobs to be run
on each processor paralely and independently. The task of forming the coefficient matrix

isdivided into severa small tasks such that each small task calculates several columns of
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Table 1 CPU time and performance for serial and parallel execution

Wall clock time Speed up
(seconds)
Serial without -O3 option
Run 1 302
Run 2 296
Run 3 296
Run 4 296
Run 5 302
Seria with -O3 option
Run 1 160
Run 2 160
Run 3 159
Run 4 159
Run 5 160
Parallel execution with -O3 option
Run 1 23
Run 2 22
Run 3 22
Run 4 21 7.57

Run 5 23
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the coefficient matrix. For example, in the numerical example here, each processor forms
the columns which correspond to the integration over one element.

3. The BEM code has parallel-data independence in the part of the code which
consumes most of the CPU time. The datain the coefficient matrix are paralel
independent too. Given the information of connectivity of a specific element and all the
nodal points, each processor can calculate part of the coefficient matrix independently, and
can send it back separately. This means each processor does not need to wait for data
from other processors during the process.

Here are some considerations in parallel implementation:

1. The so-called Host/node configuration was used in this project, the host was
responsible for the 1/0 process and passing necessary data to each node. Each node
performed the integration over one boundary element for all nodal points. i.e. the node
formed severa columns of the coefficient matrix, and sent the results back to the host.
Then the host performed the assembling of the coefficient matrix, solving of the system of
equations and postprocessing of the results. Details are asindicated in the parallel code
flowchart (see Figure 4).

2. Load balancing issues

By load balancing, we mean the assignment of tasks to the processors of the
system is done in such away that each processor is kept doing useful work as much as
possible. The following are some considerations regarding load balancing.

a. Eight tasks were spawned at the beginning of the host program such that while

the host program reads in model data, nodes can start to do some pre-calculations as to
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calculate the shape functions and gaussian quadrature information etc. These pre-
calculations are independent of the model data

b. The model data and boundary conditions are sent separately in two messages to
allow some overlapping. i.e. while nodes were unpacking the data, host can read in some
more data.

Based on the above considerations, the flowchart of the parallel codeisasin
Figure 4. As mentioned, the radiation problem from a sphere in the halfspace is
considered. An eight-element mesh as shown in Figure 3isused. Inthe paralle
execution, eight workstations were used to solve this problem. A nearly perfect speedup
(7.57) is obtained, The speedup is defined as the ratio of the execution time for asingle
processor and the execution time using multiple processors. Idedly, the speedup by using
n processors could reach n, but the attainable speedup depends on the degree to which the
seria program can be divided into independent (and parallel) tasks. The speedup also
depends on the number and size of the messages passed and on the ratio of

communication and computation time.

Conclusions

By paral€elizing the BEM code for halfspace elastodynamics problems, a very good
speedup isobtained in this exercise. All of the work associated with this exercise indicates
that boundary element analysis code is easy parallelize because of its coarse granularity,
easy scalability and good data independence. Parallel computing can provide away to

solve halfspace scattering problems effectively and efficiently.
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Figure 2 Seria code flow chart
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Figure 3 Sphere discretization
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Figure4 Parald code flow chart
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Figure 3 Parallel code flow chart (continued)



96

CHAPTER 4 PARALLEL IMPLEMENTATION OF A BOUNDARY

ELEMENT ANALYSIS CODE FOR HALFSPACE ELASTODYNAMICS

PROBLEMS 80
Introduction 80
BIE Formulations 82
Serial Execution 84
Parallel Implementation 85
Conclusions 88

References 89



96

CHAPTER 5

ELASTODYNAMIC SCATTERING FROM A

SURFACE-BREAKING CRACK

I ntroduction

Scattering of elastic waves by planar cracksis an important area of investigation in
applied mechanics, especially in quantitative non-destructive evaluation (NDE). However,
there are few solutions to three-dimensional scattering problems, and these are almost al for
the special case of scattering by an internal penny-shaped crack [1]. A number of references
using numerical methods, such as boundary elements, finite differences etc., can be found in
[1].

The problem of scattering from a surface-breaking crack is of particular interest to
NDE, and considerable effort has been devoted to obtaining numerical data for this problem.
But most of the research has been done under two-dimensiona (2D) assumptions, for
example [2-4]. However, it was pointed out in [5] that if the crack dimensions are
comparable to the width of the interrogating beam, the full three-dimensional problem must be
considered.

The BEM is especialy good for this class of problem because, as a numerical tool, it is
valid under 2D or 3D assumptions, either semi-circular cracks or more general crack shapes,
cracks which are inclined or perpendicular to the free surface, and in the low frequency,

intermediate frequency or even high frequency range, if proper careis taken.
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Problem Description And the BIE Formulation

The problem considered here is the scattering of a wave by a surface-breaking crack in
the halfspace.

Consider a homogeneous, isotropic, elastic halfspace bounded by aflat halfspace
surface S, at z=0, which istraction free, as shown in Figure 1. Elastic materid fills the
halfspace z3 0. Thereisasemi-circular crack which is normal to and breaks the halfspace
surface. Wefirst consider the case in which the crack isinsonified by a SV wavefield incident
at an angle of q =45 (see Figure 2 for definition of g). Because of the radiation condition, we
solve this original problem in two steps as depicted in Figure 1. By convention, the crack
surface is denoted by S, the truncated area on the halfspace surfaceis S;.

In step 1, we assume there is no crack, and the halfspace is under the load of the

incident wave. Both the displacement u' and traction t on the fictitious crack surface can

be obtained analytically [12]. Theninstep 2, - t' isapplied on the crack surface, and the

problem in step 2 becomes the problem for a halfspace with a surface-breaking crack under
the load of crack-surface traction only. This problem can be solved by the boundary element
method. It can be seen that the superposition of these two stepsis equivaent to the original
problem.

