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Chapter 1

INTRODUCTION

What is micromechanics Generally speaking, micromechanics is a scien-
tific discipline that studies: (1) mechanical, electrical, and, in general, thermo-
dynamical behaviors of a material with microstruture, or (2) materials’ behav-
iors at micro (nano) or mesoscale.

In recent years, micromechanics has become an indispensible part of the-
oretical foundation for many engineering fields and emergying technologies
such as nanotechnology and biomedical technology.

The term “micromechanics” has become a truly interdiscipline jargon. It
has been used with different meanings in different contexts. Traditionally, in
the area of applied mechanics, micromechanics is referred to as a hierarchical
mechanics paradigm that deals the effective material properties that are statis-
tical averagies of a nested two level structure: microscopic and macroscopic
structures. A material point at a macrolevel can be viewed as an ensemble
microscope material space. The physical laws at macrolevel or the material
behaviors at macro-level are derived from the ensemble average of massive
micro-objects governed by the physical laws at microlevel. For instance, the
effective material properties at macrolevel are the average of material proper-
ties of microstructures at fine scale. In general, the two-level paradigm is a
special mathematical abstraction that is not associated with any fixed length
scale. When studying material properties of a metatyn may be viewed

as macroscale, and the length scale at microlevel may range/(l)(rmmm;
whereas studying the deformation of a dam, the macroscale could bd @ip to

m, and the length scale at microlevel may be arob®d® m. In this sense,
traditional micromechanics is essentially a particular (in some sense classical)
averaging theory that takes into account the overall effects of microstructures.
In practice, it deals with subjects of a broad spectrum: material properties of
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composite/synthetic materials, e.g. composite structures, cementitious materi-
als, geotechnical materials, and phase transformations; material properties of
bio-materials, e.g. constitutive modeling of bone, muscle, blood flow; environ-
mental problems e.g. air pollutions, ground water transport and diffusion, oil
spill in the ocean, etc.

In condensed matter physics and today in applied mechanics as well, the
term micromechanics is used to describe a three-level physics realm: microme-

chanics at molecular or atomic Ieve;LX, meso-mechanics atn length scale,
and macroscopic phenomenological theoryhat level or up.

The main task of contemporary micromechanics, or nano-mechanics, is to
seek unknown physical laws or mechanics regulations at the nano-scale. Dif-
ferent from traditional micromechanics, a salient feature of nanomechanics is
its multiscale and multi-physics character. It includes some features that are
present in quantum mechanics, or quantum statistical mechanics, a manifesta-
tion of the effects at atomic or sub-atomic level; on the other hand, it also shares
with many features from the description of continuum mechanics, because of
the size statistical ensemble.

The impetus for contemporary micromechanics or nano-mechanics is pri-
marily due to the emergence of nanoscience and bio-medical technology. It
appears that physics along is not sufficient to deal with the many problems that
are appearing from today’s nano-technologies and nano-engineering. There
is a call for a nano-mechanics and nano-computational mechanics to serve as
the infra-structure of these emerging engineering fields. For instatnces, much
attention has been focused on material properties of thin film, manufactur-
ing devices and components of a microelectromechanical system (MEMS),
e.g. sub-micro size sensors, motors, the mechanics of nanotube and nanowire,
computer-aided material design, and micro-biophysics/biochemistry systems,
e.g. protein/DNA interaction in biomolecular simulation (e.g. Schlik et al
[1999ab]), etc.

From the perspective of higher learning and intellectual advancement, mi-
cromechanics has developed into a rigorous mathematical theory, philosoph-
ical methodology, and beautiful computational realization. Forty years ago,
micro-elasticity started with simple definitions of eigenstrain and inclusion,
came along with Eshelby’s elegant equivalent homogenization theory (Eshelby
[1957],[1959],[1961]) and Hashin & Shtrikman'’s variational principle (Hashin
and Shtrikman [1962ab],[1964]), it is now the foundation of an entire compos-
ite material industry.

