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FOREWORD

The occurrence of earthquakes poses a hazard to cities that
can lead to disaster unless appropriate engineering countermea-
sures are employed. Recent earthquake disasters with high death
tolls, in Guatemala, 1976 (20,000); Iran, 1978 (19,000); Algiers,
1980 (10,000); Ttaly, 1978 (4,000), demonstrate the great advan-
tages that could be gained by earthquake resistant construction.
To provide an adequate degree of safety at an affordable cost re-
quires a high level of expertise in earthquake engineering and
this in turn requires an extensive knowledge of the properties of
strong earthquakes and of the dynamics of structures that are
excited by ground shaking. To achieve this it is necessary for
relevant information to be published in an appropriate form.

This monograph by A. K. Chopra, on dynamics of structures,
is the second in a projected series of monographs on different as-
pects of earthquake engineering. Each monograph is authored
by an expert especially qualified to prepare an exposition of the
subject; and each monograph covers a single topic, with more
thorough treatment than would be given to it in a textbook on
earthquake engineering.

The monograph series grew out of the seminars on earthquake
engineering that were organized by the Earthquake Engineering
Research Institute and were presented in Los Angeles, San Fran-
cisco, Washington, D.C., Seattle, Chicago, Puerto Rico, St.
Louis, and Houston, and were aimed at acquainting engineers,
building officials, and members of government agencies with the
basics of earthquake engineering. In the course of these sem-
inars it became apparent that a more detailed written presenta-
tion of each seminar topic would be of value to the members of
the audience, and this led to the monograph project. The sem-
inar presented by Dr. Chopra set forth the basic elements of vi-
bration theory that must be known in order to discuss technical
features of earthquake engineering, and the following seminar
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speakers utilized this information in presenting more advanced
features of the theory. Dr. Chopra was requested to prepare a
monograph that would set forth the elements of earthquake en-
gineering vibrations (in a form suitable for practicing engineers
who had not studied earthquake engineering or vibration theory
at the university) and to indicate those aspects of earthquake en-
gineering dynamics that underlie the seismic requirements of the
building code. It should be noted, however, that this presenta-
tion of the elements of earthquake vibrations also has applica-
tions to more advanced problems, for most structures will
vibrate elastically under earthquake excitations and these vi-
brations can be decomposed into a sum of the vibrations of the
normal modes, each of which responds to earthquake ground
shaking in a manner similar to the single-degree-of-freedom
structure. The first monograph in this series, by D. E. Hudson
on reading and interpreting strong motion accelerograms, pro-
vides detailed information on the ground motions recorded dur-
ing earthquakes and thus provides information relevant to Dr.
Chopra’s monograph.

The EERI monograph project, and also the seminar series,
were funded by the National Science Foundation. EERI mem-
ber, M. S. Agbabian, served as Coordinator of the seminar
series and is also serving as Coordinator of the monograph pro-
ject. Each monograph is reviewed by the members of the Mono-
graph Committee, M. S. Agbabian, G. V. Berg, R.-W. Clough,
H. J. Degenkolb, G. W. Housner, and C. W. Pinkham, with
the objective of maintaining a high standard of presentation.

GEORGE W. HOUSNER
Chairman, Monograph Committee

Pasadena, California
December 1980



PREFACE

The study of dynamics of structures excited by ground shaking
has now been incorporated into the graduate curriculum at many
universities, and even in the undergraduate program at some
universities. Excellent textbooks are available to a student of this
subject. The formal, detailed treatment of the subject in text-
books draws upon courses in mathematics, mechanics, and
static structural analysis that are standard in university cur-
ricula. For those who wish to study the subject in depth, there
are no shortcuts. The only way to master the subject is to study
the textbook material and practice its application to example
problems, over a period of several months. However, the avail-
able textbooks may be overwhelming for the reader who is in-
terested only in the fundamentals of the dynamics of structures
excited by ground shaking and does not have the time or need
for a formal, detailed treatment and comprehensive coverage of
the subject.

This monograph is intended for such a reader. Its purpose is
to provide the non-specialist in dynamics of structures with the
basic concepts and knowledge needed to understand the re-
sponse of structures excited by ground shaking. Much of the
material treated is classical and has simply been presented with-
out the formalism and detail characteristic of textbooks. The
treatment is ol an introductory nature in that it is concerned
primarily with basic concepts and is limited almost entirely to
the simplest idealization of buildings. However, many of the
concepts and the analysis procedures presented can be generaliz-
ed so that they apply to refined idealizations of buildings and to
other classes of structures.

The selection of topics and the extent of coverage of each topic
included in this monograph has been dictated by the fact that it
is one in a projected series of monographs and by the desire to
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avoid unnecessary overlap with other monographs to come. The
work is divided into three chapters that treat the dynamics of
simple structures, the dynamics of multistory buildings, and the
relation between dynamic analysis and building code design
procedures.

AniL K. CHOPRA
University of California, Berkeley

Berkeley, California
August, 1980
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Courtesy of G. W. Housner

The six-story Imperial County Services Building was overstrained
by the Imperial Valley Earthquake of 15 October 1979. The
building is located in El Centro, California, nine kilometers from
the causative fault of this magnitude 6.5 earthquake; the peak
ground acceleration near the building was .23 g. The first-story
reinforced concrete columns were overstrained top and bottom
with partial hinging. The four columns at the right end were
shattered at ground level, which dropped the end of the building
about six inches. (See detail below.)

Courtesy of V V Bertero
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Courtesy of G. W Housner

This pergola at the Macuto-Sheraton Hotel near Caracas, Vene-
zuela was damaged by the earthquake of 29 July 1967. The mag-
nitude 6.5 event, which was centered about 15 miles from the
hotel, overstrained the steel pipe columns. The heavy concrete
deck supported by flexible steel columns is an ideal single-
degree-of-freedom system.
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1. Dynamics of Simple Structures

SIMPLEST POSSIBLE STRUCTURE

It is desirable to begin this introduction to dynamics of struec-
tures with the simplest possible structural system, so for this
purpose we consider the one-story structure idealized as shown
in Fig. 1. In this idealization we assume that the columns sup-
porting the roof are massless and the entire mass of the structure
is concentrated at the roof; the roof is rigid whereas the columns
are flexible to lateral deformation but rigid in the vertical direc-
tion. The structure is assumed to be supported on rigid ground.

It will be seen later that if the roof of this structure is displac-
ed laterally through some distance u,, then released and permit-
ted to oscillate freely, the structure will oscillate around its initial
equilibrium position. These oscillations would continue forever
with the same amplitude u, and the structure would never come
to rest, as shown in Fig. 2. This, of course, is unrealistic. Intui-
tion suggests that an actual structure in free vibration should
oscillate with ever decreasing amplitude and eventually come to

RIGID ROOF T__EL.ﬂ

/ / MASSLESS
COLUMNS

ST LSS S S S S S

Figure 1. Idealized one-story structure without damping

13



WAWAW
AVEAVER

Figure 2. Free vibration of the idealized one-story structure
without damping

DISPLACEMENT

rest. In order to incorporate this feature into the dynamics of the
structure, an energy absorbing element should be introduced.
The viscous damper included in the structure of Fig. 3 is the
most commonly used element of this type.

The basic concepts can be most conveniently developed by
studying the dynamics of the structure of Fig. 3. The results ob-
tained are applicable to simple structures such as the one-story
building shown in Fig. 4. As we shall see later, such results are
also useful in the modal analysis of multistory buildings.

EQUATIONS OF MOTION

The motion of the idealized one-story structure due to dynamic
excitation will be governed by an ordinary differential equation.
The governing equation, or equation of motion, is derived for
two types of dynamic excitation: external force and earthquake
ground motion.

14
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Figure 3.
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External Force

Figure 3a shows a linear structure of mass m, lateral stiffness
k, and viscous damping ¢ subjected to an externally applied
dynamic force p(t). This notation indicates that the force p
varies with time t. Under the influence of such a force, the roof
of the structure displaces in the lateral direction by an amount
u(t), which is also the deformation in the structure (displace-
ment of roof relative to base). Because the force p varies with
time, so does the displacement u.

The various forces acting on the mass at some instant of time
are shown in a free-body diagram of the mass (Fig. 3b). These
include the external force p(t), the elastic resisting force fg, the
damping force fp, and the inertia force fr. The elastic and
damping forces act to the left because they resist the deforma-
tion and velocity, respectively, which are taken as positive to the
right. The inertia force also acts to the left, opposite to the direc-
tion of positive acceleration. At each instant of time, the mass is
in equilibrium under the action of these forces at that time.
From the free body diagram, this condition of dynamic equi-
librium is

fi + fp + f5 = p(t) (1)

The inertia, damping, and elastic forces are next expressed in
terms of u(t) and related quantities. For a linear structure, the
elastic force is

fg = ku (2a)

where k is the lateral stiffness of the structure and u is the inter-
floor (or relative) displacement; the damping force is

fp = cu (2b)

where ¢ is the damping coefficient for the structure and u is the
interfloor (or relative) velocity. As shown in Figs. 3¢ and 3d the
elastic force is proportional to the relative displacement and the
damping force to the relative velocity. The inertia force associ-
ated with the mass m undergoing an acceleration i is

f; = mii (2¢)
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Courtesy of G. W. Housner

Figure 4. A one-story building. Most of the mass is concentrated at the roof level and the roof is essentially
rigid compared to the lateral-forec resisting system



Substitution of Egs. 2 into Eq. 1 results in
mii + cu + ku = p(t) (3)

This is the equation of motion governing the deformation u(t) of
the idealized structure of Fig. 3a subjected to an external
dynamic force p(t).

Dynamics of the system shown in Fig. 5a is studied in text-
books on mechanical vibrations (see for example Thomsen,
1965). It includes a mass m connected to a fixed support by two
elements in parallel, a spring of stiffness k, and a viscous
damper having a damping coefficient c. At any instant of time
the forces acting on the mass (Fig. Sb) satisty Eq. 1. Thus, the
equation of motion derived above for the idealized one-story
structure of Fig. 3a is also valid for the mass-spring-damper
system of Fig. Sa.

u(t)
C
T 5 |
i
| om —t+— p(t)
AN\ ——} |
k OMOMONO

(a) Mass-spring damper system

fL e — —p(t)

(b) Free-body diagram

Figure 5.
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Earthquake Ground Motion

No external dynamic force is applied to the roof in the idealiz-
ed one-story structure shown in Fig. 6a. The excitation in this
case is the earthquake-induced motion of the base of the struc-
ture, presumed to be only a horizontal component of ground mo-
tion, with displacement u,(t), velocity ,(t), and acceleration
ii,(t). Under the influence of such an excitation, the base of the
structure is displaced by an amount u,(t) if the ground is rigid,
and the structure undergoes deformation (displacement of roof
relative to base) u(t). The total displacement of the roof of the
structure is

ut) = ut) + u(t) 4)

From the free-body diagram of the mass shown in Fig. 6b, the
equation of dynamic equilibrium is

fi+fp +fs=0 (5)

(a) One-story structure sub- (b) Free-body diagram
jected to earthquake
ground motion

Figure 6.
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Eqgs. 2a and 2b still apply because the elastic and damping forces
depend only on the relative displacement and velocity, not on the
total quantities. However, the mass in this case undergoes ac-
celeration ii’, and the inertia force therefore is

fI = mii*
which with the aid of Eq. 4 can be expressed as
f; = m(i, + i) (6)

Eq. 5 after substitution of Egs. 2a, 2b, and 6 can be expressed
as

mii + ca + ku = —mii(t) (7N

This is the equation of motion governing the deformation u(t) of
the idealized structural system of Fig. 6a subjected to earth-
quake ground acceleration ii(t).

Comparison of Eqs. 3 and 7 shows that the equations of mo-
tion for the structure subjected to two excitations—ground ac-
celeration = ii(t) and external force = —mii,(t)—are one and the
same. The deformation response u(t) of the structure to ground
acceleration i (t) will be identical to the response of the structure
on fixed base due to an external force equal to mass times the
ground acceleration, acting opposite to the sense of acceleration.
As shown in Fig. 7, the ground motion can therefore be replaced
by an effective force = —mii(t).

i~ —mi.ig (t)

——>Ug(t) FIXED BASE

Figure 7. Effective earthquake force
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Problem Statement

Given the mass m, stiffness k, damping ¢, and the excitation
force p(t) or ground acceleration i, (t), a fundamental problem
in structural dynamics is to determine the deformation response
u(t) of the idealized one-story structure. Other response quan-
tities of interest, such as base shear, can subsequently be deter-
mined from the deformation response.

We will examine the response of the system in free vibration to
harmonic tforce and to earthquake ground motion. The idealized
one-story structure is a single-degree-of-freedom (SDF) system,
because its motion is governed by one differential equation (Eq.
3 or 7} containing only one unknown u(t).

FREE VIBRATION RESPONSE

Free vibration takes place when a structure vibrates under the
action of forces inherent in the system itself and in the absence
of external force or ground motion.

Undamped Structures

Consider first the idealized one-story structure of Fig. 3
without any damping. If the mass is disturbed from its equilibri-
um position by imparting to it some displacement u(0) and/or
velocity u(0), the system will vibrate (or oscillate) as shown in
Fig. 8 about the equilibrium position. This is a graphical repre-
sentation of
u(0)

w

u(t) = sin wt + u(0) cos wt (8)

which can be obtained as a solution of the equation of motion
(Eq. 3 or 7 without the damping term and without any excita-
tion, i.e., p(t) = 6,(t) = 0). The displacement vs time plot starts
with the ordinate u(0) and slope u(0).
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Let us follow one cycle of vibration of the structure in Fig.
8. The mass in its equilibrium position at 1 moves to the right
reaching the maximum (positive) displacement at 2, at which
time the displacement begins to decrease and it returns back to
its equilibrium position 3, continues moving to the left reaching
the maximum (negative) displacement at 4, and then the dis-
placement decreases again with the mass returning to its equilib-
rium position 5. One cycle of motion is described by the portion
1-2-3—-4-5 of the displacement-time curve. At point 5, the
state (displacement and velocity) of the mass is the same as it
was at point 1, and the mass is ready to begin another cycle of
vibration.