For crack problems or problems with athin-body domain, the hypersingular boundary
integral formulation (HBIE) is needed since the conventional BIE (CBIE) aone breaks down
because of the degeneracy of the main coefficient matrix [7]. Incidentally, the HBIE isaso
used in dynamic analysis [6] to overcome the so called fictitious-frequency difficulties [8].

While the HBIE is very useful in solving problems with cracks or thin bodies, the process of
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using HBIE presents more analytical and numerical difficulties than does the CBIE because
the HBIE is one order higher in singularity for the kernel functions than those in the CBIE.
The HBIE can be obtained by taking spatial gradients of the CBIE and multiplying the

resulting equation with the elastic modulus tensor E,, . and the direction cosine of the normal

ikim

vector at the source point n,, [14]. Theresulting HBIE for aradiation problem, involving

tractions and displacements explicitly, has the form

t(p)=Q [Ki,-(p,Q)t,-(Q)- H; (p,a)u; (a)|ds(a) (1)
where the kernels are
__ Y,(p.9)
Kij(p,Q) = Bym 1% Moy (2
__ 17(p,a)
Hij(p,Q) = Eiym %, Mo (3

where U, (p,g) and T, (p,q) are kernels for the CBIE. Details about the derivation of HBIE

and the expression for the kernels can be found in [14].
For the halfspace surface-breaking crack problem, the boundary consists of four
portions,i.e, S=S ES,ES, ES, asinFigure?2.

The HBIE for the surface-breaking crack problem can be then expanded as

L(P) = QK (POt (@)- H, (p.a)y,(@)]ds(@)
+Q,[K,(Pa") (@) Hy(p.a")u,(@)]asta”)
+Q [K, (P )t (@)- Hy (P )y, ()]sl
+Q [K, (P, (@~ H,(P.au, (0)]ds(a) .

(4)

Note
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Ki(P,Q") = K;(P,Q),

H;(P,Q") =-H;(P,Q").

If we define

Du; (@) © u; (@) - u (@) .
as the displacement discontinuity across the two crack surfaces, and

Sti(a) ° t;(@”) +t,(a") ,
as the sum of tractions on the two crack surfaces. Also noticethat as R® ¥ ,

A [K (P.a) (@)~ Hy(p.a)u;(@)]ds(a) @ 0. )
The HBIE for the surface-breaking crack problem can be written as

t(p) = Q[Ki,—(p,Q)t,— (a)- H;(p.a)y (Q)]dS(Q)

(6)
+Q,[K, (P& (@)~ H, (p.a)Du, (a)]ds(a) .

For the present loading condition, t,(q) =0," q1 S, at,(q)=0," gl S,. By movingall

of the termsto one side of the equation, the HBIE used here in particular is

t(p) + OH; (P.a)u,; (a) ds(a) + OH, (p,g)Du;(a)ds(g) = 0. 7)
s s

If u;(q), Du;(q) aretaken asthe variables on S (the halfspace surface) and S (the

crack surface) respectively, the HBIE Eqgn (7) can be written in a compact form:
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t(p) + OH; (p.a)f;(a)ds(a) =0 (8

where S=SE S, and

fi@=u()."ql 5, ©
f(@)=Du(q),"ql s .
Eqgns (8) and (9) indicate that for problems with a crack, if the HBIE is used, only one
surface of the crack needs to be discretized and collocated. After solving this equation, what
we obtain on the crack surface is the displacement discontinuity instead of the displacement

itself.

The kernelsin the HBIE are singular in r with orders

K,(P.Q) = O(riz) ,

H,(P.Q)= O(5).,
that is, one order higher than those in the CBIE. The first and second integralsin Egn (1) are
thus interpreted (et. seq.) as Cauchy principal values[16] and Hadamard finite parts[17,18],
respectively.

Regularization of the HBIE formula (8) is needed before discretization in order to use
Gaussian quadrature to evaluate the integrals. However, because only one surface of the
crack needs to be modeled, the integral identities used for global regularization for problems
having a closed surface boundary no longer hold [15]. The global regularization can not be
used anymore; instead the local regularization using line integralsis needed. The detailed

process of local regularization can be found in [9].
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To get the local-regularized form of HBIE eqgn. (8), first writeit as
t(p) + OH;(p.a)f;(a)ds(a) + OH; (p,a)f ;(9)ds(q) =0 (10)
S- DS DS

where S isthe boundary formed by singular elements which have the collocation point p as
one of the nodal points; S DS isthe rest of the boundary. The first integral in egn (10) is

regular, the second integral can be regularized locally as:
OHi (P, )fj(@ds( ) = dH;(p )- Hy(p, )l (a)ds( )

+ (P )E (@-1.(P)- O - 2)ads(q)
DS e Xa u
B (11)
+f ( )c\j_lij(pa ) ds(q)

a

it o
+_( )d_lij(pi )(Xa - Xap)dS(Q)-

where I-_|ij (p,q) isthe static kernel, and the last two integrals are computed using aline
integral [9].
Notice for the present problem that,

ti(p):O,"pT S,
t(p)=-t'(p)."pl S .

The discretized form of equation (10) can be written in matrix form as

eAn Apl w 0_100
& a =l (12)
M1 Al Duzg | tz%

Where:

A, isthe coefficient matrix when collocating on S, and integrating on S,

A,, isthe coefficient matrix when collocating on S, and integrating on S,,
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A, A, arecrossterms when collocating and integrating on different surfaces.
uz isthe displacement vector on the halfspace surface, and Du, is the crack opening

displacement vector on the crack surface.
The solution of equation (12) yields the crack opening displacement vector over the

S, elements and the displacement vector on the flat surface of the halfspace.

After the crack-opening displacement is obtained, the scattered fields in the farfield or
any points inside the halfspace can be computed by using the boundary integral representation,

i.e

ui(P) = QT (P,q)Du;(a)ds(q) - (13)
S,

inwhich Tin isthe halfspace Green’s function asin [20]. Thusthe integration is taken only

over the finite surface S, since the presence of the traction-free halfspace surface is accounted
for in the halfspace Green’s function. That is, Tin (p,g) = 0, whenever gqison §, (cf.[21] ).
The scattering amplitudes can then be calculated from the scattered displacement field [23].