Less than ten years ago, Lattice Boltzmann method first debuted as a numer-
ical emulation of continuous Boltzmann equation in statistical physics. Today,
Lattice Boltzmann method has become a bona fide computational mesome-
chanics paradigm, and it has been used to solve problems such as turbulence
flow (Qian et al [1992][1993]), combustion, and flow pass through porous me-
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dia and even cooling of packed flowers (Van der Sman [1997][2000]); In later
1980s, Clementi and his co-workers [1988] initiated the idea of multiscale
modeling, or multiscale simulation, i.e. using super-computers to conduct
large scale computations that combine ab initio modeling, classical molecu-
lar dynamic modeling, and phenomenological modeling in a single simula-
tion. The unified macroscopic, atomistic, ab initio dynamics (MAAD) de-
scription brings all three descriptions together into a seamless union, embrac-
ing all the size scales, from the very small to the very big (e.g. Abraham et al
[1996],[1997ab],[2000]).

The simplest and earlist multi-scale modeling notion is the so-called Cauchy-
Born rule. By combining this concept with the finite element methods, the so-
called quasicontinuum method was developed by Tadmor, Ortiz, Phillips and
their co-workers (Tadmor et al 1996). The Cauchy-Born rule is ensentially a
simplistic “homogenization postulation” in lattice kinematics, and it serves as
passage to link between the molecular dynamics and continuum mechanics.
The Born rule assumes that the continuum energy deHsitan be computed
using an atomic potential, with the link to the continuum being the deformation
gradientF. To briefly review continuum mechanics, the deformation gradient
F maps an undeformed line segméX in the reference configuration onto a
deformed line segmeilx in the current configuration,

dx = FdX (1.1)
In general F can be written as

du
F=I+ IX (1.2)
whereu is the displacement vector. If there is no displacement in the contin-
uum, the deformation gradient is equal to unity.

The major restriction and implication of the Cauchy-Born rule is that the
continuum deformation must be homogeneous. This results from the fact that
the underlying atomic system is forced to deform according to the contin-
uum deformation gradierif. By using the Born rule, one may be able to
derive a continuum stress tensor and tangent stiffness directly from the inter-
atomic potential, which allowed the usage of the standard nonlinear finite ele-
ment method. This procedure is now called as the so-called quasi-continuum
method.

Apparently, the contemporary mico-mechanics or nano-mechanics is only
at its infancy. There are many unknown approaches to be explored and many
new phenonmena to be studied. In this lecture notes, we are attempting to
synthesize the most recent research results in the forefront of nano-mechanics
while presenting traditional micro-mechanics in a coherent fashion. By doing
so, we hope that it may serve as a stepping stone for us to reach a new height
in the quest for a multiscale nano-mechanics of our time.
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Chapter 2

PRELIMINARY

2.1  \Vectors and Tensors
2.1.1 Vectors

Consider a Cartisian coordinate in a three dimensional space with unit vector
basis{e;},i = 1,2, 3. An arbitrary position vectots, may be expressed as

X = x1€] + x2e9 + xr3e3 = x;e; = (X . ei)ei (21)

where Einstein convention is used that the repeated indices indicates summa-
tion from1 to 3.

Consider two vectorsy = V;e; andW = W;e;. The scalar (dot) product
of two vectore,V andW, is defined as

VoW = (Vie;) - (Wiej) = Vil (e - ;) = ViWyoyy = VilVi  (2.2)
where

e Li=d s
el.ej_{O’ i#j}_.(sm (2.3)

is called Keronecker delta.
A cross product of two vector\. = A;e;, B = Bje;, is defined as