The amplitude of the simple harmonic motion, as shown in
Fig. 8, depends on the initial displacement and velocity. Because
the structure is undamped, the motion does not decay, i.e., the
displacement amplitude is the same in all vibration cycles.

The natural period of vibration T (sec) of the structure is the
time required for one cycle of free vibration. It is related to the
natural circular frequency of vibration w (rads/sec) and the
natural cyclic frequency of vibration f (cycles/sec or Hz) as
follows:

T ==w (9a)

1 _ w
T =% (9b)
The term natural is used to qualify each of the above quantities
to emphasize the fact that these are natural properties of the
structure when it is allowed to vibrate freely without any external
excitation. Because the structure is linear, these properties are
independent of the initial displacement and velocity.

If we had mathematically solved the equation of motion
governing free vibration of an undamped structure (Eq. 1 with
¢ = 0 and p(t) = 0) we would have shown that

® = Vik/m (10)

Thus the free vibration properties w, T, and f depend only on
the mass and stiffness of the structure. The stiffer of two struc-

f=
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Figure 9. Effect of damping on free vibration
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tures having the same mass will have the higher vibration fre-
quency and the shorter vibration period. Similarly, the lighter
(less mass) of two structures having the same stiffness will have
the higher vibration frequency and the shorter vibration period.

Damped Structures

Figure 9 shows the free vibration response of two one-story
structures, identical in all respects except that one is undamped
and the other includes a viscous damper. Free vibration of both
systems results from an initial displacement u(0) and velocity
u(0) imparted to the mass. The displacement-time plots for both
systems start at t = 0 with the same ordinate and slope. The
displacement amplitude of the undamped structure is the same
in all vibration cycles, but the damped structure oscillates with
amplitude decreasing with every cycle of vibration.

The natural period Tp, circular frequency wp, and cyclic fre-
quency fp of vibration of the damped structure are interrelated
as

Tp =—on (112)

b =g (11b)

in the same manner as for the undamped structure. Further-
more, the natural circular frequency and period of vibration are
influenced by damping as follows:

wp = wV 1-& (12a)
Tp = T/VTI-E (12b)

where &€ = ¢/2muw is the fraction of critical damping coefficient;
it is a dimensionless measure of the damping coefficient c for the
system. For brevity, we will refer to & as the damping ratio.
Damping has the effect of decreasing the natural circular fre-
quency of vibration and increasing the natural period of vibra-
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tion. Fig. 10 shows that for damping ratios less than 0.2, a range
which includes most structures, these effects are negligible, i.e.,
wp is approximately equal to w and hence Tp is approximately
equal to T.

The displacement amplitude decreases progressively because
of damping. As shown in Fig. 9, this decay in amplitude is ex-

1.0
., 0.8+
=)
'Z‘_c 0.6
© RANGE OF
= DAMP I NG
o 0.4 FOR MOST
< STRUCTURES

0.2

0 0.2 0.4 0608 1.0
DAMPED NATURAL FREQUENCY

D

UNDAMPED NATURAL FREQUENCY T

Figure 10. Effect of damping on natural frequency of vibration
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yential with time and it is apparent from Fig. 11 that the rate
of decay strongly depends on the damping ratio & It can be
shown that for systems with low damping, the ratio of any two
successive peaks (both positive or both negative) is

uA
=~ o2n
U1 e2nt (13)
where the symbol = represents “‘approximately equal.” The ratio
of any two successive peaks is the same, i.e. u; /u.., does not de-
pend on i. The logarithmic decrement is defined as

d= ﬂn(u,- /ui+1) (14)
Combining Eqgs. 13 and 14 leads to
= 2nk (15)

Considering response peaks which are several cycles apart, say j
cycles, it can be shown that

In(u/un) = j6 = 2jné (16)
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From this equation, the number of cycles j required to reduce
the amplitude by 50% can be obtained; this is plotted against
the damping ratio in Fig. 12.

It is implicitly assumed in the preceding presentation of free
vibration of damped systems that the damping in the structure
was less than critical damping, i.e., £ is less than 1. This as-
sumption is appropriate because most structures are lightly
damped at much less than critical damping; typically the damp-
ing ratio is in the range 0.02 to 0.10 (2 to 10 percent). If the
damping coefficient for the structure is equal to or greater than
the critical damping coefficient, i.e., § 2 1, the motion is non-
oscillatory. The mass of such a system, upon being disturbed
and then released, will simply tend to creep back to its equilibri-
um position.

Large damping is sometimes built into a system to obtain the
desired performance. For example, most of the accelerographs
that record strong earthquake ground motion are designed to
possess damping equal to 60% of critical damping (Hudson,
1979—Appendix D).

Free Vibration Tests

Because it is not possible to analytically determine the damp-
ing coefficient ¢ or damping ratio £ for a structure, there is con-
siderable interest in evaluation of damping from experiments.
The results of the preceding section provide a basis for evaluat-
ing damping from free vibration experiments; the natural period
of vibration T of the structure can also be determined from these
experiments.

Vibration period and damping of a one-story structure can be
determined by the following procedure:

1. Disturb the structure from its equilibrium position through
some displacement u, and release the structure.

2. Record the free vibration of the structure to obtain the
displacement-time plot shown in Fig. 13.

3. Measure the time required to complete one cycle of vibra-
tion to obtain the vibration period T.
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Figure 13. Measured displacement response from a free-
vibration test

4. Measure u; and u,;

5. Compute d =T!- n(u./uy,)

6. Compute & = ¢/2n

Although the procedure is applicable with j = 1, it may lead to
erroneous results for a lightly damped system, in which case two
successive peaks would have very similar ordinates. The pro-
cedure provides better results by considering two peaks that are
several cycles apart.

Accelerations can be measured more conveniently than dis-
placements. For lightly damped systems, the acceleration-time
plot would have an appearance similar to the displacement-time
plot of Fig. 13. The procedure summarized above can also be us-
ed to compute the vibration period and damping from accelera-
tion-time plots.

RESPONSE TO HARMONIC EXCITATION

The theory of steady state response of structures to harmonic ex-
citation has several applications, including forced vibration tests
on structures, accelerograph design and vibration isolation. We
shall examine selected results of this theory considering harmon-
ic forces of two types: external force of constant amplitude and
external force due to vibration generator.
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External Force of Constant Amplitude

Consider an external force varying harmonically with time:
p(t) = po sin @t, where the amplitude, or maximum value, of the
load is p,, its period is T (T = 2/w), and the circular frequency
is @ (Fig. 14). The equation of motion

mii + ct + ku = p,sin ot (17)

can be solved by standard procedures to obtain the response of
the structure in two parts: free vibration response plus steady
state response. In a damped structure, the free vibration re-
sponse decays, eventually becoming insignificant, and usually
only the steady state response is considered. Figure 14 shows
that the steady state motion occurs at the forcing frequency @

MAXIMUM FORCE pO

HARMONIC FORCE p(t) = po sin ot

/1N
\

/ \

// / \\ ///T'?E’
/

// /

/ /

o @ 7/ LopispLacement \
AMPL I TUDE u
max

HARMONIC MOTION u(t) =u sin(wt -~ 6)
max

Figure 14. Steady state motion due to harmonic force
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with a time shift /@ (where 6 is the phase angle, or the angular
phase shift). Thus the steady state response may be written as

‘? = D sin(@t — 6) (18)
in which
0., = }13(9 (19a)
D = ! (19b)
V (1-p?)? + (28B)?
8 = tan"(-lzjé% (19¢)

where f§ = @/w.
The amplitude of the dynamic displacement u,... is given by

Woor _

T D (20)
where u,, as defined in Eq. 19a is the displacement of the struc-
ture that would occur if the maximum force p, were applied as a
static force. Thus D is a dimensionless response factor, equal to
the ratio of the dynamic to the static displacement response am-
plitudes. The response factor D depends only on two para-
meters: (1) f = @/w, the ratio of the frequency of the external
force to the natural frequency of vibration of the structure; and
(2) damping ratio &. Figure 15 is a plot of Eq. 19b showing the
variation of D with f§ for several values of £&. Equations 18—20
and Fig. 15 permit several important observations.

For 3 close to zero, u,.. is about the same as u,; that is, the
dynamic effects are negligible if the forcing frequency is much
smaller than the natural frequency of the structure. For small
values of 8, the maximum displacement is controlled by the stiff-
ness of the system with little effect of mass or damping. When
B =1, D = 1/2§; that is, the response factor is inversely propor-
tional to the damping ratio if the forcing frequency is the same
as the natural frequency of the structure. For 8 close to 1, the re-
sponse factor is controlled by the damping ratio £ with negligible

33



/ust

X
M
1S3
3 L
a
1} o
a . =
o
S I
= 1 w <
= =
<C >
L =
.
w _ =
wv a o
= = wn
o o < w
a o
w F
L =
o HALF-POWER N ;
BAND WIDTH = 2¢& S
L
- <
| | | L

4

2 3
RATIO OF FORCING FR'EQUENCY TO
NATURAL FREQUENCY, B = w/w

Figure 16. Evaluation of damping from forced vibration tests

34



influence of mass or stiffness. The response factor is essentially
independent of damping and approaches zero as the forcing fre-
quency @ becomes much higher than the natural frequency w of
the structure. It can be shown that at high forcing frequencies,
the maximum displacement depends primarily on the mass.

A resonant frequency is defined as the frequency for which the
response is a maximum. At very low values of @ ( f} close to zero)
the response factor D is approximately equal to 1; it rises to a
peak near @ = w ( f3 = 1) and approaches zero as @ (or f3)
becomes large. It can be shown that the peak value of D occurs
at f = V1-2&* and the corresponding frequency is the displace-
ment resonant frequency. Thus, the relations among the dis-
placement resonant frequency, the damped natural frequency
wp, and the undamped natural frequency w are

Displacement resonant frequency = wV 1-2£?
Damped natural frequency wp = wV 1-£&*

Although the displacement resonant frequency is different from
the damped or undamped natural frequencies, the difference is
negligible for the degree of damping typical of structures—less
than 4% if the damping ratio does not exceed 20%.

Figure 15 shows that the sharpness or width of the response
curve in the vicinity of the resonant frequency depends on the
damping in the system. The width at the “half-power point” (i.e.
at a value of D = D,,., + V2) is 2£, as illustrated in Fig. 16.

External Force Due to Vibration Generator

Vibration generators (or shaking machines) have been
developed to conduct forced vibration tests on full-scale struc-
tures (Hudson, 1970). Two equal eccentric weights rotating in
opposite directions generate a unidirectional force varying
sinusoidally with time. Two weights each of mass m rotating at a
radius (eccentricity) r at a frequency @ (in rad /sec) would pro-
duce a force = 2m, r@? sin @t. The amplitude of this force is pro-
portional to &@?, in contrast to the constant amplitude of the ex-
ternal force considered in the preceding section. Thus, based on
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Courtesy of G. W. Housner

The parking structure for ambulances at the Olive View Hos-
pital was a heavy roof supported on columns. The vibrations
were so severe during the San Fernando earthquake of 9 Feb-
ruary 1971 that the columns failed.
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Eqgs. 19a and 20, the amplitude of the displacement response
u.... due to the vibration-generator force is given by the equation
2

Uy =02 @D @1
where D is as defined in Eq. 19b. The amplitude of the accelera-
tion response is

fimer = U mar =2rE°r®“D (22)

Forced Vibration Tests

The development of vibration generators has provided an ef-
fective approach to forced vibration tests on structures (Hudson,
1970). The vibration properties of a structure are determined by
varying the frequency of the vibration generators through an ap-
propriate range. The amplitude of the steady state acceleration
of the structure at each forcing frequency is measured. Fre-
quency-response cutves, in the form of acceleration amplitude
versus forcing frequency, may be plotted directly from the
measured data. However, the curves are for a force with its
amplitude proportional to the square of the forcing frequency,
and each acceleration amplitude should be divided by the square
of the corresponding frequency to obtain acceleration frequency-
response curves for constant amplitude force. If the original ac-
celerations arc divided by the forcing frequency to the fourth
power, displacement frequency-response curves for constant
amplitude force would be obtained.

The natural frequency of vibration and damping ratio for a
one-story structure (such as that of Fig. 4) can be determined
from any one of the frequency-response curves by the following
procedure:

1. Determine natural frequency of vibration as the forcing fre-
quency at resonance

2. Measure half-power band width

3. Compute damping ratio £ = half-power band width + 2
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For lightly-damped structures (damping ratio less than S%)
there is little difference among the values obtained for the
natural frequency from the different frequency-response curves;
also, essentially the same values are obtained for the damping
ratio from the various frequency-response curves.

RESPONSE TO EARTHQUAKE GROUND MOTION

Response History

The motion of the one-story structure subjected to earthquake
ground motion (Fig. 6a) is governed by Eq. 7, which can be
written as

U+ 28wt + w?u = —ii(t) (23)

The solution to this equation leads to the deformation response
u(t), which depends on (1) the characteristics of the ground ac-
celeration ii(t), (2) w = \/%, the natural circular frequency of
vibration (or equivalently the natural period of vibration T) of
the structure without damping, and (3) the damping ratio £ of
the structure.