Also, Auld’s electromechanical reciprocity relationship [22, 23] can be used to predict

the flaw induced signal change dG. in the received signal due to the presence of aflaw. dG.

isfound to be a function of particle velocity u and stresstensor  for state “a&’ —-transmitti ng
transducer illuminating the medium with the flaw present, and for state “b”--receiving

transducer acting as a transmitter with the flaw absent. Specificaly,
1 N R . R _
dG. =—Qgu, X, - uX,]>ids (14)
4P

where P isthe incident electrical power. Sisany closed surface which contains the flaw and
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can be the flaw surface itself in the BEM calculation [23];. n isthe normal direction of the

surface S In the frequency domain
w . . -
dG. (W) =—Qqu, X, - uX,]¥ids. (15)
4P
In this paper, we present the normalized Auld voltages, as
dG (w) = qu, i, - up>t] ¥ids. (16)
S

To better model the crack tip behavior, we use the square-root built in eight-node

quadrilateral (nonconforming) elements along the crack tip [24].

N = c,4/(1+h) +c,x4/(1+h) +c,(1+h) +c,x(1+h) an
+Ccx?4/(1+h) +c,(1+h)* +cx*(1+h) +cx(1+h)
The basis functionsin equation (17) are selected such that N goes to zero at the crack

tip.

Discretization Considerations And Numerical Results

Numerical experiments with discretizations of S, over circular regions with radii 2a,
33, 53, 7a, 8aand aso over the elliptical region 2.5a x 3a, as atruncated model of S, have
been done (See Figure 3). Table 1 shows the maximum amplitudes of the crack opening
displacement (COD) and the amplitude of the AULD voltage for three different discretizations
for Kia= 1. The solid istaken to be Aluminum (C_ = 6320m/s, C,=3080m/s). Itis
observed that for low to intermediate frequency scattering from a crack, a discretization which
models 2.5ax3a of the free surface, asin Figure 3, gives convergent results. The discretization

in Figure 3 has 68 elements on the flat surface and 26 elements on the crack surface. The
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characteristic mesh size is chosen such that no element spans a distance greater than 1/6 of the
wave length of the incident wave. Smaller elements along the crack tip on the crack surface
aswell asin the vicinity of the crack edge on the halfspace surface were used in order to
capture the singularity along the crack tip.

Nonconforming elements as in Figure 4 were used because of percelved smoothness
requirements needed with HBIES [8]. The size of the coefficient matrix of the problem
increases rapidly with the number of nonconforming elements since the total number of nodes
for a discretization of M nonconforming e ementsis exactly 8*M, if only 8-node quadrilateral
elements are used, while for a discretization using conforming € ements, the number of nodes
is approximately 3*M. Thus the ability to increase M in the nonconforming case is restricted,
before memory and CPU demands become excessive. How to justify use of conforming
elements with the HBIE such that we can use more elements for the same size of the problem
istherefore afuture research area of considerable interest [19].

Figure 5 shows COD variations on the crack surface. The semi-circlein Figure 5
represents the semi-circular cross section of the crack. Both the COD variation along the
mouth of the crack and the depth of the crack are plotted in Figure 5. Since non-conforming
elements are used, the results at nodal points are extrapolated to the corner point to make the
plot. The discontinuity in two adjacent elements is thus an artifact of the non-conforming

e ements.
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Mesh Modeled area on the Elements Maximum COD | Result from AULD
Description halfspace surface at nodal points integration
on the halfspace on the crack
surface surface
48 element mesh Sax5a 36 12 0.5718 0.0290
68 element mesh 7ax7a 48 20 0.5912 0.0299
94 element mesh 3ax2.5a 68 26 0.5877 0.0296
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It can be seen that the largest amplitude of the COD occurs along the depth of the
crack and in-between the crack edge and the crack mouth. Thisis reasonable considering the
loading and the boundary conditions at the crack edge and crack mouth.

Figure 8 and Figure 9 show the magnitudes of the P-wave and S-wave farfield
scattering amplitude respectively. These are obtained through the following process: first the
farfield scattered displacement is calculated using the crack opening displacements on the
crack surface in egn. (13); then the scattered displacement is decomposed into P-wave and S-
wave components; finally the farfield P-wave and S-wave scattering amplitudes are obtained
according to the definition of scattering amplitude (See[1] or [23]). In Figure 8 and Figure 9,
the variation of the magnitudes of these scattering amplitudes, for the observation angle
0<Y £ 90 (SeeFigure 2 for the definition of Y ), isplotted. The plotsin Figure 8 and
Figure 9 can be extended to 90° £ Y < 180 because of the symmetry about the z-axis.

Y =0”and Y =180" corresponding to the observation points on the halfspace surface. The
data at those two points are not available because when calculating the field for such points on
the halfspace surface, chances are that some integration points are very close to the halfspace
surface too. In the halfspace Green’s function code we used for the present research, such a
combination of P (interior point) and g (Gaussian quadrature point on the elements on the
crack surface) will cause numerical instability. Three curvesin each figure come from the
three different discretizations, and thus different sizes of truncation for the halfspace surface.

It can be seen that the results from these three different discretizations converge very well.

The BEM was employed to investigate the halfspace surface-breaking crack problem

in [5] aso, and constant elements were used. Obvioudly thisisavery crude approximation
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because of the discontinuities inherent in assuming both the displacement and traction constant
over elements. The convergence of the numerical solution in [5] was based on the
convergence in the farfield only. We report convergence in the COD data as well asthe
farfield.