A xB= (Alel) X (Bjej) = AiBjeZ- X e; = ekiinBjek (24)
wheree; x e; = ey;;ey, andey;; is called the permutation symbol,
1, for an even permutation of 1,2, 3

eijk = —1, foranodd permutationof 1,2,3 (2.5)
0, repeated indices
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This definition can be explained as a permutation rule that change of any two
adjcent indces of the symbol, there is a negative igh) occurs.
For example, since 23 = 1, then

ers2 = (—1)eas = (—1)(1) = —1
and
€312 = (—1)6132 = (—1)(—1)6123 = (—1)(—1)1 =1
The cross product of two vectors can also written as
AxB = ekiinBjek = eliinBjel + egiinBjEQ + 63iinBjeg
(A2B3 — Ang)el + (AgBl — AlBg)GQ + (AIBQ — AgBl)eg

€ ey €3

= A Ay As (2.6)
B;1 By Bs
Therefore
€; X € = €gijeL, = em-j:(eixej)-ek (2.7)
Since
(3] €9 €3
e; X e; = 611‘ (521' (532' (28)
015 025 03
then
01k O2k O3k 015 02; 03
ekij = €ijk = (@i X ej)-ep = | 01; 02 03 | =| 015 025 d35 | (2.9)
01; 025 03j 01k 02k O3k

This provides a link between permutation symbol and Keronecker delta.
Consider the product of two permutation symbols,

015 O2; 03 || O1r O2r O3r
€ijkerst = | 015 02 03j || O1s O2s O3
01k 02k O3k || 01 J2¢ O3
01; 02 03 || 01 025 03¢
= | 015 0d2; 03 || O1r d2s O3t
O 02k O3k || 01 O2s 03¢

Oir  Ois Ot
— |6 b5 3 (2.10)
Okr Oks Okt

One may show that for any second order tensor
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1 Wheni = 7, e;j1€ist = 050kt — 0¢0ks;

2 Wheni = r andj = s, e;jeije = 20¢;

3 Wheni =r, j = s, andk = t, e;je;, = 3! = 6.

which are calk — ¢ identities.

2.1.2 Tensor Algebra

Consider two vectorsA = A;e; andB = Bje;. One can form a second
order tensorC by using the tensor product

C=A®B-= (Aiei) ® (Bjej) — A;Bje; @ e; (2.11)

The dyad is called the second order tensaand its basise; ® e;, is called
dyadic basis. In this case, the components of the second order tenégy are
AZBJ

X2

e
e X1

e3

X3

Figure 2.1. Cartesian Coordinate

In fact, every second order tensor can be expressed in a dyadic basis, such
as

o = o0jeRe; (2.12)
€ij€i & €; (213)

o
Il

10ne may call the vector as the first order tensor.
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A conjugate of a dyad (second order tensor) is defined as
T
(6) = €ji€; K € (2.14)
This is why in linear elasticity we may define the infinitesimal strain tensor as

€= %(V@u%— (V®u)T) = %(u]‘,i-i-ui,j)ei ® e (2.15)

: 1
or in component forne;; = — <qu + u”>
In general, a n-th order tensor is a polyads, or has a polyadic representation,
e.g.
C= Cijkgei Rej®¥er ey (2.16)

is a forth order tensor.

Analogous to the scalar product of vectors, tlmible contractiorof two
tensors are defined as two dot products among of Cartesian tensor bases, i.e. if
A= Al-jei X e; andB = B.se;. ® ey, then

A:B = (Aijei &® ej) : (Bkgek X eg) = AijBM(ei . ek)(ej . eg)
= AijBk[(sikéj[ = AijBij (217)
The trace of a second order tensor is defined as
trA :=A:13) = A; = Ay + Ago + Asg (2.18)
In each contraction, there are two bases annihilated. Consider a forth order
tensorC = Cj;re; ® e; ® e, ® e, and a second order tensok= ¢;5e; © e;.