The solution to Eq. 23 can be written as

u(t) = — wLD sﬁg(‘r) exp{—&w(t—71)] sinfwp(t—1)]dT (24)

0

whete wp = wV 1-&? is the natural circular frequency of vibra-
tion of the damped structure. For a given ground acceleration
function ii(t) and system properties w (or T = 2n /w) and &, the
Duhamel integral in Eq. 24 can provide the deformation re-
sponse history u(t). Earthquake ground accelerations vary ir-
regularly (see for example Fig. 17) to such an extent that ana-
lytical evaluation of this integral must be ruled out. Of the
various other approaches available, numerical methods imple-
mented on digital computers are most effective.

The earthquake accelerogram is digitized and appropriately
filtered to control accelerogram errors and baseline distortions,
and accelerograph transducer corrections are introduced to ob-
tain the corrected ground accelerogram (Hudson, 1979). The
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function i, (t) in Egs. 23 and 24 is then defined by the numerical
coordinates of the corrected accelerogram at time intervals
spaced closely enough to accurately define the accelerogram. In
the California Institute of Technology (Caltech) strong motion
data program, the corrected accelerograms were defined at 0.02
second time intervals (Hudson, 1979).

With the ground acceleration ii,(t) defined in this manner and
substituting numerical values for w and & of the structure in Eq.
24, the response history could be determined by numerical eval-
uation of the Duhamel integral (Newmark and Rosenblueth,
1971—Section 1.5; Clough and Penzien, 1975—Sections 7-2,
7-3). The more common approach, however, is to directly solve
the equation of motion (Eq. 23) by numerical procedures.
Various procedures have been developed for this purpose (New-
mark and Rosenblueth, 1971—Section 1.5; Clough and Penzien,
1975—Chapter 8; Hudson, 1979—page 57). When properly im-
plemented, both approaches—the numerical evaluation of the
Duhamel integral and the numerical solution of the equation of
motion—provide equivalent results.

Figure 17 shows the results of such computations for three
structures subjected to the same ground motion. The damping
ratio £ = 2% is the same for the three structures, so that the dif-
ferences in their deformation responses are associated with their
natural period of vibration. The time required for the structure
to complete a cycle of vibration in response to typical earthquake
ground motion is very close to the natural period of vibration of
the structure.

Mathematical expressions can also be obtained for other
response quantities such as relative velocity u(t) and total ac-
celeration ii'(t) (Newmark and Rosenblueth, 1971 —Section 1.4;
Hudson, 1979—pages 62-63).

Once the deformation response history u(t) has been evalu-
ated, the shear and moment at the base of the building can be
conveniently determined by introducing the concept of equi-
valent lateral force. This is an external force f, that, if applied as
a static force, would cause deformation u (Fig. 18). Thus, at any
instant of time the equivalent lateral force is

f(t) = ku(t) (25a)
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Figure 18. Equivalent lateral force
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which can be expressed in terms of the mass as
£,(t) = mw?u(t) (25b)

The base shear V, and base moment M, can be determined by
static analysis of the structure subjected to the equivalent lateral
force. Thus,

Vo(ty = (1) (26a)
M (t) = hi,(t) (26b)

where h is the height of the roof above the base. After substitu-
tion of Eq. 25b, the base shear and base moment can be express-
ed as

V,(t) = mw?u(t) (27a)
M (t) = hV(t) (27b)

Response Spectrum

The complete history of any response quantity, namely defor-
mation, velocity, acceleration, base shear, or base moment, can
be determined by the numerical procedures outlined above.
However, for design purposes, it is generally sufficient to know
only the maximum value of the response due to the earthquake.
The subscript max will generally be used to designate the max-
imum value of the response, without regard to algebraic sign.
Thus, for any response quantity r,

Fuax = max | v (t) |

A plot of the maximum value of a response quantity as a func-
tion of the natural vibration frequency of the structure, or as a
function of a quantity which is related to the frequency such as
natural period, constitutes the response spectrum for that quan-
tity. The deformation (or displacement) response spectrum 1is
such a plot of the quantity S, defined as

Sd = umux (28)

Figure 17 shows the basic concept underlying computation of the
deformation response spectrum. The time variations of deforma-
tion responses of three structures to a selected ground motion
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Courtesy of G. W. Housner
This elevated water tank survived the 15 October 1979 Imperial
Valley earthquake even though the rod bracing was stretched
beyond the yield point. When this tank is full of water and the
rods are unstretched, the structure can be analyzed as a single-
degree-of-freedom system.
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are presented. For each structure the maximum value of the
deformation, without regard to algebraic sign, during the earth-
quake is determined from its response history. The u,,... so deter-
mined for each structure provides one point on the deformation
response spectrum. Repeating such computations for a range of
values of T, while keeping the damping ratio & constant, pro-
vides the deformation response spectrum for the ground motion.
As will be seen later, the complete response spectrum includes
such spectrum curves for several values of damping.

Alternatively the maximum deformation may be expressed in
terms of the quantity S, defined as

S, = wS, (29a)
or equivalently as
S, = Z%Sd (29b)

where w is the natural circular frequency of vibration of the
structure and T is the natural vibration period of the structure.
The quantity S, has units of velocity and is related to maximum
strain energy E,... stored in the structure during the earthquake
by the equation

E... =5 mS} (30)

N |-

which can be derived as follows:

2
£ bt = s = 3 (2) = L
The pseudo-velocity response spectrum is a plot of S, as a fune-
tion of the natural frequency or period of vibration of the
system.*

For the ground motion of Fig. 17, the S, quantity correspond-
ing to any vibration period T can be determined from Eq. 29b
and the S, value for the same T, computed as illustrated in Fig.
17 and plotted in Fig. 19a. The resulting values of S, are plotted

* The prefix “pseudo” is intended to emphasize the fact that this spectrum is
not the same as the relative velocity response spectrum. The latter is a plot of
nex (the maximum value of u(t) for a SDF system during the earthquake) as a
function of the natural frequency or period of vibration of the system (Hudson,
1979—pages 55-64).
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in Fig. 19b as a function of vibration period T, for a fixed value
of damping ratio, to provide the pseudo-velocity response spec-
trum for the ground motion of Fig. 17.

Another convenient measure of the maximum deformation is
the quantity S,, defined as

S. = wS, = w?S, (31a)

or equivalently as
_2ne _[(2m)°
S. = T S, = (T) Sa (31b)

The quantity S, has units of acceleration and is related to the
maximum value of the base shear as follows:

Vo, mar = kS4 = mw?S, = mS, (32)

The maximum base shear may be written in the form

S,

VO,mar g w (33)
where w is the weight of the system and g is the acceleration of
gravity. When written in this form, S, /g may be interpreted as
the so-called base shear coefficient in building codes. The
pseudo-acceleration response spectrum is a plot of S, as a func-
tion of the natural frequency or the period of vibration of the
system.T

For the ground motion of Fig. 17, the S, value corresponding
to any value of T can be determined using Eq. 31b and the S,
value for the same T, computed as illustrated in Fig. 17 and
plotted in 19a. The resulting values of S, are plotted in Fig. 19¢
as a function of vibration period T, for a fixed value of damping
ratio, to provide the pseudo-acceleration response spectrum for
the ground motion of Fig. 17.

The deformation, pseudo-velocity, and pseudo-acceleration
response spectra for an earthquake ground motion are interre-

t The prefix “pseudo” is used to distinguish this spectrum from the absolute
acceleration response spectrum. The latter is a plot of ii.,.. (the maximum value
of G'(t) for a SDF system during the earthquake) as a function of the natural
frequency or period of vibration of the system (Hudson, 1979—pages 55-64).
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lated through Eq. 31. Any one of these spectra can be obtained
from one of the other two, and each of the three spectra contains
the same information, no more and no less. The three spectra
are simply different ways of presenting the same information on
structural response.

Because the S,, S,, and S. quantities are simply related by
powers of the vibration period T as given in Eq. 31b, the re-
sponse spectrum can be presented on a so-called tripartite or
four-way logarithmic plot from which all three spectral quan-
tities can be read. The §,—T data in the linear plot of Fig. 19b is
replotted with logarithmic scales for S, and T as shown in Fig.
20. The S, and S, values can be read from the logarithmic scales

4C0 200

0o |

in./sec

v?

S

8 1 4 & 8 i0 20

NATURAL VIBRATION PERIOD, sec

Figure 20. Four-way logarithmic plot of response spectrum. El
Centro ground motion—S00°E  component. Damping ratio
£ = 2 percent
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oriented at 45° to the period scale. This four-way plot is a com-
pact presentation of the three response spectra, for a single plot
of this form replaces the three linear plots of Fig. 19. Spectrum
curves for several damping values are usually plotted on the
same graph, as shown in Fig. 21. This is one of the standard
spectrum plots prepared by the Caitech strong motion data pro-
gram including vibration periods up to 15 sec (Hudson, 1979
—Appendices A and C).

The El Centro ground motion (S00°E component) shown in
Fig. 17 had a maximum acceleration of 0.348 g, maximum ve-
locity of 13.15 in/sec, and maximum displacement 4.29 in.
(Hudson, 1979). With this data and from the shape of the four-
way logarithmic plot of the response spectrum, it becomes
apparent that the maximum response of short-period (or high
frequency) structures is controlled by the ground acceleration,
that of long-period (or low frequency) structures by the ground
displacement, and that of intermediate-period structures by the
ground velocity (Veletsos, Newmark and Chelapati, 1965; Velet-
sos, 1969).

Standard data processing procedures were developed for the
routine treatment of accelerograms for the Caltech strong mo-
tion data program, and tables and graphs for the response spec-
tra of all past earthquake ground motions were prepared (Hud-
son, 1979%). Figure 21 is a typical graph wherein the spectrum
ordinates are plotted against natural vibration period. Alter-
natively, the data can be plotted as a function of natural cyclic
frequency f (Veletsos, Newmark and Chelapati, 1965).

The maximum response of a one-story structure with known
natural vibration period T (or circular frequency w or cyclic fre-
quency f) and damping ratio £ to earthquake ground motion, for
which the response spectrum is available, can be readily deter-

* For convenience of the reader, the notation used in this monograph for the
response spectrum quantities is compared with that in the monograph by Hud-
son (1979).

Response Spectrum This Monograph Hudson (1979)
Pseudo-Velocity S. pPSv
Deformation (or Displacement) S, SD
Pseudo-Acceleration S. PSA
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mined without computing the response history. The maximum
deformation is related to the response spectrum ordinates by the
equations:

S. _ S.
Upar = Sg = o o (34a)

T TY?
or Upur = Su’ - (2_1_[) SV - (21[) Sa (34b)

Similarly, the maximum base shear

Vo mee = kSs = mwS, = mS, (35a)

The maximum base moment is related to the maximum base
shear by the equation

MO,max = hVO,max (35b)

Corresponding to the T (or w or f) and § for the structure, any
one of the S,, S., or S, values is read from the response spec-
trum, such as the one shown in Fig. 21, and substituted in Egs.
34 and 35 to determine the maximum value of the deformation
and base shear in the structure due to the earthquake.

The deformation, pseudo-velocity, and pseudo-acceleration
response spectra are sufficient for computing the maximum
deformations and forces needed in structural design. These spec-
tra are related to other types of spectra—relative velocity
response spectrum, absolute acceleration response spectrum and
Fourier spectrum—that have been introduced in the literature
for different types of studies (Newmark and Rosenblueth, 1971
—Chapter 1; Hudson, 1979—pages 55-64).
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2. Dynamics of Multistory Buildings

SIMPLEST IDEALIZATION OF MULTISTORY BUILDINGS

It is desirable to begin the study of dynamics of multistory
buildings with their simplest possible idealization, as shown in
Fig. 22. In this idealization, we assume that the columns
supporting and interconnecting the floor systems are massless
and the entire mass of the structure is concentrated at the floor
levels; the floor systems and beams are rigid whereas the col-
umns are flexible to lateral deformation but rigid in the vertical
direction. The structure is assumed to be supported on rigid
ground. This so-called shear building model is useful in develop-
ing the basic concepts of multistory building dynamics.
However, refined idealizations are usually necessary to accurate-
ly determine the dynamic response of buildings. Such idealiza-
tions are briefly discussed later.

The masses concentrated at the tloor levels are denoted by m,,
m,, . .. my where m; = mass at the jth floor, The stiffness
properties of the linear structure arc characterized by the lateral
stiffness k,, k,, . . . ky of individual stories, where k; = lateral
stitfness of the jth story, i.e. the story shear force required to
cause unit deformation in the story (Fig. 22).

It will be convenient to first develop the equations of motion
for systems with no damping; the damping terms will subse-
quently be included.

EQUATIONS OF MOTION

The motion of the idealized multistory building due to dynamic
excitation will be governed by ordinary differential equations, as
many as the number of stories in the building. We derive the
equations of motion for two types of dynamic excitation: external
forces and ground motion. For each type of excitation it will be

51



FLOOR NO.

N
N
RIGID
I FLOORS
/ m, \/
. J b
J \ LATERAL STORY
/ STIFFNESS kj
o
2 2
M
1

DEFORMAT ION

==3—# FORCE
/

7
V4

STORY
SHEAR

k. = LATERAL STORY
J STIFFNESS

Figure 22

STORY DEFORMATION

. Idealized multistory building

52



useful to first derive the equations of motion for a two-story
building. Subsequently, these will be generalized to obtain the
equations of motion in general form, valid for a building with
any number of stories.

External Forces

Figure 23a shows a two-story building subjected to externally
applied dynamic forces p,(t) and p,(t) at the first and second
floors, respectively. Under the influence of these forces, the
structure is displaced in the lateral direction. At any instant of
time, the displaced configuration of the structure can be spec-
ified by the displacements u,(t) and u,(t) of the first and second
floors, respectively.