Also, here we use locally-quadratic boundary elements. Moreover, unlike [5], we
prepare our hypersingular integrals for numerical integration before rather than after
discretization of the crack into elements. Thisis more straightforward analytically and, no

doubt, this contributes to improved accuracy as well.
Partitioning Method and Library | dea

Because of the presence of the crack, we need afine mesh to get good results, but a
fine mesh easily used up the memory of the computer because of the mentioned properties of
nonconforming elements. To deal with thisissue, note first that , as with the halfspace
scattering problem in [20], the existence of two separate boundaries gives us the explicit
matrix equation asin egn. (12). Thus, again, the idea of partitioning can be applied here. A
dightly different way of doing partitioning is implemented here, than in Chapter 3, specificaly
for the halfspace surface-breaking crack problem, in order to increase the capability to solve a
larger problem on the same computer. Another algorithm is used to solve the problem in step

2 viathree sub-steps. In the first sub-step, we collocate only on the flat surface, form A;; and

A, and then find A;;' (LU decomposition of A;) and finally store all of these matrices. In

the second sub-step we collocate only on the crack surface, form A, and A, , and store
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them too. Inthefina sub-step, weread in all of the sub-matrices and solve areduced system
of equations to get the crack opening displacement Du,. Specificaly:
Sub-step 1:

Collocating on the flat surface, notice that

t(p)=0, "pl'S (18)
We get

[Afu} +[A o} ={a . (19)
{u} =-[A] [A{ow} (20)
Sub-step 2:

Collocating on the crack surface, notice that

t(p)=-t'(p), "pI S (21)
Then we have the discretized form of equation as:

[Af{u) +[Af ) ={5} (22
In this step, we form matrices [A,,] and [ Ay,] only, and store them.

Sub-step 3:

when egn.(20) is plugged into egn. (22), we have

[Azz]{ Duz} - [A21][A11]1[A12]{ Duz} = {tzl} (23)

(A (A ] T ow} ={t} (24
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In sub-step 3, al the sub-matrices are read in, anew coefficient matrix and new

known vector are calculated according to egn. (24), and the crack opening displacements Du,

is calculated.

By doing the whole problem in three sub-steps, the memory requirement is reduced
because only two sub matrixes of the whole BIE coefficient matrix are formed in each sub-
step. The memory needed is then approximately half of the requirement of the old scheme, for
agiven discretization. That means we gain the capability to deal with a mesh which is amost
twice asfine asthe finest mesh in the old scheme.

Theresult of amesh with 126 elementsin total, which is beyond the capacity of the
computer by using old scheme, is presented in Figure 6. This mesh has the same pattern of
discretization on the top surface asin Figure 3 and a finer discretization on the crack surface

(See Figure 5).

Discussion

The problem of scattering from a halfspace surface-breaking crack is solved here using
the boundary element method. The fullspace fundamenta solution is used in the formulation
of the BIE. Therefore the halfspace surface is also one of the boundary surfaces for this
problem, and consequently discretization and truncation on the halfspace surface are needed.
Asin[20], it is obeserved that the boundary solutions converges very quickly. However, the
field solution depends on the size of the truncation, if the fullspace fundamental solutionis
also used in the representation integral. Thisis consistent with the conclusions reported in
[20]. Thus, for the solutions at field points, an integral representation using the halfspace

Green's function is needed, and convergence is al'so observed.
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The Green’s function library idea may be applied to this class of problems as follows:
make an accurate discretization of the halfspace surface, obtain A}', and store this large
matrix so that it can be reused over and over again with different sizes and shapes of cracks.
As before, A" isthe main ingredient in a so-called discretized Green’s function for the crack

problem. Thisideais becoming attractive as storage and retrieval of mass-amounts of data
become easier and cheaper.

Additional research for this category of halfspace surface-breaking crack problemsis
clearly facilitated by the methods of this chapter. As stated before, the BEM as a numerical
tool, isvalid for either 2D or 3D, semi-circular cracks or for more general shapes, and cracks

which areinclined or perpendicular to the free surface.
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Figure 1 Halfspace surface breaking crack problem
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Figure 2 Halfspace surface-breaking crack
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Figure 3 A typical mesh (94 elementsin total)
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Figure4 Triangular and quadrilateral nonconforming elements
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Figure5 CODsfrom 3 different discretizations
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Figure6 COD from 126 element mesh
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Figure 7 126 element mesh
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Figure8 Farfield P-wave scattering amplitude
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Figure9 Farfield S-‘wave scattering amplitude
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SUMMARY AND CONCLUSIONS

In this work, we show the explicit relation between the BIE/BEM method of solution
and construction of the exact or region-dependent Green’ s function, for problems governed by
linear elliptic partia differential equations. The exact Green's function for the problem and the
unknown boundary variables on the boundary satisfy the same BIE but with a different known
vector. Asaconsequence, the representation integral for the BIE solution of the BVP may be
written in aform which contains a precise expression for the exact Green’s function. This
provides away to construct a numerical approximation to an exact Green’s function (a
discretized Green’s function) for problems for which an anaytical Green’'s function is not
available. Indeed, it is shown that in using the BIE method to solve agiven BVP, one hasin
fact constructed the discretized Green’s function for the domain. A number of ingredientsin
the BEM in combination may now be interpreted as a numerical approximation to the exact
Green's function.

When using BEM to obtain the discretized Green’ s function, there is no restriction on
the configuration (2D or 3D), no restriction on boundary condition and no restriction on the
physical nature of the problem aslong asit is a problem governed by linear dliptic partia
differential equations. Thus the BEM, awell developed numerical tool regarded as useful in a
particular way, can now be regarded explicitly as a vehicle to construct the discretized
Green' s function for any relevant problem.