There are total six basis vectors. A double contraction between the two will
annihilate four basis vectors and produce a second order tensor, i.e.

o = C:e= (Cijkgei e e ® eell) : <€stes ® et)
= Cijiestei @ €0ks0p = Cijrecree;  €; (2.19)

In component formg;; = C;jre€re.
We say that a second order tensor is symmetric, if

T
A= (A) , or in component form A;; = Aj; (2.20)
A second order tensor is skew symmetric, if

T
A= —(A) , or in component form A;; = —Aj; (2.21)
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In general, an arbitrary second order tensor can be expressed as
1
Aij = 5 (AU + A]z) + (AZ] — AJZ> = A(ZJ) + A[”] (222)
Denote an arbitrary second order Cartesian basis as
€ =€ xe;. (2.23)

The second order unit tensor and the forth order unit tensor are constructed
based on the following rules:

1@ = (ei . ej>ei ®e; = d;je; ®e; = 0;j€;; (2.24)
14 = <ei ®ej> : <ek®e£>ei®ej K e, ey
= (eij : eu)ez‘j X epy = ik(Sjgei Re;ep ey (2.25)

The superscript indicates the order. It is interesting to note that the fourth order
unit tensor defined in (2.25) is not symmetric with all indices.

To represent symmetric tensors, it may be expedient to first define symmec-
tric tensor basis. The second order symmetric basis is defined as

1 1
e dfes ) foerece)

Any second order symmetric tensor can then be expressiédpagijefj. One
may denote the space of all second order symmetric tensors as

The corresponding second order symmetric unit tensor is then defined as

1
1(2s) §<ei ‘ej + e 'ei>ei®ej
— Syeime; =10 (2.28)

One may also define the second order anti-symmetric tenegﬁ;r as% <ei®

e —€; ei).
The fourth-order symmetric tensor bases is built upon the second order sym-

metric tensor bases, i.e.

e = el ®efy (2.29)

and the fourth-order symmectric tensor space is defined as

T = {S|S = SijkeeSinet (2.30)
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The corresponding fourth-order unit tensor is defined as
1
1149) .= e;-qj : efgefjkg ==3 (5,~k6jg + 5,~g<§jk> eReje, e (2.31)

It may be noted that the fourth-order unit tensor can be decomposed to sym-
metric part and antisymmetric part in terms of the first and second indices, or
the of the third and forth indices,

1 1
12(';'112:5 = Oilje = 5(5%5;'4 + 0iedjn) + 5(5%5;'4 )
4s 4a
= 1§jk35 + 1§jk‘2 (2.32)
One may show that for given second-order tenagr,
19:A - A (2.33)
1
(4s) . - T
149 . A - 2<A+A> (2.34)
1
(4a) . - = AT
1¢49) . A - (A A ) (2.35)

Note that1® £ 1 g 1),

2.1.3 Inversion formula for fourth-order isotropic tensor
Consider general form of fourth order isotropic tensor,

Q =m1?® 13 4 2149 (2.36)

Let Q! beits inverse tensor. According to the well-known Sherman-Morrision
formula (e.g. Dahlquist and Bjorck [1974]),

M @) 1@ 4 s
= — 1 1 1 . 2.37
Q 2w(3m + 2w) © 2w (2.37)
In component form,
Qijke = mOij0ke + w(dindje + 6i001) (2.38)
_ m 1
Qijig = —m5ij5k£ + @(5%5]'2 + b)) (2.39)

A more straightforward approach to invert an isotropic tensor is to adopt the
following E-basis orthogonal decomposition. Let

1

1
BY = 21010 B, = 30170 (2.40)
E® ._ _%1(2>®1(2>+1<4s>

1 1
= Eff,le = —§5z‘j5ke + 5(51'1«53'4 + 6iedjk) (2.41)
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The E-bases have the following special properties,

ED L@ — 10s)
ED.ED = ED and E®:E® =E®
EV.E® = E®@.EW=0.

We now use E-basis approach to verify Sherman-Morrison formula. Let,

Q = (3m + 2w)EW 4+ 20E®?) (2.42)
and
Q! = hEW +yE® (2.43)
By definition,
Q: Q! = 149 _ gD L EO
(3m + 2w)hED 4+ 200E?) = EWU 4 E?)
which then leads to
1
"= 3w (2.44)
1

Consequently, we can write that

Q"' = (h—v)EW +oEWD +E®)

_ o 3m pomy e
2w(3m + 2w) 2w
m

1
s a— e R L i  CD))
2w(3m + 2w) © + 2w

Let’s practice more examples.