The various forces acting on the floor masses are shown in the
free-body diagrams of Fig. 23b. These include the external
forces p;(t), the inertia forces fy;, and the elastic resisting forces
fs,. The inertia forces act to the left, opposite to the direction of
positive acceleration. The elastic resisting forces are shown act-
ing to the left, opposite to the direction of positive deformation.
At each instant of time, each mass of the structure is in equilib-
rium under the action of these forces at that time. From the free-
body diagrams, this condition of dynamic equilibrium for the
first floor mass is

fr, + s, = p,(t) (36a)
and for the second floor mass it is

fy, + {5, = p,(D) (36b)

The inertia and elastic forces are next related to the accelera-
tions and displacements of the masses. For a linear structure,
the elastic resisting forces are related to the floor displacements
through the story stiffnesses:

fSI = f%] + fgl
=ku, + k,(u, —u,) (37a)
fs, = k,(u, — u,) (37b)
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The inertia forces associated with the masses m, and m,
undergoing accelerations i, and i,, respectively, are

fr, = m, i, (38a)
fr, = m,u, (38b)

Substitution of Eqs. 37 and 38 into Eq. 36 results in

m,ii, + ku, +k,(u; —u,)=p,(1) (39a)

m, i, + k,(u, — u,) = p,(t) (39b)
These two differential equations govern the motion defined by
displacements u,(t) and u,(t) of the two-story structural system
(Fig. 23) subjected to external dynamic forces p,(t) and p,(t).
Note that the equations are not independent; they are coupled
and in their present form they must be solved simultaneously to
determine the displacement response.

The equations of motion can be written in matrix notation as
follows:

m, 0 u1 + (k] + kz) —kz u,( _ pl(t)
0 m, i, _kz kz u, - pz(t)

Using the following notation (40)

= 4 PR ul — p1(t)
gl SR SR
_ |m 0 ~ |k, +k;) —k,
m= [0 n12:| k= [ -k, kz]

Eq. 40 can be written as

mii + ku = p(t) (41)
where uw and i are the displacement and acceleration vectors,
p(t) is the vector of external dynamic forces, m is the mass

matrix, and k the stiffness matrix for the two-story structure.
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Figure 24. Multistory building subjected to external forces

We now return to the N-story building (Fig. 24) subjected to
externally applied dynamic forces at the floor levels, with the
torce applied at the jth floor denoted by p,(t). Under the in-
fluence of these forces, the displaced configuration at any in-
stant of time can be specified by the displacements u,(t) = 1,
2, . . .N) of the floors. The N equations of motion for this struc-
ture can also be expressed in the form of Eq. 41, provided the
various terms are appropriately generalized. For the N-story
building, the displacement and external force vectors are
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u, p,(t)

92 pz(t)
u= ll, p(t) - pj(t)
;lN bN(t)

the mass matrix is

m, j
m2
m = m.
_ - my_
and the stiffness matrix is
—(k‘ + kz) —kz ]

_k2 (kz + k3) -k,
-k, (k, +k,) -k,

—ky  kn |

Equation 41 is the multistory building equivalent of Eq. 3 with
¢ = 0; each term of the equation of motion for a one-story struc-
ture is represented by a matrix in the equations of motion for the
multistory structure. The order of the matrices corresponds to
the number of stories in the building. In principle, the damping
terms can be included in Eq. 41 by analogy with the damping
term in Eq. 3, leading to

mii + ci + ku = p(t) (42)

where ¢ is the damping matrix of the structure and w the velocity
vector.
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Earthquake Ground Motion

No external dynamic forces are applied to the idealized two-
story structure shown in Fig. 25. The excitation in this case is the
earthquake induced motion at the base of the structure, presum-
ed to be only a horizontal component of ground motion with dis-
placement u,(t), velocity u,t), and acceleration ii,(t). Under the
influence of such an excitation, the base of the structure
displaces by an amount u,(t) if the ground is rigid, and the struc-
ture undergoes deformation resulting in floor displacements
u,(t) and u,(t), relative to the ground. The total displacements of
the floors are:

ui(t) = ut) + u(t) (43a)

ui(t) = uyt) + ux(t) (43b)

From the free-body diagrams for the two floor masses shown in
Fig. 25, the equations of dynamic equilibrium are

fr, + 5, =0 (44a)

fy, + 5, =0 (44b)
Equations 37 still apply because the elastic forces depend only
on the displacements relative to the ground displacement, not on
the total displacement. However, the masses m, and m, undergo
accelerations i and 3%, respectively, and the inertia forces
therefore are

f;, = m,ii} (45a)
f1, = m,i} (45b)
which with the aid of Eq.43 can be expressed as
fr, = m, (i, +d,) (46a)
fy, = m, (i, + i,) (46b)

The equations of dynamic equilibrium (Eqs. 44), after sub-
stitution of Egs. 37 and 46, can be expressed as

mi, +ku, +k,(u —uy) = —m, i (t) (47a)
mzﬁz + kz(uz - u1) = _mgug(t) (47b)

These two differential equations govern the motion, defined by
displacements u,(t) and u,(t), of the two-story structure sub-
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jected to earthquake ground motion i (t). They can be expressed
in matrix notation as

mii + ku = —m1ii,(t) (48)

with the displacement vector u, acceleration vector ii, mass
matrix m and stiffness matrix k as defined earlier for the two-
story building, and 1 is a vector of two elements both equal to
unity,

Having derived the equations of motion for a two-story
building, we now return to the N-story building subjected to
earthquake ground motion (Fig. 26). Under the influence of
such an excitation, the base of the structure displaces an amount
u,(t) if the ground is rigid, and the deformed configuration of the
structure is specified by the floor displacements u,t) (j =1,
2, ... N), relative to the base. The N equations of motion for

g

Figure 26. Multistory building subjected to earthquake ground
motion
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this structure can also be expressed in the form of Eq. 48, with
the displacement vector u, the mass matrix m, and stiffness
matrix k as defined earlier for the N-story building, and 1 is now
a vector of N elements each equal to unity. Including the damp-
ing forces in Eq. 48 in terms of the damping matrix ¢ and veloci-
ty vector u leads to

mii + ca + ku = —mlii(t) (49)

Comparison of Egs. 42 and 49 shows that the equations of mo-
tion for the structure subjected to two different excita-
tions—ground  acceleration = ii,(t) and external forces
= —m,ii,(t)—are one and the same. The deformation response
u(t) of the structure to ground acceleration ti(t) will be identical
to the response of the structure on fixed base subjected to exter-
nal forces equal to floor masses times the ground acceleration,
acting opposite to the sense of ground acceleration. As shown in
Fig. 27, the ground motion can therefore be replaced by effective
forces = —myiift), j =1, 2, ... N.

N
N —>
—»
m_; G (t)
3 -m., U t
] —>" g
—»
M
2 —»
™
1 —»
- - iig(t) FIXED BASE

Figure 27. Effective earthquake forces
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Problem Statement

Given the mass matrix m, stiffness matrix k, damping matrix
¢, and the excitation forces p(t) or ground acceleration ii(t), a
fundamental problem in structural dynamics is to determine the
displacement response u(t) of the structure. Internal forces and
other response quantities of interest can subsequently be deter-
mined from the displacement response.

Whereas the mass and stiffness matrices of a structure can be
computed from the dimensions and sizes of structural and non-
structural elements, it is impractical to compute the damping
matrix in a similar manner. Energy dissipation in a multistory
building is due to the combined effects of a number of
mechanisms such as friction at structural joints, friction be-
tween structural and non-structural elements, material damp-
ing, micro-cracking of concrete, etc. In general, it is not possible
to quantitatively define these local energy dissipating mecha-
nisms. For this reason, the damping matrix cannot be an-
alytically evaluated in a manner similar to the mass and stiff-
ness matrices. Damping in a structure is therefore usually
specified on a global basis in terms of modal damping ratios,
with values obtained from experiments on similar structures ser-
ving as a guide. Computation of damping ratios from vibration
tests on structures and from records of their motion during
earthquakes will be discussed subsequently.

We will examine the response of the structure in free vibra-
tion, to harmonic forces and to earthquake ground motion. The
idealized N-story building is a multi-degree-of-freedom (MDF)
system, having N degrees of freedom because its motion is gov-
erned by N differential equations (Eqgs. 42 or 49) containing N
unknowns u;(t), j=1,2,...N.

FREE VIBRATION RESPONSE

Undamped Structures

Consider first the multistory building of Fig. 22 without any
damping. If the structure is disturbed from its equilibrium posi-
tion by imparting to the various masses some displacements and
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velocities, defined by the vectors w(0) and (0), respectively, the
structure will oscillate about its equilibrium position. This free
vibration response can be described by the time-dependent dis-
placement vector u(t). A mathematical description of u(t) can be
obtained by solving the equations of motion (Eq. 42 or 49 with-
out the damping term and without any excitation, i.e.
p(t) = ii(t} = 0). The resulting displacements at the three floors
of a three-story building in free vibration are displayed graphi-
cally in Fig. 28. The displacement-time plot for the jth floor
starts with the ordinate u,(0) and slope 1,;(0); in this particular
casc u, = 0. Contrary to what we observed in Fig. 8 for SDF
systems, the motion of each mass of a MDF system is nor a sim-
ple harmonic motion, and we cannot define the frequency of mo-
tion. Furthermore, not only does the value of displacement at
each floor change with time, the deflected shape varies with time
(see Fig. 28), i.e. the ratios u,/u; and u,/u, vary with time.

3
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» U \f\ l\/\/\f\vf\[\/\t

DEFORMED
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Figure 28. Free vibration with arbitrary initial displacement

63



u
54321 3N

> U
3
o | TIN
2N
»u
2 N
3, 1
> u1 1 -~ ]
T, = 27r/u)1

1
DISPLACEMENTS RESPONSE HISTORY
AT SELECTED
TIMES

(a) First mode 1

E u\/ VAV
ey @2 211\ NN
2 A\ N/
e "1 AN
1 M\ NV \/

T

5 2n/m2

DISPLACEMENTS RESPONSE HISTORY
AT SELECTED
TIMES

{(b) Second mode

Figure 29. Free vibration in natural modes of vibration

64



— N w o
UlE W N -

DISPLACEMENTS RESPONSE HISTORY
AT SELECTED
TIMES

(¢) Third mode

Figure 29. (concluded) Free vibration in natural modes of vibration

65



However, the undamped, idealized multistory building would
undergo simple harmonic motion without change of deflected
shape if free vibration is initiated by appropriate distributions of
displacements and/or velocities over the height of the building.
As shown in Fig. 29, three characteristic deflected shapes exist
for an idealized three-story building, such that if it is displaced
in any one of these shapes and released, it will vibrate in simple
harmonic motion, maintaining the original deflected shape. All
floors reach their extreme displacements at the same time and
pass through the original equilibrium position at the same time.

A natural period of vibration T of the system is the time re-
quired for one cycle of the simple harmonic motion in one of
these characteristic deflected shapes, each of which is called a
natural mode of vibration of the structure. The corresponding
natural circular frequency is w, where

T =2n/w (50a)
and the natural cyclic frequency
f=1/T (50b)

Figure 29 shows the three natural periods T, (n = 1, 2, 3) of
the three-story building vibrating in its natural modes of vibra-
tion defined by vectors ¢,. The smallest of the three circular fre-
quencies is denoted as w,, the largest as w,, and the intermedi-
ate frequency as w,. Correspondingly the longest of three vibra-
tion periods is denoted as T,, the shortest as T,, and the inter-
mediate period as T,. The vector ¢, defines only the deflected
shape of the structure vibrating in its nth natural mode of vibra-
tion, i.e. it does not define the floor displacements v,, v,, and v,
but only their ratios, say v,/v, and v,/v,. The vibration mode can
be normalized by multiplying the vector ¢, by any quantity. For
example, the multiplier may be chosen so that the normalized
vector ¢, contains a unit value for the top floor. Modes may be
normalized simply for convenience. How they are normalized
does not affect the final results of dynamic response analysis.

An idealized N-story building possesses N natural circular fre-
quencies of vibration w, (n = 1, 2, . . . N) arranged in sequence
from smallest to largest, corresponding natural periods T,, and
natural modes of vibration é,. The term natural is used to
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qualify each of the above vibration quantities to emphasize the
fact that these are natural properties of the structure, depending
on its stiffness and mass, when it is allowed to vibrate freely
without any external excitation. We refer to w, as the nth
natural circular frequency of vibration, T, as the nth natural
period of vibration, and ¢, as the nth natural mode of vibration.
The quantities w,, T,, and ¢, are also referred to as the
fundamental frequency, period, and mode of vibration of the
structure.

Damped Structures

Consider an idealized multistory building with damping,
disturbed from its equilibrium position by displacing it in a
natural mode of vibration of the corresponding undamped struc-
ture, a system with stiffness and mass properties identical to the
building but with no damping. For certain forms of damping
that are reasonable models for many buildings, the initial de-
flected shape will be maintained during the free vibration and
the motion of any floor will be similar to that of the undamped
structure shown in Fig. 29; except that, because of damping, the
amplitude of motion at each floor would decrease with every cy-
cle of vibration as shown in Fig. 9. The period T, circular fre-
quency w,,, and cyclic frequency f,, of the nth mode of vibra-
tion of the damped structure are interrelated in the same man-
ner as for the undamped structure (Eq. 50). Damping influences
the natural frequencies and periods of vibration of the multistory
structure in the same manner as for the SDF system (Eq. 12).