Specifically, it is made clear that for a one-surface BV P, the inverse of the coefficient

matrix (A l) Is the key ingredient in the discretized Green’s function for the BVP. For
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problems with two surfaces as the boundary, a sub-matrix of the coefficient matrix can be
interpreted as the main ingredient of the partial Green’s function for the problem as well.
Finding the solution of a BVP using a partial Green’s function is facilitated by the partitioning
process described in Chapter 3. Indeed, suppose that one of the surfacesis larger and more
complex than the other. One can construct the inverse of the sub-matrix associated with the
large surface, and thisis usualy the key and most computationally-intensive ingredient in the
BEM solution of a BV P with two surfaces. This requires amesh, a code and expertise to get
areliable sub-matrix inverse (really an LU decomposition). The rest of the solution process
usualy involves a smple mesh on asmall smple surface, at most, plus matrix multiplications
based on formulas for numerical quadrature. This strategy is equivalent to creating alibrary
of numerical approximations to exact partial-Green's functions for repeated use. Modern
technology for storage of massive amounts of data, on CDs or on central storage, accessible
via networks, would suggest that at |east some heavy computing of this type can be 'donein
advance, the results of which could be made available to non expert users.

The library idea for hafspace problems using the freespace fundamental solution
involves forming an accurate discretization on the halfspace surface, obtaining the part of the
coefficient matrix associated with the truncated halfspace surface model, and storing the
inverse (LU decomposition) of that coefficient matrix for repeated use.

Two classes of problems are considered here as the application of BEM and
discretized Green's function library. One is the application of the BEM to the analysis of 2D
micromechanical behavior of fiber-reinforced composites. A BEM model for predicting 2D

micromechanical behavior of fiber-reinforced composites is developed based on models for
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both perfectly-bonded and imperfectly-bonded materialsin aunit cell. Theideaof alibrary of
Green's functions and the entries for the library for fiber-reinforced composites is discussed.

The other class of problems considered here is the halfspace problem. BIE
formulations using both the Stokes fundamental solution and the Lamb fundamental solution
are used and compared. Strategies, based on the BEM for halfspace e astodynamics
problems, are suggested and demonstrated to take advantage of the best features of the
fullspace Stokes solution and halfspace Lamb’s solution.  The partitioning method is
employed to explore the practicality of the library idea for halfspace problems..

Also, the scattering from a halfspace surface-breaking crack is considered in this
thesis. Although this problem also belongs to the halfspace problem category, the necessity to
use hypersingular integral equations for the crack problem brings more complexity both
theoretically and numerically. Nevertheless, the conclusions about effective strategies for both
problems are quite consistent. Specifically, when the fullspace fundamental solution is used in
the BIE formulation, the truncation on the halfspace surface has a small effect on the
boundary solution and quite a big effect on the solution at field points. So in order to get a
reliable solution at field points, the halfspace Green’s function rather than the fullspace oneis
advised to be used in the representation integral. The conclusions about using the fullspace
Green' s function and halfspace Green's function alows us to find boundary solutions using
fullspace fundamental solution with confidence, and then use the halfspace Green’ s function to
find field quantities.

After accurate boundary values are obtained, it is possible to use some asymptotic

expressions to approximate field quantities. 1n the halfspace problem, how to use the
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Rayleigh wave representation and boundary solutions from the BIE to approximate the
farfield areindicated. How to use the boundary data from the BEM to construct an
appropriate Rayleigh wave representation is an interesting topic by itself. These are all topics
for future research.

Another interesting problem is the halfspace inclusion problem. Imagine instead of a
void inside the halfspace, there exists an inhomogenety of another material inside the
halfspace. Thisisalso animportant problem from non-destructive evaluation point of view.

For the halfspace surface-breaking crack problem, the HBIE formulation allows us to
solve for the scattered fields from cracks of any shape. Future work in the area of inclined, or
curved, or multiple crack problems, with comparison with experimental data would be useful
and isin the planning stages.

Finally, it isinteresting to the author to note that the classical mathematical ideas for
BVPs, leading to Green's function representations, integral formulas, and boundary integral
equations, etc. took on a new significance in about 1965 with the fairly-wide availability of the
digital computer. 'Old mathematics developed for a different (largely analytical) purpose took
on a'new dress and a new practica significance. The BEM has embodied that significance
for years. Similarly, now in the middle 1990s, the BEM, with all of its customary need for
expertise and heavy computing demands takes on a new significance with the wide availability
of large amounts of storage and rapid data transfer. One can now, with some advance
planning, have a considerable amount of heavy computing done in advance, by experts, with
the results put in alibrary of discretized Green's functions. The fruits of this activity by

experts is thus made available to non experts, for easy anaysis and design of a variety of



127

physical systems. Thus, ‘computer modeling' viathe library idea follows along-time well-
understood trend in technological development, namely, 'a sophisticated tool is made available
for easy use, to users who need not have the knowledge, skills, resources, nor the inclination
to make the tool themselves.' Developing a user-friendly interface for different categories of

problemsis certainly an important development and this is ongoing at lowa State right now.
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APPENDIX A
ELASTIC WAVE ANALYSISSPHEROID (EWAS) LIBRARY

USER'SMANUAL

Contents

PART | GENERAL INFORMATION ABOUT EWASLIBRARY
PART Il  SOFTWARE INSTALLATION

PART Il USING THE LIBRARY

PART IV EXAMPLE / DEMONSTRATION

PART | GENERAL INFORMATION ABOUT EWAS LIBRARY

Elastic Wave Analysis Spheroid Library (EWAS LIBRARY) isalibrary of coefficient

Matrices which govern the scattered elastic field from spheroidal voids( see figure 1(a) and
1(b)). Matrices for spheroids with geometries shown in Table 1, incident wave numbers which
range from 0.5t0 5, areavailable for this preliminary version of EWAS library. With the
associated library software, a user of thislibrary can compute the elastic field from spheroidal
voids by smply typing the following information.