ExamMpPLE 2.1 Consider an isotropic elastic tensor,

C = MPe1® 2,169
3KEW 4+ 2,E?)

Since by definitionC : D = 1%, it can be readily shown that

1 1
D = —E®OL —r®
3K + 2u
A 1
= —— 7 1) 1@ 4L _—1@s)
20(3X + 2u) 24
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ExaMPLE 2.2 For spherical inclusion, the Eshelby tensor is

5v—1 2(4 —5v)

Q _ (2) %1 (4s)
S -t Tt gt
3(1—v) 15(1 —v)
= 5 EW 4 5E?
1+v 2(4 — 5v)
h = =——7
wheres; 51— and sy 50 =)
Then
_ 3(1—-v) 15(1 —v)
Q-1 _ 1) (2)
(8%) R TR
(L=v)B=5) J9) o 12, 151 = V) (4
= 1 1 —=1
21+ 1)(4 — 5v) T
Moreover,

™ = 1% _C:8”:D
= (EM +E®) - BKEW + 24E?) : (5;EY + 5,E?))
1 1
(L p® L L R®
' (3KE * 2,uE )
= (1—s5)EW 4+ (1 —s59)E@

2.1.4 Tensor analysis
Define gradient operator as

0

= e’i
83/}1'

\Y (2.46)
It is a vector operation.
Applying gradient operator to a scalar functighe C°(Q), Q@ ¢ R?, will
result a vector. In other words, the gradient of a scalar function (zero-th order
tensor) is a first order tensor, i.e.

0 of

grad f .=V [ = (8—$iei>f = %ei (2.47)

For a vector functionA(x) = A;(x)e;, its gradient is a tensor product
between the gradient operator and the vector field,

0A;
grad A .=V ® A = (aiei) ® Aje; = T;ei ® e; (2.48)
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The gradient of a vector field, a first order tensor field, is a second order tensor.
In general, the gradient operation increases the ordero f a tensorial field up to
one order higher.

On the other hand, the scalar product or contraction between a gradient op-
erator and a tensorial field is callgivergenceoperation, which will result a
new tensorial field with reduced order. Consider a vector fidlds A;e;. Its
divergence is being defined as

0A;

divA =V - A = (ai,»e") (Aje5) = g‘;lj(ei o) =G, (249)

The cross product between the gradient operator and a tensorial&ietd.
Ase;, is called theCurls or rot of the tensorial field.

0A;
CurlA : =V x A = 8l‘j (ei X ej) = €ijkaz‘Ajek = eijkajAkek (250)
In what follows, a few integral transformations are listed.
Suppose that there is a continuous functigfy) € C1(Q), defined in a
domainQ € R? with smooth boundarg2. A well-known integral theorem is

/VfdQ = fndS (2.51)
Q o0
or in component form
of ) = fnidS (2.52)
q Ox; o0

In general for a smooth tensorial field,, we have the following statement,
/ V @ AdQ) = / n® AdS (2.53)
Q 0

Consider a continuous m-order tensorial field;r) € [C1(Q)]™ x d, the
well known divergence theorem can be expressed in a Cartesian coordinate as

/ V-AdQ = / n- AdS (2.54)
Q o0
If A isavector field, i.eA = A;e;, the divergence theorem can be expressed

in a component form as

0A4;
o 0z;

o0
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If we consider the volume integration of a cross product between gradient
operator and the tensorial field, we can have the following integral transforma-
tion,

/ V x AdQ) = / n x AdS (2.56)
Q o0
Again, if A is a vector field, we may write its Cartesian component form,
A
/ eiijdQ = / eijknjAde (257)
Q Oxj oQ