Thus,
wnD = W l_éz (Sla)
T,=T,/V1-£ (51b)

where £, is the damping ratio for the multistory building in its
nth natural mode of vibration. However, for damping ratios less
than 0.2, a range which includes most structures, the effects of
damping on vibration frequencies are negligible (see Fig. 10). The
natural frequencies and modes of vibration of a structure can
therefore be computed under the assumption that the structure
is undamped.
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In a multistory structure undergoing free vibration in its nth
natural mode of vibration, the displacement amplitude at any
floor decreases with each vibration cycle. The rate of decay
depends on the damping ratio &, in that mode, in a manner
similar to one-story structures. Thus the ratio of two response
peaks separated by j cycles of vibration is related to the damping
ratio by Eq. 16, with appropriate change in notation.

Consequently, the damping ratio in a natural mode of vibra-
tion of a multistory building can be determined from a free
vibration test following the procedure presented earlier for one-
story structures. In such a test, the structure would be deformed
by pulling on it with a cable that is then suddenly released, thus
causing the structure to perform free vibrations about its static
equilibrium position. A difficulty in such tests is to apply the
pull and release in such a way that the structure will vibrate in
one of its natural modes of vibration. But if this difficulty can be
overcome, the damping ratio can be computed from the decay
rate of vibration amplitudes.

Computation of Natural Frequencies and Modes of Vibration

We shall see later that the vibration properties of a structure,
i.e. the natural frequencies and modes of vibration, play a cen-
tral role in the analysis of dynamic response of the structure in
its linear range of behavior. Computation of the vibration prop-
erties requires solution of the matrix equation

k¢ = w? md (52)

which in mathematical terminology defines an eigen-problem.
For a N-DOF system, such as the idealized N-story building, the
mass and stiffness matrices are of order N, Solution of the eigen-
problem leads to the N natural frequencies and modes of vibra-
tion: w,, ¢, n =1,2, ... N.

Many methods have been developed for numerical solution of
the eigen-problem and are available in textbooks (Newmark and
Rosenblueth, 1971—Chapter 4; Clough and Penzien, 1975—
Chapter 14; Bathé and Wilson, 1976—Chapters 10-12). Some ot
these methods, such as the Stodola method, can be conveniently
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implemented on a pocket calculator while others have been
developed for computer analysis of complex structures with a
large number (up to several hundred) of degrees of freedom.
Choice of the most efficient computer method depends on the
properties of mass and stiffness matrices and on the number of
natural frequencies and modes of vibration that need to be com-
puted; just the first few usually suffice for earthquake response
analysis.

RESPONSE TO HARMONIC EXCITATION

Consider external forces varying harmonically with time applied
at the various floors of the idealized multistory building. The ex-
ternal force at the jth floor p,(t) = po, sin @t, where the
amplitude or maximum value of the force is po;, its period
T = 2n /@, and circular frequency is @. Starting with the floor
masses and story stiffnesses, the mass and stiffness matrices of
the system can be formed as described earlier, and then the
natural frequencies and modes of vibration can be computed.
For specific values of damping ratios £, in the natural modes of
vibration, the dynamic response of the structure to the harmonic
forces can be determined by the mode superposition method
(Newmark and Rosenblueth, 1971—Chapter 2; Clough and Pen-
zien, 1975—Chapter 13).

The response of the structure consists of two parts: free vibra-
tion response plus steady state response. In a damped structure,
the free vibration response decays, eventually becoming in-
significant, and usually only the steady state response is con-
sidered. The frequency of the steady state response is the same
as the forcing frequency @, and the phase between the force and
the response is different from zero. The steady state displace-
ment at the jth floor can be expressed as

‘ﬁ@ = D, sin(@t — 6,) (53)

where u;,, = displacement at the jth floor of the structure if the
maximum forces po; are applied as static forces; and 6; is the
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phase angle, or the angular phase shift. The amplitude of the
dynamic displacement at the jth floor u; .. is given by

Shess =, (54)

Thus D; is a dimensionless factor, equal to the ratio of the
dynamic to the static displacement response amplitudes. The
response factor D; depends on the floor location, the forcing fre-
quency, natural frequencies and modes of vibration of the struc-
ture, and modal damping ratios.

Figure 30 shows the variation of the response factors with forc-
ing frequency for a three-story building (with 2 percent damping
ratio in each of the three modes of vibration) subjected to har-
monic force at the roof. The response factor at each floor now
displays resonance at three forcing frequencies that are essential-
ly the same (except for the slight effect of damping discussed
previously) as the natural vibration frequencies of the structure.
In contrast, the response of a one-story structure displayed only
one resonant frequency (Fig. 15).

If the natural vibration frequencies of the structure are well
separated and the structure is lightly damped, the deformed
configuration of the structure vibrating at forcing frequency
& = w,, the nth natural vibration frequency, will be essentially
the same as the shape of the nth vibration mode; furthermore
the shape of the response curve of Fig. 30 in the vicinity of each
of the resonant frequencies is similar to that of the response
curve for a one-story structure of Fig. 15 in the vicinity of its
resonant frequency. In particular, the half-power bandwidth of
the response curve (see Fig. 16) near the nth resonant frequency
is 2&,, where £, is the damping ratio for the nth natural vibration
mode. The procedure outlined earlier to determine the damping
ratio from results of forced vibration tests on one-story structures
is therefore applicable separately to each resonant frequency of a
multistory building. While there are many factors to be con-
sidered in testing of complex structures (Hudson, 1970), the
basic approach outlined above leads to the damping ratios &, for
the various modes of vibration.
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Psychiatric Day Care Center before and after the San Fernando
earthquake of 9 February 1971. Before the earthquake, this two-
story reinforced concrete building was essentially a massive sec-
ond story supported on relatively flexible first-story columns.
When subjected to very strong ground shaking the tied columns
made of lightweight concrete were subjected to large deforma-
tions and they slowly disintegrated, depositing the superstruc-

ture on the ground.
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MODAL ANALYSIS OF EARTHQUAKE RESPONSE

Given the mass, stiffness, and damping matrices of the structure
and the earthquake ground acceleration, the displacement re-
sponse of a structure can be determined by solving the equations
of motion:

mii + cu + ka = —mliit) (55)

For the idealized N-story building, this matrix equation contains
N ordinary differential equations in N unknown floor displace-
ments ult), j =1, 2, . . . N. In general, each of these equations
contains more than one unknown, and cannot be solved inde-
pendently of the other equations; therefore the set of N equa-
tions must be solved simultaneously by available computational
methods (Newmark and Rosenblueth, 1971 —Chapter 2; Clough
and Penzien, 1975—Chapter 15; Bathé and Wilson, 1976—
Chapter 8).

Simulitaneous solution of the coupled equations is avoided by
the modal method or the mode superposition method (Newmark
and Rosenblueth, 1971—Chapter 2; Clough and Penzien, 1975
—Chapter 13). This method is generally applicable to analysis of
dynamic responsc of complex structures in their linear range of
behavior, in particular to analysis of forces and deformations in
multistory buildings due to medium intensity ground shaking
causing moderatcly large but essentially linear response of the
structure. The method provides “exact’ results for the complete
history of dynamic response during the carthquake and can be
adapted to provide estimates of maximum response directly from
the earthquake response spectrum.

Response History Analysis

The modal method, or mode superposition method, is based
on the fact that, for certain forms of damping that are reason-
able models for many buildings, the response in each natural
mode of vibration can be computed independently of the others,
and the modal responses can be combined to determine the total
response. Each mode responds with its own particular pattern of
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deformation, the natural mode of vibration ¢,; with its own fre-
quency, the natural frequency of vibration w,; and with its own
modal damping, the damping ratio £,. The time-history of each
modal response can be computed by analysis of a single-degree-
of-freedom (SDF) system with properties chosen to be represen-
tative of the particular mode and the degree to which it is excited
by the earthquake motion.

The equation of motion for the nth natural vibration mode of
the idealized multistory building can be expressed as

Y. +28w,Y, + Y, = — I%ug(t) (56)

N

N
where L, = 2. m,$,, and the modal mass M, = 2. m;$2 .,
=1

J=1

This modal equation is also the equation of motion for a SDF
system (Eq. 23) with natural vibration frequency w, and damp-
ing ratio £, excited to the degree L,/M,, by the ground accelera-
tion ii,(t). Thus, by analogy with Eq. 24, the modal displacement
is

Y. (t)=— %wl fiig(r)exp[—é”wn(t—r)] sinfw, ,(t—7)]dT
R (57)

with w,, as defined in Eq. Sla.
The contribution of the nth mode to the displacement u,(t) at
the jth floor is given by

() =Y.(t) 4., j=1,2,...N. (58)
which after substitution of Eq. 57 becomes
u,,(t)y =— M % i (t)exp[—¢,w (t—1)] sin[w (t—1)]dT

"y (59)

The deformation, or drift, in story j is given by the difference of
displacements of the floors above and below:

A (t) = up(t) — u,q (1) (60)
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The internal forces, such as story shears, moments, etc.,
associated with deformations of the multistory building can be
conveniently determined by first introducing the concept of equi-
valent lateral forces. These are external forces f which, if applied
as static forces, would cause structural displacements u.* Thus,
at any instant of time the equivalent lateral forces associated
with modal displacements w,(t) are

£.(t) = ku,(t)
and after substituting Eq. 58 they become
£.() = k¢, Y, (t)

It will be useful to express these forces in terms of the mass
matrix, which can be achieved with the aid of Eq. 52. Thus

f,(t) = w2m$, Y, (t) (61a)
from which the force at the jth floor (Fig. 31) is
f.(t) = w2m;$,.Y.(t) (61b)

which after substitution of Eq. 57 becomes

f.(t) = — md,, IM_ ww— Iug(r)exp[—é.,wn(t—r)] sinfw p(t—1)]dT
nby (62)

Any internal force can be determined by static analysis of the
structure subjected to the equivalent lateral forces. For example,
the shear and moment at the base of the building are

Voo () = 2 £..(0) (63a)
Mo (t) = 2 hif,(t) (63b)

* To correspond with the earlier notation of fg for the equivalent lateral force
for a one-story structure, the force vector for a multistory building should have
been denoted by fg. Some of the subsequent equations would have become
cumbersome with this notation; hence the subscript s has been dropped.
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where h; is the height of the jth floor above the base (Fig. 31).
After substituting Eq. 62, the base shear can be expressed as

T
L w?

M. o fﬁg(r)exp[*énw,,(t—r)]sin[wnD(t—T)]dr
T (64a)

Volt) = —

and the base moment as

L, w? -
Mo (t) = — == 2> hmgd,,

M” wnD J=1

1

fﬁu(r)exp[—é L, (t—1)]sinfw, (t—1)]dT (64b)

0

The earthquake response of the structure is obtained by com-
bining the modal responses in all the modes of vibration. Thus
the displacement at the jth floor, the equivalent lateral force at
the jth floor, the base shear, and the base moment are given by

u; (t) =% u;, (t) (65a)
f; (1) = i £ (0 (65b)
Volt) = % Vi (0 (65¢)
M(t) = i M,.(1) (65d)

=1

In general, the total value of any response r(t) is the combina-
tion of the contributions of all the vibration modes to that
response quantity:

rm=me (66)
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Following the modal method, or mode superposition method,
presented above, the response of an idealized three-story
building of Fig. 32 to the ground motion shown in the same fig-
ure is determined with the aid of a computer program. A small
portion of the response results, namely the roof displacement
and base shear, is presented. Shown as a function of time during
the earthquake are the contributions of the three natural modes
of vibration to each response quantity along with the total
responses.

A very attractive feature of the modal method is that indepen-
dent analysis of SDF systems for each natural vibration can be
made. Even more significant is the fact that, in general, the re-
sponse need be determined only in the first few modes because
response to earthquakes is primarily due to the lower modes of
vibration (see for example the results of Fig. 32). Thus, only the
first few natural frequencies and modes of vibration need be
computed and the response computations need be repeated only
for the first few vibration modes.

A complete modal analysis provides the history of response of
a structure, including forces, displacements and deformations,
to a specified ground acceleration history. From the response
history the maximum response can readily be determined.
Shown in Fig. 32 are the maximum values of the roof displace-
ment u,(t) and base shear V(t) for the three-story structure sub-
jected to the selected ground motion.

Summary. The response of an idealized multistory building to
earthquake ground motion can be computed by the following
procedure:

1. Define the ground acceleration ii,(t) by the numerical
ordinates of the corrected accelerogram (Hudson, 1979)
2. Define structural properties
(a) Compute mass and stiffness matrices m and k
(b) Estimate modal damping ratios &,
3. Solve the eigen-problem of Eq. S2 to determine the natural
frequencies w, (natural periods T, = 2/w,) and modes ¢,
of vibration
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4. Compute the response in individual modes of vibration by
repeating the following steps for each mode:

(a) Compute the modal response Y,(t) by numerical evalu-
ation of the Duhamel integral in Eq. 57 or by directly
solving Eq. 56, the equation of motion for the SDF sys-
tem with properties representative of the particular
mode

(b) Compute the floor displacements from Eq. 58

(c) Compute story drifts from the floor displacements us-
ing Eq. 60

(d) Compute equivalent lateral forces from Eq. 61

(e} Compute internal forces—story shears and moments—
by static analysis of the structure subjected to the equi-
valent fateral forces; in particular, the base shear and
base moment can be calculated from Eq. 63

5. Determine the total value of response quantity r(t) from

Eq. 66 by combining the modal contributions r.(t) to the

response quantity. In particular, floor displacements, equi-

valent lateral forces, base shear, and base moment can be

determined from Eq. 65.

Response Spectrum Analysis

The complete response history is seldom needed for design of
structures; the maximum values of response to the earthquake
usually suffice. Because the response in each vibration mode can
be modeled by the response of a SDF system, the maximum
response in the mode can be directly computed from the earth-
quake response spectrum, and procedures for combining the
modal maxima to obtain estimates (but not the exact value) of
the maximum of total response are available.