Type of wave

* Incident angle

* Wave number

* Geometry of the spheroid
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Results include:

*Boundary quantities (total displacement) at boundary element nodes

*The result from the AULD integral

* Scattered displacement for particular exterior points

*Farfield scattering P-wave and S-wave amplitude plots

At present, the library software has the capability to deal with plane waves (P-waves
and S-waves) and Gauss-Hermit waves, and it is designed in such away that if a user wants to
investigate some other kind of wave, the only thing necessary is to replace the subroutine
"pfield" with anew subroutine for calculating the displacement field and traction field at the
nodes.

Having done numerical experimentation and comparison, we choose a 96 element, 194
node boundary element discretization (see Figure 2(a) and 2(b)) for a nondimensiona shear
wave number k.a less than 6. A 192 element, 386 node boundary element discretization (see
Figure 3(a) and 3(b)) should be used when matrices are constructed for k.a greater than or
equal to 6. Thiswill be done in the future. This preliminary version of the EWAS ibrary is

limited to the scattering of a plane wave from a spheroid in elastic media with poisson's ratio.

PART Il SOFTWARE INSTALLATION

The EWAS library includes a set of matrix data and the associated library software.
Matrix data should be put in directory ~/lib/spheroid/Matrix. Each matrix is of the size
2716924 bytes. All the matrices are named as elexyz096nn.mat where xyz are geometric

Table 1 Present shape and wavenumber
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eccentricity kia=1 kia=2 ka=3 kia=4 ka=5
1:1:1 Yes Yes Yes Yes Yes
331 Yes Yes Yes
5:5:1 Yes Yes Yes Yes Yes

parameters for x,y,z direction respectively, nn is the wavenumber. For example,
€le33109601.mat is the matrix datafile for a 3:3:1 spheroid, and the incident wavenumber kia
is1. The software includes a makefile called "Makefile" which performs the compiling and
linking for all codes, a batch file called "run" which performs the executing of the software,
plus the following listed modules.

* cagplib.f Main program

* gplib.f Includes al the subroutines used in the underlying BEM code.

* pfield.f Includes subroutine "pfield" which is used to calculate the displacement

field and traction field at nodes. It can be replaced by a user defined

incident wave.
PART Il USING THE LIBRARY

After getting everything set on the computer, a user can follow the steps below to run
the program for a particular task. (paragraphs which are in capital form are messages which

will be on screen when the program is running)

Sep (1) Typerun



131

There will be a message and prompt on the screen as:

WELCOME TO THE ELASTIC WAVE ANALY SIS SPHEROID LIBRARY

THE LIBRARY HASBEEN SET TO RUN FOR SCATTERING FROM A SPHEROID

PLEASE TYPE IN THE KT # AT WHICH YOU WANT TO RUN THE PROGRAM

(TYPE A SINGLE DIGIT NUMBER)

Then there will be the following prompt:

PLEASE SPECIFY THE GEOMETRY PARAMETERS OF THE SPHEROID
TYPE IN PARAMETERS FOR X Y Z DIRECTIONS
(TYPE THREE DIGITS SEPARATED BY TWO COMMAS)

(e.0.1,1,1 FOR SPHERE, OR 3,3,1 FOR A 3:3:1 SPHEROID)

Then there will be the following message:

READING IN THE MATRIX FROM LIBRARY, PLEASE WAIT FOR A MOMENT.

The code is reading in a matrix from the matrix datafile, it may take a couple of minutes.

Then a user will be asked the following question:

MORE THAN 1 INCIDENT WAVE?
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(TYPEINY IFANSWERISYES, nIF ANSWER ISNO)

which means whether or not more than one incident wave case needsto be computed at one

time. If y, follow step (2d), If n, follow step(2b).

Sep (2a) The following prompt will appear:

PLEASE TYPE IN THE TOTAL NUMBER OF INCIDENT WAVES

(A SINGLE OR DOUBLE DIGIT NUMBER)

Then there will be the following prompt:

YOU ASKED TOCALCULATE___ INCIDENT WAVES.
NOW, FOR THENO.___ INCIDENT WAVE

PLEASE SPECIFY THE TYPE OF WAVE

(p IF P-WAVE, sIF SWAVE)

then follow step (3p) for p-wave, step (3s) for sswave.

Sep (2b) The following message will appear:

PLEASE SPECIFY THE TYPE OF WAVE ( pif P-WAVE, sif SWAVE)
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then follow step (3p) for p-wave, step (3s) for sswave.

Sep (3p) The user will need to enter the incident angles THETA and PHI. The definition of
incident angles and polarization unit vector are defined in Figure 1b. The following prompt

will appear:

YOU ARE USING A P-WAVE, PLEASE TYPE IN THETA AND PHI

(THETA--ANGLE BETWEEN THE INCIDENT WAVE AND X3 AXIYS)

(PHI--ANGLE BETWEEN THE PROJECTION OF INCIDENT WAVE IN X1-X2 PLANE
AND X1 AXIS)

(TYPE TWO REAL NUMBERS SEPARATED BY A COMMA)

Sep (3s) The user will be asked to type in incident angle THETA, PHI and ALPHA:

YOU ARE USING A SWAVE, PLEASE TYPE IN THETA,PHI, ALPHA
(THETA--ANGLE BETWEEN THE INCIDENT WAVE AND X3 AXIYS)

(PHI--ANGLE BETWEEN THE PROJECTION OF INCIDENT WAVE IN X1-X2 PLANE
AND X1 AXIS)

(ALPHA--POLARIZATION ANGLE FOR SHEAR WAVE)

(TYPE THREE REAL NUMBERS SEPARATED BY TWO COMMAYS)

The next prompt will be:
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READY TO GET BOUNDARY QUANTITIESAT NODES!

(TYPE go IF YOU WANT TO CONTINUE, OTHERWISE TYPE no TO STOP)

If go, the next prompt will appear:

(If no, the program will stop and be ready to run again)

FOR THE WAVENUMBER, KT= KL=
THE BOUNDARY VALUES OF DISPLACEMENT HAVE NOW BEEN DETERMINED.