2.2 Review of Linear Elasticity Theory

To set the stage, we first review the basic formulations of infinitesimal, linear
elasticity theory.

e Equations of motion

Denoteo = o;;e; ® e; as Cauchy stress tensor, and= w;e; as the in-
finitesimal displacement fielg, as the density of the continuum, ahd= b;e;
as the body force per unity volume. The equation of motion of a material
particle can be expressed in a Cartesian coorinate as(?,

2

For convenience, we often write the component form
0%u;
ii + pbi = - 2.59
Oji5+p o2 ( )
O
whereuj; j = —2.
uj 7 al'j
e Geometric relation
The infinitesimal strain field = ¢;;e; ® e; is defined as
1
€=3 (V ®u+ (Ve u)T) (2.60)
Note thatV @ u = u; ;e; ® e;. Hence(V @ u)” = u; je; ® e;.
Therefore in component form,
1
€ij = §(um— + um-) (2.61)

o Constitutive equations
For linear elastic solids, the constitutive equations have the following form,

c=C:e = Oij = Cijk:lekl (262)



14 INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS

whereC = Cj;pe; ® ej ® e, ® e is the elasticity tensor.
For isotropic elastic media, it has the form,

C=AMN®I+2,1%) (2.63)
where), i, are Lame constants. In component form, it reads
Cijri = N0k + p(6indj1 + 0510 (2.64)
Inversely, one may write that
e=C'l:0=D:0o €ij = Dijrion (2.65)

where the fourth order tensdp, is called compliance tensor. For isotropic
materials, it has the form
A
203N + 2p)
e Compatibility condition
Compatibility conditions for infinitesimal deformation field may be expressed
as (Melvan [1969)),

1
5z‘j5kl + —(5ik5jl + (5ﬂ(5jk) (2.66)

Diji = — 1

VxexV=0 (2.67)
In indicial natation, it reads,
epkiCqli€ijhl = 0 (2.68)
or alternatively
€ij.kl t €kiij — €kl — €itgk = 0 (2.69)

¢ Elastic potential energy
The strain energy density is defined as

Ule) = /0 ea(e’) . de (2.70)

Based on foundamental theorem of calculus, one may find its inverse relation-
ship as
ou ou
OJe - 861‘]'
The complementary strain energy density can be obtained via Legendre
transform,

U*(oc)=0:e—Ule) (2.72)
Or one may define o
U*(o) = / (o )do' (2.73)
0
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One may derive that

ou* ou*
€ = 87, or Ei]’ = ale (274)
For linear elastic materials,
ou 0?U
Ci; = Cijkl = ———— 2.75
Gkl€kL Des; = ikl Dei;Ocn ( )
In general, for hyperelastic media, the elastic stiffness tensor can be calculated
based on the formula
C o U (2.76)
ikl 0¢;j0eyy '
Similarly, one may find elastic compliance tensor by calculation
o?U*
Dy = ——— 2.77
gkl 0000y, ( )
Change the order of differentiation in Eq.(2.66),
2 2
ou U (2.78)

a€ij06kl N 8ekl6qj

One may derive that;jz; = Chuj.

Furthermore SinC@L‘j = €j; andey; = e, Cijkl = Cjikl = Cijlk = leik-
These are called minor symmetry.

Similar conclusions can be drawn from elastic compliance tensors as well.

Both elastic tenso€ and compliance tens® are positive definite, because
both strain energy density and complementary strain energy density must be
positive, i.e.

1 1
U(G) = 56 :C:e= §Cijkl€ij€kl >0
. 1 1
Ut(o) = 59" D:o= §Dijkl0ij0kl >0
By definition that a fourth-order tensdr;, is positive-definite, when
1
icijkleijEkl > 0, VEZ‘]‘ (279)

where equality holds only i;; = 0.