Modal Response Maxima. The maximum response in the nth
natural mode of vibration can be expressed in terms of S,,, S..,
and S,,, which are the ordinates of the deformation (or displace-
ment), pseudo-velocity and pseudo-acceleration response spectra
respectively, corresponding to the vibration period T, (or vibra-
tion frequency w,) and damping ratio &, of the mode. Based on
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the definitions of these response spectra and Eqs. 57, 59, 62 and
64, the maximum values of the various response quantities are
given by Eqs. 67-72.

The maximum®* modal displacement is

Y. = San s (67)

L,
MVI
the maximum displacement at the jth floor is

L.,
M"

u/" = S(lud)ju; (68)

and the maximum deformation (or drift) in the jth story is

— L”
Ajn = M Sdu(¢_in - ¢j—1.n) (69)

The algebraic sign of L, need not be retained in Eqs. 67-69. Fur-
thermore, the algebraic sign of ¢,, (and ¢,_, ) can be dropped in
Eq. 68, but it must be retained in Eq. 69 because the relative
directions of displacements at floors above and below the story
affect the story deformation.

The maximum value of the equivalent lateral force at the jth
floor (Fig. 31) is

. L

f, = _I\T S, (70)

The maximum values of internal forces in the building—story
shear and story moments—can be determined by static analysis
of the building subjected to the maximum equivalent lateral
forces .., j = 1, 2, . . . N. In applying these forces to the struc-
ture, the direction of forces is controlled by the algebraic sign of

* The maximum value without regard to algebraic sign of response r(t) of a
one-story structurc was denoted by r.... This notation becomes cumbersome in
the equations describing the maximum responses of multistory buildings.
Therefore, in the following equations the notation 7 is used instead of r,.... In
some of these equations 7 also denotes the maximum value of r(t) including an
algebraic sign: this different usage should be apparent from its context.
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¢,.. Hence, the equivalent lateral forces for the fundamental
mode will act in the same direction, but for the second and
higher modes they will change direction as one moves up the
structure. By static analysis,the maximum values of shear and
moment at the base of the building are

Mo, = 2 hf,
J=1

After substituting Eq. 70, these equations become

_ L2

Vo, = M, Sen (71)

— L X

Mo, = 35S, > hmd,, (72)
” n=1

In these equations, displacements are related to the deformation
response spectrum and forces to the pseudo-acceleration re-
sponse spectrum. However, S,., S.., and S... are interrelated by
the equations

Si = w,S., = wiS.. (733)

or equivalently by the equations

() (=Y
Sin = (T> S, = (Tn> San (73b)

Thus the displacements and deformations (Egs. 67-69) can be
expressed also in terms of S.., or S.,, and the forces (Egs. 70-72)
in terms of S,, or S.,...

The form of Eqs. 68 and 70-72 is similar to that usually
employed in standard references. Alternatively, these equations
may be presented in a form that highlights the relationship be-
tween the modal analysis procedure and building code pro-
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cedures, a topic discussed later. Equation 70 can be rewritten as

Vo = S? w, (74)

in which g is the acceleration of gravity, and the effective weight
W, (or portion of the weight) of the building that participates in
the nth mode of vibration is given by

[Z Wj‘#.fn] 2

N
z Wj¢fn
J=1

W, = (75)

where w, = m,g is the weight at the jth floor level, ¢,, is the
modal displacement of the jth floor, and N is the total number of
floor levels. Comparison of Eqs. 75 and 33 indicates that the
total weight of a one-story building is effective in producing the
base shear, whereas only a portion of the weight of a multistory
building is effective in producing the base shear due to the nth
mode of vibration; the portion depends on the distribution of the
weight over the height and the shape of the mode. Equation 75
will give values of W, that are independent of how the modes are
normalized. It can be analytically proven that the sum of the ef-
fective weights in all vibration modes of the building is equal to
the total weight of the building; i.e.,

The maximum base moment due to the nth mode of vibration
(Eq. 72) can be rewritten as

Mo,, = h,,Vo,, (76)
where N
g‘ h,-w‘,-4>j,,
T (77)

z W,

J=1
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The base shear V,, is equal to the resultant of the equivalent
lateral forces f;,, and &, may be interpreted as the height of the
resultant force above the base. Because the equivalent lateral
force is concentrated at the top of a one-story building (Fig. 18),
the total height of the building is effective in producing the base
moment (Eq. 35b). In a multistory building, however, the equi-
valent lateral forces are located at the various floors (Fig. 31)
and the effective height £, is less than the total height of the
building; 4, depends on the distribution of the weight over the
height and the shape of the mode. Eq. 77 will give values of 4,
that are independent of how the modes are normalized.

For some of the vibration modes higher than the fundamental
mode, the effective height computed from Eq. 77 may turn out
to be negative. A negative value for &, implies that at any instant
of time, in particular at the time that modal responses attain
their maxima, the base shear Vo,(t) and base moment M, (t) due
to the nth vibration mode have opposite algebraic signs. If this
distinction is of no concern, the negative sign in %, may be
ignored.

Starting with Egs. 70 and 71, it can be shown that the lateral
force T,, at the jth floor in the nth mode of vibration is related to
the base shear in the mode by the equation

Tjn = ‘70'! —Wﬁ& (78)

N

The floor displacements, or deflections, due to the lateral forces
f.. in the nth mode are proportional to the mode shape, and the
two are related rather simply:

u;, = L 'g_Tfn (79)

w, w; -

LY
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Combination of Modal Response Maxima. We have seen that a
response r(t) of the building to earthquake ground motion is the
superposition of the contributions r,(t) of the natural modes of
vibration to the response quantity, and the maximum response
in individual modes of vibration can be determined directly from
the earthquake response spectrum. Because, in general, the
modal maxima 7, do not occur at the same time, they cannot be
directly superimposed to obtain 7, the maximum of the combin-
ed response (cf. Fig. 32). This is apparent from the earthquake
response of a three-story building presented in Fig. 32, wherein
the maximum base shear due to each mode occurs at different
time instants during the earthquake and the maximum of the
total base shear occurs at yet a different time. The direct super-
position of modal maxima, however, provides an upper bound to
the maximum of total response:

r<2 (80)
n=1

This estimate of total response is often too conservative and is
therefore not popular in design applications. More commonly,
the total response is estimated by combining the modal maxima
according to the root-sum-square formula:

F=\ 2 52 (81)

in which only the lower modes that contribute significantly to the
total response need to be included in the summation. The root-
sum-square formula is not always a conservative predictor of the
earthquake response. However, it generally provides a good es-
timate of maximum response for systems with well separated
natural periods of vibration, a property typically valid for the
building idealization considered in the preceding sections,
wherein only the lateral motion in one plane is considered. Im-
proved formulas for combining maximum of modal responses
are available for systems lacking this property (Newmark and
Rosenblueth, 1971—Chapter 10).
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Summary. The maximum response of an idealized multistory
building to earthquake ground motion can be estimated from
the response spectrum for the ground motion by the following
procedure:

1.

2.

Determine the response spectrum for the ground motion if
not already available

Define structural properties

(a) Compute mass and stiffness matrices m and k

(b) Estimate modal damping ratios &,

Solve the eigen-problem of Eq. 52 to determine the few
lower natural frequencies w, (natural periods T, = 2/ w,)
and the modes ¢, of vibration

. Compute the maximum response in individual modes of vi-

bration by repeating the following steps for the lower

modes of vibration:

(a) Corresponding to period T, and damping ratio £,, read
the ordinates S,, and S.. of the deformation (or dis-
placement) and pseudo-acceleration response spectra
of the earthquake ground motion

(b) Compute the floor displacements from Eq. 68

(c¢) Compute story drifts from the floor displacements using
Eq. 69

(d) Compute equivalent lateral forces from Eq. 70 (or from
Eq. 78 after computation of base shear by Eq. 74)

(e) Compute internal forces (story shears and story mo-
ments) by static analysis of the structure subjected to
the equivalent lateral forces; in particular, the base
shear can be computed from Eq. 71 (or Eq. 74) and
base moment from Eq. 72 (or Eq. 76)

Determine an estimate of the maximum # of any response

(displacement of a floor, deformation in a story, shear or

moment in a story, etc.) by combining the modal maxima

7. for the response quantity in accordance with Eq. 81.

Because the modal equations of motion need not be solved in
obtaining estimates of maximum response directly from the
earthquake response spectrum, the computational effort re-
quired in this approach is only a fraction of that required to ob-
tain the complete response history.
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APPROXIMATE ANALYSIS OF
EARTHQUAKE RESPONSE

The distribution of lateral displacements and forces over the
height of a building can be quite complex because a number of
natural modes of vibration may contribute significantly to these
responses. The contributions of the various vibration modes to
the lateral displacements and forces and to the base shear de-
pend on a number of factors, including shape of the earthquake
response spectrum and natural vibration periods and mode
shapes, which in turn depend on the mass and stiffness proper-
ties of the building. However, the contributions of the first, or
fundamental, mode of vibration to these responses are generally
larger than those of any other vibration mode. Thus, the best
one-mode approximation to the maximum response during the
earthquake is generally provided by Eqs. 74, 78 and 79,
specialized for n = 1.

The resulting equations are useful in approximate analysis of
forces and deformations for preliminary design of a building.
They would be especially convenient if a simple procedure were
available to compute the fundamental frequency and mode
shape of vibration, even if only approximately. Such a procedure
based on the principles of conservation of energy in free vibra-
tion of undamped structures was developed in the 19th century
by Rayleigh and is presented in standard references (Thomson,
1965—Chapter 1; Newmark and Rosenblucth, 1971 —Chapter
4; Clough and Penzien, 1975—Chapter 9).

If we assume that the vector w is an approximation to the fun-
damental natural mode of vibration ¢,, the following formula for
estimating the fundamental frequency of vibration can be deriv-
ed by Rayleigh’s method.

T
wt = B (82)
yp'my
If the assumed shape coincides with the fundamental mode, the
frequency obtained from Eq. 82 will coincide with the funda-
mental natural frequency. The effectiveness of Rayleigh’s
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method lies in the fact that a useful estimate of the fundamental
frequency can be obtained from even a relatively crude assump-
tion for the fundamental mode shape.

Rather than directly estimating the shape vector w, it is better
to define w as the deflected shape of the structure due to some
selected set of lateral forces f; (j =1, 2, ... N) at the floor
levels. If the resulting static deflections are u,, then deflected
shape y is defined by y, equal to the ratio of u; to the deflection
at some reference location, say the top of the building; i.e.
w,=u/uy,j=1,2,...N.

The formula for estimating the fundamental frequency can
then be expressed as

w? = o (83)

or directly in terms of the deflections as

N

z f.f u‘/

i gE— (84)

w" = g
N
z wu?

=1

Any reasonable distribution for f; may be selected; for example
f. = w,, the weight at floor j. The lateral forces computed from
building code formulas, presented later, are especially conve-
nient in application. These forces and resulting deflections
would have been computed in the preliminary design of the
building. They are then substituted in Eq. 84 to estimate the
fundamental frequency.

The maximum earthquake response of a building can be es-
timated from Eqs. 74, 78 and 79, specialized for n = 1, wherein
the fundamental frequency w, is replaced by w estimated from
Eq. 84 and the fundamental mode shape ¢, replaced by y, the
estimated mode shape. Thus the base shear is

Vo=—"W (85)



where

N 2
[z WJ'LP/]
J=1

W= ——— (86)
Z Wk
=1
The lateral forces are W
=V, WY (87)

N
z W WPy
i=1

and the floor displacements are

Ls ¢ (88)

w? w;

o =

where S, is the ordinate, corresponding to estimated frequency w
(or period T = 2n/w) and assumed damping ratio &, of the pseu-
do-acceleration response spectrum for the earthquake ground
motion.

Equations 85, 87, and 88 provide approximate results for the
earthquake response of a building in its fundamental natural
mode of vibration; the approximation arises from use of es-
timated instead of exact values of frequency and mode shape.
The contributions of the higher modes of vibration to building
response are neglected in these equations.

The forces and deformations induced by earthquake ground
motion in a tower or smokestack, idealized as a distributed mass
system, can also be estimated by the procedure summarized
above. For this purpose, Eqs. 83, 84, 86, 87, and 88 need to be
generalized for distributed mass systems (Clough and Penzien,
1975—Chapters 9 and 27).

REFINED IDEALIZATION OF
MULTISTORY BUILDINGS

Procedures were presented in the preceding sections for earth-
quake response analysis of the simplest idealization of multistory
buildings. Rotation of beam-column joints and axial deforma-
tions in columns and in the floor systems were not permitted in
this so-called shear building model; and only lateral motion in
the direction of the ground motion was considered. The stiffness

91



matrix for such an idealized structure was readily formulated
from the story stiffnesses. As a result, the shear-building ideal-
ization was especially convenient in presenting an introduction
to the dynamics of multi-degree-of-freedom systems. However,
refined idealizations would generally be necessary to accurately
determine the dynamic response of buildings.

Joint Rotations and Column Axial-Deformations

The effect of joint rotations and axial deformations in columns
can be included in the analysis by considering two degrees-of-
freedom (DF), joint rotation and vertical displacement, at each
beam-column joint; and one DF, the lateral displacement, at
each floor (Fig. 33). The floor systems are usually very stiff in
their own plane so that it is reasonable to assume that all joints
at any floor level undergo the same lateral displacement. Such a
refined idealization for a 20-story building frame with five col-
umn lines would include 220 DF in contrast to 20 DF in a shear-
building idealization. The effects of joint rotations on the first
two vibration modes of a S-story building are shown in Fig. 34.