(THESE COULD BE PRINTED LATER IF DESIRED)

RESULT FROM AULD INTEGRATION IS

Then the user will get the following prompt:

ARE YOU INTERESTED IN BACKSCATTERED AND SPECULAR SCATTERED

AMPLITUDE ONLY?

OR, ARE YOU INTERESTED IN OTHER DIRECTIONS ASWELL?

(TYPEa FOR BSAND SSONLY, TYPE b FOR OTHER DIRECTIONYS)

Then proceed to step (4a) or (4b) accordingly.

Sep (4a) The following message will appear:
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ISFARFIELD SUFFICIENT, IF SO TYPE IN 1000

IF NEARFIELD (SMALLER R) ISDESIRED, TYPE IN DESIRED NEARFIELD R

The farfield scattering amplitudes (or equivaent scattering amplitudes for nearfield), which

include the P-wave, Stheta-wave and Sphi-wave amplitudes will be presented on the screen.

Plots of farfield scattering amplitude at PHI incident as a function of THETA will appear for

al three waves if only one incident wave was chosen initially. Otherwise, the plots will appear

only for the last wave chosen.

Now follow step (5).

Sep (4b) The following message will appear:

TYPE IN NUMBER OF POINTS DESIRED (WHOLE NUMBER)

Then there will be the following message on screen:

FOR POINT 1, TYPE IN DESIRED R, THETA, PHI

( THREE REAL NUMBERS SEPARATED BY 2 COMMAYS)

FOR POINT 2, TYPE IN DESIRED R, THETA, PHI
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( THREE REAL NUMBERS SEPARATED BY 2 COMMAYS)

The equivaent scattering amplitudes , which include the P-wave, Stheta-wave and Sphi-wave
equivalent amplitudes will be presented on the screen. Plots of farfield scattering amplitude at
PHI incident as afunction of THETA will appear for al three waves if only one incident wave

was chosen initidly. Otherwise, the plots will appear only for the last wave chosen.

Now follow step (5).
amplitudes for those desired points will be presented on the screen.

Then follow step (5).

Sep (5) If morethan 1 incident case needs to be evaluated, there will be the following
message:
wxkwxxkkxxekkx FIN|SH COMPUTING FOR NO 1 INCIDENT WAV E** % %%k kkksxk ks

YOU ASKED TO CALCULATE INCIDENT WAVES.

NOW, FOR THE NO. INCIDENT WAVE
PLEASE SPECIFY THE TYPE OF WAVE

(p IF P-WAVE, sIF SWAVE)
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Then go back to step (3p) or (3s). The processes from step (3p) or (3s) to step (5) will need

to be repeated for each incident wave.

PART IV EXAMPLE / DEMONSTRATION

Suppose we are interested in the backscattered amplitude by a 3:3:1 spheroid when
impinged by a unit P-Wave in x3 direction, the following steps are what a user needs to do:
(1) Typerun
(2) Typel

for ka
(3) Type3,3,1
for the geometry parameter for x,y,z direction.
(4) Typen
only one incident wave
(5 Typep
represents p-wave
(6) Type0,0
THETA=0 degree, PHI=0 degree
(7) Typego
let the program do the calculations
(8) Typea
backscattered and specular scattered scattering amplitudes are desired.
(9) Type 1000

farfield is sufficient.
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Note:
1) The answers you type are case sensitive, all commands typed should be in lower case.
2) You can always press Ctrl and C key at same time to kill the process. Start it again by

typing run.

References
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Figure 1a General scattering problem: Defect in fields ( reproduced from [1] )
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Figure 1b Genera scattering problem: Wave and polarization unit vector definitions

(reproduced from [1] )
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Figure 2a
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Figure 2b
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Figure 3a
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Figure 3b
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APPENDIX B

COEFFICIENT MATRICESFOR COMPOSITE UNIT CELL

B.1. Entire-Cell Modé

v, 8 S,

ak

i/ X
I

Figure B-1 Composite entire-cell model

For an entire-cell model asin Fig. B-1, if there are N; Nodeson S;, N, nodeson S

The BIE for the matrix material 11 is egn. (5) in Chapter 2(repeated here).

c;(PVi(p)= gv.(@T;(p.q) - s(n)U,(p,q)lds(q) . ©)
S+,

Notice that boundary conditions egn(1) in Chapter 2 on BC and AD actually involve one

unknown C, the additional eqn(2) in Chapter 2 (repeated here),
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O, (x,@)dx=0 (2)

is needed,
Hence, there are in total 2* (N;+N;)+1 equations for the matrix material. The

corresponding discretized equations in matrix form is as follows:

1v(S)u
éAl Al Al AlUvs(S)] 1BTT2j
éo ai Y=g , (B.1)
80 a 0 agss)y {0 P

f C b

where v(S) is the displacement vector for nodes on S, on the matrix side, the bold form is
used here to indicate vector/Matrix. The superscript |1 represents material 11 (the matrix
materia). Similarly, vs(S,) represents the unknownsfor nodeson S,, s(S) isthetraction
vector for nodes on S, on the matrix side, C is the unknown constant in boundary condition
egn. (1) in Chapter 2. BTT2 isthe corresponding right hand side known vector for this set of
BIEs.

The first row in egn. (B.1) represents the discretized BIEs for the matrix material,
while the second is the discretized form of the additional egn. (2) in Chapter 2.

For the fiber material, the BIE isegn. (4) in Chapter 2 (repeated here)

¢; (P (p) = Au ()T, (p,a) - t (U, (p,q)lds(q) - (4)
s

The discretized form is
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u(S)u

A Al s

={0o} (B.2)

where u(S))is the displacement vector for nodes on S, on the fiber side, t(S) isthetraction
vector for nodes on S, on the fiber side. There are 2*N; equationsin Eqn(B.2).

The interface condition for nodal pointson S, are egn. (14) and egn. (15) in Chapter 2
(repeated here) depending on whether overlap occurs,

‘|V

X

EM 1t.0

?5 =[T] 5 E[T] § (14)
e

whent, >0, i.ev, -u, >0.