> 2 DF/JOINT

/
hodl

; ~= 1 DF/FLOOR

Figure 33. Degrees of freedom (DF) in a refined idealization of
multistory buildings
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Courtesy of V. V. Bertero
The 1200 L Street apartment building in Anchorage was dam-
aged during the Alaska earthquake of 27 March 1964. The
failure of the interior spandrel beams and also the failure of one
of the shear walls can be seen on the south side of this 14-story
apartment building. Extensive cracking of the walls was repaired
with gunite concrete and with epoxy cement. The building was
reoccupied a few years after the earthquake.
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Figure 34. Influence of joint rotations on natural modes of
vibration
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Starting with the stiffness matrices of structural elements, the
complete stiffness matrix for such a refined idealization can be
determined by matrix structural analysis procedures. Because
the effective earthquake forces act only in the lateral direction
and the inertia effects associated with vertical and rotational mo-
tions of the joints are generally unimportant in the dynamic
response of multistory buildings, the corresponding DF need not
be included in the equations of motion. The vertical and rota-
tional DF can be climinated from the complete stiffness matrix,
resulting in the lateral stiffress matrix of the building frame hav-
ing one DF per story. This stiffness matrix is of the same size as
that of a shear-building model but it contains the effects of ver-
tical and rotational DF; in general, it is a full matrix, in contrast
to the banded stiffness matrix of the shear-building idealization.
When lateral stiffness matrices have been derived for each frame
acting parallel with a given axis of the building, they may be
superposed directly to obtain the total stiffness matrix k for the
building in this direction.

The equations of motion for a multistory building including
the effects of vertical and rotational DF can also be expressed as
Eq. 49 provided k is replaced by k. With this change, the pro-
cedures summarized in the section ““Modal Analysis of Earth-
quake Response™ are also applicable to earthquake response
analysis of refined idealizations of multistory buildings, except
that the internal forces of computational step 4e in the summary
are now the forces in structural elements, beams and columns,
instead of story shears and moments.

Lateral-Torsional Coupling

In dynamic analysis of building response to earthquake
ground motion, it is usual to consider the above mentioned
planar models of the structure in each of two orthogonal direc-
tions and to independently analyze the response of each model to
the in-plane horizontal component of ground motion. Analysis
on this basis is strictly valid only for buildings with coincident
centers of mass and resistance.

The lateral, or translational, and torsional motions of the
structure are coupled if the centers of mass and resistance do not
coincide. The usual approach may be reasonable even for such
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torsionally-coupled buildings if the eccentricities of the centers
of story resistance with respect to the centers of floor mass are
small and the natural frequencies of the lower vibration modes
are well separated. It is obvious that if the eccentricities are
large, lateral and torsional motions will be strongly coupled.
Less obvious perhaps but clearly displayed by forced vibration
tests (Jennings, Matthiesen and Hoerner, 1972) is the strong
coupling between lateral and torsional motions of buildings with
close natural frequencies and nearly coincident centers of mass
and resistance.

For such buildings, independent analyses for the two lateral
directions may not suffice, and at least three DF per floor— two
translational motions and one torsional—should be included in
the idealization. The three DF for a one-story system are
shown in Fig. 35. The modal method described earlier, with ap-
propriate generalization of the concepts involved, can be applied
to analysis of such buildings (Kan and Chopra, 1977). The mass
and stiffness matrices now include the translational and tor-
sional DF of each floor. Because most of the natural modes of
vibration will show a combination of translational and torsional
motions, it is necessary in determining the modal response to ac-
count for the facts that a given mode might be excited by both
horizontal components of ground motion and that modes that
are primarily torsional can be excited by translational com-
ponents of ground motion. Because the natural vibration fre-
quencies of a building with coupled lateral-torsional motions can
be close to each other, the modal maxima should not be combin-
ed in accordance with the root-sum-square formula (Eq. 81); in-
stead a more general formula should be employed (Newmark
and Rosenblueth, 1971—Chapter 10).

Torsional motions may occur even in buildings with coincident
centers of mass and resistance due to various causes, including
wave propagation effects of horizontal ground motion and rota-
tional component of ground motions about a vertical axis.
Buildings with nominally coincident centers of mass and resis-
tance may also respond in torsion because of various factors that
cannot be explicitly considered in the analysis. These factors
include unforeseeable differences between computed and actual
stiffnesses, yield strengths, and dead-load masses; unforesee-
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Figure 35. One-story building with eccentric centers of mass
and resistance
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able, unfavorable distributions of live load masses; and differ-
ences in coupling of the structural foundation with the suppor-
ting soil or rock. The so-called accidental torsion in building
codes is intended to cover the effects of these causes and factors
in design of buildings.

Additional Comment

In its most general form, the modal method is applicable to
linear response analysis of arbitrary three-dimensional structural
systems. Effects of floor-diaphragm fiexibility, beam-column
joint flexibility, etc., can be considered by including the ap-
propriate DF in the building idealization.

BUILDING IDEALIZATION
AND RECORDED EARTHQUAKE RESPONSE

With the development of earthquake response analysis pro-
cedures and the availability of modern digital computers, it is
now possible to determine the response of even a refined
idealization (mathematical model) of any building to prescribed
ground motion. How well the computed response agrees with the
response of the building during an actual earthquake depends
primarily on the quality of the mathematical model. Responses
of modern multistory buildings to recent earthquake motions
have been recorded, including responses of more than 50
buildings recorded during the 1971 San Fernando carthquake.
Most of these buildings were located in the city of Los Angeles
and had accelerographs in the basement, at mid-height, and on
the roof in accordance with building code requirements. These
recorded motions permitted studies of modeling and analysis
procedures, of the relationships between building response and
damage, and of other important aspects of the response of struc-
tures to earthquake motions.

A brief description of six multistory buildings and their mea-
sured responses during the San Fernando earthquake is avail-
able in a convenient form (Foutch, Housner and Jennings,
1975). Dynaniic properties, such as natural periods of vibration
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Figure 36. Kajima International Building

Courtesy of G. W. Housner



and damping ratios, of these six buildings and others were deter-
mined from the measured responses during the earthquake (Mc-
Verry, 1979). As a sample of the results contained in these two
references, the measured responses of one of these buildings
(Kajima International building) is presented here, along with its
dynamic properties estimated from the responses. The descrip-
tion of the building in the following two paragraphs is taken
from Foutch, Housner and Jennings (1975).

The Kajima International building, designed in 1966, is lo-
cated in downtown Los Angeles approximately 21 miles south of
the center of the San Fernando earthquake. The 15-story office
tower is a steel frame building that measures 66 x 96 fcet in plan
and stands 202 feet above grade. The basement, 1st and 2nd
floor areas are used primarily for retail and banking space. The
entire 15th floor and the portion of the roof enclosed by the pent-
house contain mechanical equipment. Fig. 36 is a picture of the
northwest clevation of the Kajima International building. The
building sustained no significant damage during the San Fer-
nando earthquake,

A three-dimensional moment-resisting steel frame provides
the resistance to both lateral and vertical loads. Four moment-
resisting frames are provided in both the transverse and longitu-
dinal directions. Lightweight reinforced concrete floor slabs act
as rigid diaphragms in the horizontal direction. Concrete encase-
ment ot the exterior columns of the frame, designed for fire pro-
tection, provide additional stiffness. Precast concrete spandrels,
6 feet deep, are used as part of the exterior facia of the building,
and they also provide additional stiffness at low levels of vibra-
tion. The foundation system consists of spread footings combin-
ed in pairs. Although a seismic gap was provided between the
main tower and an adjacent three-story parking facility, ap-
parently impacting occurred during the earthquake. Figs. 37a
and 37b are schematic drawings of a transverse section and a
floor plan of the building.

Strong-motion accelerographs were installed on the basement,
8th floor, and roof of the building. Three components of acceler-
ation (two horizontal and one vertical) were recorded by these
accelerographs. Plots of the N36E component of these accelera-
tions are presented in Fig. 38 and the N54W component in Fig.
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39, These accelerations represent the total motion of the
building, which is composed of the relative motions of the
building with respect to the ground plus the motion of the
ground. The total displacement of the building and the displace-
ment of the ground were obtained by twice-integrating the
rccorded accelerations. The horizontal components of the
relative displacements of the roof and 8th floor, determined by
subtracting the ground displacement from the total displace-
ment at those floors of the building, are presented in Figs. 40
and 41.

It can be seen that the horizontal accelerations at the upper
levels of the buildings are larger and their time-variation is dit-
ferent from the ground (basement) accelerations. It is clearly
seen in the horizontal displacement plots that the relative dis-
placements at the floors are primarily due to the fundamental
mode of vibration. The fundamental period in both directions
was approximately 2.9 seconds during the earthquake.

Accurate values of the first three natural periods of vibration
in the two horizontal directions determined by system identifica-
tion procedures are presented in Table 1. Also included is the
fundamental vibration period in each horizontal direction deter-
mined from ambient tests before and after the earthquake. The
period of vibration 2.84 seconds in the N36E direction, deter-
mined from the earthquake response, is much longer than the
period of 1.32 seconds found in the pre-earthquake ambient vi-
bration study. The loss of stiffness indicated by this period
change is believed to be the result of cracking and other types of
degradation of the so-called non-structural elements during the
higher level earthquake responses.

A nonlinear structural idealization (mathematical model) hav-
ing stiffness properties varying with deformation level would be
necessary to reproduce this period change and to describe the
behavior of a building through the complete range of deforma-
tion amplitudes. However, if the building experiences only little
or no structural damage, good estimates of its response during
the earthquake can usually be computed from an equivalent
linear model. Only those structural and non-structural elements
that are effective at the amplitudes of motion expected during
the earthquake should be included in this structural idealiza-
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TABLE 1. MODAL PROPERTIES OF THE
KAJIMA INTERNATIONAL BUILDING

(Adapted from McVerry, 1979)

Vibration Periods (seconds) Damping ratios (%)

Source
T, T, T, & &, &,

N36°E DIRECTION

Ambient Tests

Pre-earthquake 1.32
Post-earthquake 2.10
San Fernando Earthquake 2.84 0.89 0.57 3.8 8.1

NS4°W DIRECTION

Ambient Tests

Pre-earthquake 1.88
Post-earthquake 2,15
San Fernando Earthquake 2.77 0.88 0.51 3.6 5.6 4.7
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tion. The fundamental period after the earthquake was mea-
sured from an ambient test to be 2.10 seconds, which indicates
that all of the stiffness lost during the earthquake was not
recovered. A similar phenomenon was observed for the N54W
motions.

The damping ratios determined from the measured earth-
quake responses by system identification procedures were 4 to 8
percent for the first two modes in the N36E direction and 3 to 5
percent for the NS4W modes.

Using the periods and damping ratios determined from mea-
sured responses during the San Fernando earthquake and
system identification procedures, the response of Kajima Inter-
national building to the basement motion as input can be calcu-
lated by modal analysis. The agreement between computed and
measured responses at the 8th floor and roof was essentially
perfect (McVerry, 1979).

The usual situation, however, is different in that these vibra-
tion periods and mode shapes are computed from an idealization
of the structure. For example, the fundamental vibration periods
of the bare frame of the Kajima International building were
computed to be 3.31 seconds and 3.19 seconds in the N36E and
NS4W directions, respectively (McVerry, 1979). These periods
are longer than those obtained from measured earthquake re-
sponse, indicating that the structural and non-structural
elements that contribute to the mass and stiffness of the struc-
ture at the amplitudes of motion anticipated during an earth-
quake should be included in the structural idealization. Similar-
ly, selection of damping values for a building should be based on
available data from recorded earthquake response of similar
buildings. Such data for several buildings is summarized in a
convenient form by McVerry (1979).

Numerous analyses of recorded motions during earthquakes
have shown that the use of modal analysis with viscously-
damped single-degree-of-freedom systems describing the re-
sponse of vibration modes is an accurate approximation for anal-
ysis of linear response. The accuracy of the results depends on
how well the computed vibration periods and mode shapes and
estimated damping ratios represent the properties of the struc-
ture during the earthquake.
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3. Dynamic Analysis and
Building Code Procedures

EARTHQUAKE FORCES IN THE
UNIFORM BUILDING CODE

The key elements of the earthquake regulations in the Uniform
Building Code (UBC) for design of buildings are the formulas
for base shear and distribution of lateral forces over the height of
the building (UBC, 1979). The design base shear is to be deter-
mined from the formula:

V=ZIKCSW (89)
where
Z = Numerical coefficient depending on the seismic zone of

the country; for seismic zones 1, 2, 3, and 4, Z = 3/16,
3/8, 3/4, and 1, respectively.

| e
Il

Occupancy Importance Factor
1.5 for essential facilities
1.25 for any building used primarily for assembly of
more than 300 persons in one room
1.0 for all other facilities

K = 0.67 to 1.33, depending on the structural system

C= ——1\/—T——, but need not exceed 0.12

15

T = Fundamental natural period of vibration of the building
in secs

S =1.0 to 1.5, depending on the values of T and T, the
characteristic period of the site

W= Total dead load and appropriate portions of live load
and snow load
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The distribution of lateral forces over the height of the
building is to be determined from the base shear in accordance
with Eqs. 90-92. The base shear is the summation of the lateral
forces:

V=F +2F (90)

The additional force F, at the top of the building depends on the
vibration period T as follows:

0 T<0.7
F, = 4007TV 0.7<T<3.6 (91)
0.25 V T 23.6

The remaining portion of the base shear shall be distributed over
the height of the structure to obtain the lateral forces at the
various floor levels; the force at the jth floor is

F, = (V-F,) — (92)

N
Z Wihr
=1

where w; is the weight at the ith floor and h; is the height of the
ith floor above the base.

The design shears and moments for the various stories of the
building are determined from static analysis of the building sub-
jected to the lateral forces computed from Eqs. 89 to 92.

Formerly many building codes and design recommendations,
including the 1967 edition of the UBC, allowed large reduction
in story moments relative to their values computed from lateral
forces by statics. These reductions appeared to be excessive in
light of damage to buildings during the 1967 Caracas earth-
quake, where a number of column failures were primarily due to
the effects of overturning moment. In the 1973 and subsequent
editions of the UBC, no reduction was allowed. However, no re-
duction at all is unjustified in light of the results of dynamic
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analysis. Moderate reduction, up to 20%, was therefore permit-
ted in the Applied Technology Council recommendations (ATC,
1978).

COMPARISON OF CODE FORCES
AND DYNAMIC ANALYSIS

The earthquake forces specitied in the UBC are compared in this
section with the equivalent lateral forces from modal analysis of
earthquake response of buildings. In order to facilitate this com-
parison, the UBC formulas are rewritten in the notation em-
ployed in presenting modal analysis procedures. Thus the base
shear of Eq. 89 becomes

Vi=ZIKCSW (93)

where, for purposes of the comparison that follows, it is ap-
propriate to assume Z =1, I = 1, and S = 1 leading to

Vo=KCW (94)

With change of notation, the lateral force at the jth floor (Eq.
92) can be expressed as

T =(V,-1) —J—-L (95)

and the additional force f, at the top of the building (Eq. 91) as

0 ) T <0.7
f.= {0.07T V, 0.7<T<3.6 (96)
0.25 V, T > 3.6

The lateral force at the top of the building is the sum of the force
for j = N from Eq. 95 and f, of Eq. 96. The lateral forces and
base shear are shown in Fig. 42.

Considering only the dynamic response in the fundamental
mode of vibration, the maximum base shear and equivalent lat-
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Figure 42. Earthquake forces in the Uniform Building Code for
design of buildings

eral forces for a building are provided by Eqs. 74, 75, and 78
specialized for n = 1, resulting in the following equations:

Vo = Suy W, 97)

(98)

fn = Vm _EA& (99



Equations 95 and 99 will become identical if V,,, the contribu-
tion of the fundamental mode to the base shear, is replaced by
V,—f,, the portion of the base shear in the code formula (Eq. 95),
and if the floor displacements in the fundamental vibration
mode vary linearly with height (Fig. 43). Thus, except for the ad-
ditional force f, assigned to the top of the building, the lateral
forces in the code formula are distributed under the assumption
of linearly varying floor displacements in the fundamental mode
shape.

Assignment of an additional force f, at the top of the building
is intended by the code to account for the contributions of the
higher vibration modes to building response. The influence of vi-
bration modes higher than the fundamental mode is small in
earthquake response of short-period buildings, and the funda-
mental vibration mode of many buildings with regular distribu-
tion of stiffness and mass over height departs little from a
straight line. Equation 95 with f, = 0 is intended to approximate
the lateral force distribution in short-period buildings (funda-

J
H \ =
¢ hJ./H

J

Figure 43. Floor displacements in fundamental mode of vibra-
tion increasing linearly with height
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mental period of 0.7 sec or less). Although earthquake response
of long-period buildings is primarily due to the fundamental
mode of vibration, the influence of higher modes can be signiti-
cant in the forces in the upper part of buildings. Assigning 25%
of the base shear as an extra force at the top of the building and
distributing the remaining 75% of the base shear in accordance
with Eq. 95 are intended by the code to approximate the lateral
force distribution in long-period buildings (fundamental period
exceeding 3.6 secs). In the intermediate period range, linear in-
crease of f, with period T provides for increasing forces in the up-
per parts of the building to account for the increasing contribu-
tions of higher vibration modes as period increases.

It the effective weight W, for the fundamental mode is replac-
ed with the total weight W, Eq. 97 will become identical with
Eq. 94 provided the same value of the fundamental period is
used to determine S., and C and the base shear coefficients
S./g and KC in the two equations have the same values.
However, W, will always be smaller than W, with typical values
for W, between 60 to 90% of W, depending on the distribution
of weight over the height of the building and the shape of the
first vibration mode. Eq. 94 would therefore provide a value for
the base shear that is larger than the first mode value, even if
S.i/g and KC are the same; thus it indirectly and approximately
accounts for the contributions of the higher modes of vibration
to the base shear.

The base shear coefficient in the fundamental mode response
(Eq. 97) is the pseudo-acceleration response spectrum, nor-
malized with respect to acceleration of gravity, for the ground
motion. In the code formula the base shear coefficient is the pro-
duct of K and C. The two base shear coefficients are compared
in Fig. 44. The pseudo-acceleration response spectrum pre-
sented is a smooth spectrum representative of ground motions
similar in intensity and frequency characteristics to the El Cen-
tro ground motion (Fig. 17). The code base shear coefficient is
presented as a function of fundamental period for three values of
K =0.67, 1.0 and 1.33. While the two base shear coefficients,
S.i/g and KC, vary similarly with vibration period, they differ
greatly in value. Depending on the value of K and T, response
spectrum ordinates are 3 to 6 times larger than the code cocffi-
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BASE SHEAR COEFFICIENTS:

NATURAL VIBRATION PERIOD, T, sec

Figure 44. Comparison of base shear coefficients from (1)
response spectrum for elastic systems (damping ratio = 5%) and
(2) Uniform Building Code
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W. Housner

During the 9 February 1971 San Fernando earthquake the new
Olive View Hospital building was severely damaged. In response
to very strong ground shaking, the building vibrated essentially
as a large mass on relatively flexible columns. The spirally rein-
forced concrete columns were deformed far beyond the rc-
quirements of the building code.

Courtesy of G.
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Figure 45. Base shear coefficients for 10% damped elasto-

plastic systems subjected to El Centro (S00°E component)

ground motion (after Veletsos and Newmark, 1960) compared
with code values
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cient. Thus, buildings designed to resist the code forces at work-
ing stress levels would experience yield stresses and deform
beyond their linear range of behavior when subjected to intense
ground shaking.

The important effects of yielding on the earthquake response
of buildings can be readily displayed by considering the behavior
of one-story structures with elastoplastic force-deformation rela-
tion, Response spectra showing the base shear coetficient
(= base shear =+ weight) as a function of natural vibration period
(corresponding to stiffness in the linear range) for such systems
are shown in Fig. 45 for values of ductility factor of 1.0 (cor-
responding to a linearly elastic structure), 1.25, 2 and 4 (Veletsos
and Newmark, 1960). The effect of yielding is to reduce the
value of the base shear coefficient below that for elastic be-
havior. Even a relatively small amount of yielding produces ap-
preciable reductions in the value of the base shear coefficient.

Also included in Fig. 45 is the base shear coefficient in the
UBC formula (with K = 1). It is apparent that the force re-
quirements of the building code are adequate provided the struc-
ture is capable of developing enough ductility. For satisfactory
performance during the ground motion considered in Fig. 45,
long-period structures should have a ductility capacity of
approximately 4, and short-period structures should possess
even larger ductility capacity.

MODAL ANALYSIS BASED ON
INELASTIC DESIGN SPECTRA

As seen in the preceding section, buildings designed for code
forces are expected to deform significantly beyond the yield limit
during moderate to very intense ground shaking. Strictly speak-
ing, the modal method, which is applicable only to analysis of
linear response, therefore cannot be used for calculation of the
design forces for buildings. However, it is believed that for many
buildings satisfactory approximations to the design forces and
deformations can be obtained from the modal method by using
the design spectrum for inelastic systems instead of the elastic
response spectrum.
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Based on results of the type presented in Fig. 45, procedures
have been developed for constructing an inelastic design spec-
trum from the elastic design spectrum and the ductility factor
considered allowable in the design of the building (Veletsos and
Newmark, 1960; Veletsos, Newmark and Chelapati, 1965; Velet-
sos, 1969; Newmark and Hall, 1976).

The procedure to develop inelastic design spectra, starting
with the estimated values of maximum acceleration, velocity,
and displacement of the ground motion, and the application of
modal analysis procedures to vielding structures have been sum-
marized (Chopra and Newmark, 1980). The limitations of this
approach to analysis of yielding structures were also discussed.

The recommendations prepared by the Applied Technology
Council, California, for earthquake-resistant design of buildings
were based on the above mentioned concepts (ATC, 1978). In-
elastic design spectra werc constructed by a simplified version of
the above mentioned procedures. Based on the approximation
that effects of yielding can be accounted for by linear analysis of
the building using the inelastic design spectra, two methods of
analysis were included: The modal analysis procedure and a
simpler method referred to as the equivalent lateral force
procedure.
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Notation

c = damping coefficient of a one-story structure

c = damping matrix of a multistory building

D = dimensionless response factor for a one-story building

D, = dimensionless factor for response at the jth floor of a multi-

story building

f = natural cyclic frequency of vibration of an undamped one-
story structure

fp = natural cyclic frequency of vibration of a damped one-story
structure

fp = damping force in a one-story structure

f; = inertia force in a one-story structure

fg = clastic resisting force (or equivalent lateral force) in a one-

story structure

fo, = damping force at the jth tloor of a multistory building

fy = inertia force at the jth floor of a multistory building

fg, = elastic resisting force at the jth floor of a multistory building

f.(t) = contribution of nth mode to equivalent lateral force at jth
floor

f, = maximum value of f,.(t); algebraic sign of T}, is controlled by
i

f.(t) = vector of elements f,.(t),j=1,2,...N,

f(t) = total equivalent lateral force at jth floor
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m

M,

M,(t)

MO,mux =

M,

M,.(1)

MO»
N
p(t)

p(t)

1l

acceleration of gravity

height of roof of one-story structure above its base

Il

height of the jth floor above base

effective height in nth vibration mode of a multistory building

lateral stiffness of a one-story structure

lateral stiffness of the jth story of a multistory building

stiffness matrix of a multistory building

N

z n]j¢in

J=1

mass of one-story structure

Il

mass matrix of a multistory building

nth modal mass

base moment

maximum value of the base moment M,(t) in a one-story
structure without regard to algebraic sign

= maximum value of the base moment M,(t) in a multistory
building without regard to algebraic sign

= contribution of nth mode to moment at base of multistory
building

= maximum value of M,,(t) without regard to algebraic sign

total number of floors in a multistory building

If

external dynamic force on a one-story structure

= vector of external dynamic forces
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pAt)

T,
T

nD

T

= external dynamic force at the jth floor of a multistory

building

amplitude or maximum value of external harmonic force
amplitude of external harmonic force at the jth floor
contribution of nth mode to response #(t)

ordinate of the pseudo-acceleration response spectrum

ordinate of the deformation (or displacement) response spec-
trum

ordinate of the pseudo-velocity response spectrum

ordinate of the deformation response spectrum corresponding
to T, (or w,) and &,

ordinate of the pseudo-velocity response spectrum
corresponding to T, (or w,) and &,

ordinate of the pseudo-acceleration response spectrum cor-
responding to T, {(or w,) and &,

time

natural period of vibration of an undamped one-story struc-
ture

natural period of vibration of a damped one-story structure

nth natural period of vibration of an undamped multistory
building

= first or fundamental natural period of vibration of an un-

damped multistory building

= nth natural period of vibration of a damped multistory

building

= forcing period or period of harmonic load
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u(0)

u(0)

u/0)

u,(0)

uj,.cr

Wpax

interfloor {or relative) displacement of a one-story structure
total displacement of the roof of a one-story structure
interfloor or relative velocity of a one-story structure
acceleration of mass in a one-story structure

total acceleration of the mass of a one-story structure
initial displacement of a one-story structure

initial velocity of a one-story structure

displacement of the jth tloor of a multistory building relative
to the ground

initial displacement of the jth floor of a multistory building
initial velocity of the jth floor of a multistory building

vector of displacements u, (j=1,2, . . . N) in a multistory
building

vector of velocities in a multistory building

acceleration of the jth floor of a multistory building relative to
the ground

vector of accelerations in a multistory building

total acceleration of the jth floor of a multistory building

= contribution of nth mode to displacement at the jth floor

maximum value of u,(t); algebraic sign of U, is controlled by

2
static displacement in a one-story structure due to load po

static displacement at jth floor of a multistory building due to
external forces po,

maximum value of u(t) without regards to algebraic sign
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u(t) = ground displacement

u,(t) = ground velocity
i (t) = ground acceleration
Vio(t) = base shear

Vo.mer = maximum value of the base shear V(1) in a one-story struc-
ture without regards to algebraic sign

Vo = maximum value of the base shear Vi{t) in a multistory
building without regards to algebraic sign

w = weight of the one-story structure

w; = weight lumped at jth floor of a multistory building

W, = effective weight in nth vibration mode of a multistory
building

w = effective weight corresponding to assumed shape y (Eq. 86)

Y.(t) = nth modal displacement

Y. = maximum value of Y.(t) without regards to algebraic sign

1 = vector with each element equal to unity

B = @/w = ratio of the forcing frequency to the natural frequency
d = logarithmic decrement

A,.(t) = contribution of nth mode to deformation or drift in story j

A, = maximum value of A,(t) without regards to algebraic sign
] = phase angle or angular phase shift
£ = damping ratio or fraction of critical damping coetficient
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b
2
¢

W

€l

damping ratio in the nth natural mode of vibration of a mul-
tistory building

nth natural mode of vibration of a multistory building

jth element of $,

= first or fundamental natural mode of vibration of a

Il

1l

multistory building
jth element of
estimated mode shape; an approximation to $,

natural circular frequency of vibration of an undamped one-
story structure

estimate of the fundamental frequency of multistory building

natural circular frequency of vibration of a damped one-story
structure

nth natural circular frequency of vibration of an undamped
multistory building

nth natural circular frequency of vibration of a damped
multistory building

forcing frequency or circular frequency of harmonic load
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