‘|V

X

g [1] § ﬂ[T]'tZ (15)

whent, £0, i.ev, -u £0.
Further, the interface condition for nodal point on S, can be written in asingle form

for the above two cases and also for a disbonding interface, if anew matrix B isintroduced.

Let the interface condition be written as

Tvx - uxf,'-I éBll Blz l:l‘l, txl;I (B 3)
1 Yy=6 Ol . .
vy - uyg é821 Bzzulfltyg

It can be seen that at a normal interface where t, >0,

B, = M sin*a + M, cos’a
B, =B,, =- M sina cosa + M, siha cosa (B.4)
B,, = M cos’a + M_sin’a .

At nodes where overlap occurs, i.e. t, £0,
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B, = M sin’a
B, =B, =- M,sina cosa (B.5)
B,, = M cos’a .

At nodes where disbonding take place

B, = HUGE
B, =B, =0 (B.6)
B,, = HUGE

where HUGE is a big number.

Notice also the traction interface conditions,

it, +s

At +syg {o, (B.7)

the coupled equation for the full model can be arranged as

el Al Al 0 Ald VR Ty

< oA o GvsS) 1o
0 -A, AL O 0 i

g? O B -1 0 J S(Sl)Y:: 0 ;/ (B.8)

e aus)! ! !

@ a o0 0 a, glfC Ib fop

where | istheidentity matrix. Egn (B.5) contains 2* N,+6* N;+1 unknowns and the same

number of equations.
B.2. One-Quadrant Model

For the /4 Mode asinFig. B-2,let S, =DOE OE, S, =ED, S,=ABEBCECE

the BIE for the fiber can be written as

G (PU(P = Au@T,(p.9) - t(q)U;(p,q)lds(q) (B.9)
S,+S,
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A

Figure B.2 one-quadrant model

The following discretized BIE can be obtained:

Tut(S))u
AL AL ALius)y={BTT, (B.10)
1S b

again, superscript | indicates material |.

For the matrix material, the BIE is;

i (PVi(P) = AV (@)T;(p.a)- s (@U; (p,a)lds(a) . (B.11)
$+S

The boundary condition for a quarter model for determining Y oung’s modulus is
similar to that for the entire-cell model except at two specia points, namely D and E which

are both corner point as well as interface point. The boundary condition is (D, E exclusive):
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u =1 1t,=0 on AB
t, =0 =-C BC

=0ty on (B.12)
u =0 t,=0 on CO

t, =0 u, = 0 on OA

Consider the boundary condition at D and E. It has been noticed by researchers on
BEM that for such points, specia attention is needed [1]. For example, at the special points
E, let E, denotes node E on the fiber side, and E,, denotes node E on the matrix side asin
Figure B-3.

There are twelve unknowns at E, and E,,. They are:

u(E), u(E), t(E) t,(E) t(E) t;(E)

V(B Vy(Ey), SAEy), S(Ey), S(Ey), sy(Ey)
where superscripts 1, 2, 3, 4 are used to indicate the segment numbers which are the same as

the numbersin circlesin Fig. B-3. There are also twelve equations at such points E, and
E,. They are:

1.boundary conditionsat E, and E, .

u.(E) =0 v(E,)=0 ti(E|):Oa S?,(E”):O. (B.13)
2. shear equality
t;(E)=0, si(E,)=0. (B.14)

3. interface condition

t5(E| )=- Si(Eu)

2 (B.15)
Vy(EII )- Uy(E| )= Bzzty(E| )-
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collocationsat E, and E, givesfour equations. Hence, thereisjust right number of

equations to determine all the unknowns at the corner-interface point. Similarly, the sameis
true for D.
In the implementation, both D and E are considered as interface points which have

eight unknowns at each point. At E, they are:

ux(EI)’ uy(EI)! ti(El)! tj(El)!
Vi (Ey), Vv (Ey), Sj(Eu)’ sc(E,).

The other four unknowns at E are specified as boundary conditions, i.e.

ty(E) =t3(E) =0,

. A (B.16)
S (Ej) = Sy(EII )=0.

By this arrangement, the traction discontinuity across the interface at E can be captured, i.e.

t.(E, ) si(E, ). Thistraction discontinuity has been observed when fiber and matrix are

different materias.
In the code, the four interface conditions for E are

u, (E;) = v, (Ey)

v, (E,)- U, (E)) =Byt (E))
u,(E;)=0
ty(E)=-s(E,).

(B.17)

Similarly, at D, the eight unknowns are
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u(D), u, (D), ty(D;), (D)),

; . (B.18)
Vi (Dy), vy (Dy), s(Dy), s(Dy).

Figure B-3 corner-interface point

The boundary conditions are

ty(D,) =t;(D,) =0,

8 7 (B.19)
S(Dyi) = Sy(DII ) =0.

The interface conditions are given as

V(D) - u, (D)) = BlltS(Dl) ,
u,(D,) =v, (D),

t>(r<3(D| )=- SZ(DII) ,
u,(D,)=0.

(B.20)
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Again, notice that the boundary conditions on BC involve an unknown C. Thusan
additional equation, (same as egn (2)) is needed.

G, (x,a)dx=0. )

BC

The discretized form can be arranged as.

iv(S)i
éAll Al Al Al u' vs(S,)I 1BTT2j
S 2 21
SD a, 0 a, l]| S(Sz)y %O % (821
f C b

The interface condition at any interface points beside D and E are the same as for the

entire-cell model, namely, egns (B.3--B.7). Thefina system of equations for the 1/4 model

can be arranged as.

lut(Sl)u
éA; A, 0 A, 0O 0 ALl : ;(52))' _|BTT1
0 0 Al 0 Al Al 0 ﬂt(::) 1BTT2 62
© -10 -B | oou(SZ)Y,O%" '
é)oaloooazls(sz):f()b
b c}
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