2.2.1 Betti's reciprocal theorem and Somigliana Identity
Consider two sets of different self-equilibrating statps!{®), e(®), o) (@)},
a=1,2,
V.o £ =9 (2.80)
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@ @
X f%Ln om > t=n .c

Figure 2.2. Two sets of different self-equilibrating states

with boundary conditions,
n-ole) = t@° vxer? (2.81)
ul@ = u@0 yxe Fg, a=1,2 (2.82)

acting in a same obje€l.

The Betti’s reciprocal theorefrstates that: the work done by the first set
of self-equilibrating surface traction{!), and body forcef(!) in any interior
regionQ C €, going through the displacement field(®), of the second
self-equilibrating system, equals the work done by the second set of tractions,
t(2), and the body forcef(®, in the same interior region going through the
displacement fielda(!), of the first self-equilibrating system, i.e.

/f dQ+/ 1My gg = /f (1)dQ+/ 1Py Mas (2.83)
o0

Proof:
Consider both states being equilibrium states. It has

[ PuPae = — [ o ulag
Q Q 7
1 1) (2
= —/{m J(l)n] ()dS+/U( )u(J)dQ
— —/ e ”ds+/ oWePdo  (2.84)
oN

Moving the first term of the right-hand side of (2.74) to the left-hand side yields

/f dQ+/mtl 248 = / Ve an (2.85)

2Precisely speaking, it is the Betti's second reciprocal theorem.
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Similarly, one may show that

/ 190 4 / (20 g — / o2 eVan (2.86)
Q o0 Q

Consider the fact that the two systems exist in the same material

/Qag)eg)dﬂz/QCijklelg)eg)dQ:/QCklijﬁg)eg)dQ:/Qelg)al(j)dﬂ

Compare the both sides of (2.75) and (2.76), the theorem holds.
In addition, the equality

/Q ot e a0 = /Q ol e do (2.87)

is called Betti’s first reciprocal theorem.
To derive Somigliana identity, we first consider Dirac’s delta function, which
is the limit of the following functiong(x) = lim._od:(z),

0; z< —¢/2
de(x) =lim<¢ 1/e; —€/2 <z <¢€/2 (2.88)
0 0; x>¢/2

A graph of Dirac’s delta function is shown in Fig. 2.3.
Dirac delta function has following properties

(1) / d(z)dr =1 (2.89)
@ [ - (2.90)
The first property (2.79) can be easily shown by definition that
00 €/2 1
/ §(z)dx = / —dr =1 (2.91)
—00 —¢/2 €

To show the second property, we tet- y = z anddy = —dz. Thus

—00 o0

| sa-wrwi = - [ s 2i= [ s -2

1 €/2 1 €/2
= < _6/2f(:c—z)dz:ef(:v—gz)/_eﬂdz
= f(z), as e—0 (2.92)

where—1 < ( < 1.
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1/e
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&_ 1
[

Figure 2.3. Dirac’s delta function

Consider an infinitely space filled with homogeneous elastic medium. The
body force is form of concentrated load at a fixed point y,

f= (5(X — y)émkek (293)

The subscript index: is in the direction ofn.
The equilibrium equations then have the form,

V-om+0(x—y)dmeer =0, Vx € R® (2.94)

The displacement solution of this problem is called foundamental solution
of Navier equation, or the Green'’s function for an infinitely extended homoge-
neous elastic domain. Denote the displacement solution as

u, =GR (x,y) = Gri(x,y)e; (2.95)
The corresponding strain and stress fields are:

G>° 1 G G
€ij" = 5( mij + Gifm)’ 03" = Cijkiei™ (2.96)
Next, we consider a singly connected finite regidnc R3. The finite
region{? is in a self-equilibrating state, i.e., there is a body force distribution:
V-o+f =0, Vx €, and a traction force distributiot:= n-o, Vx € 0.
Let

fU(x) = 0(x—y)omrer, u(x) =Gri(x,y)e;i  (2.97)
tW(x) = Jg%?(x)njei (2.98)
fP(x) = filx)ei, u®(x) = ui(x)e; (2.99)
t(2)(X) Jij(x)njei (2100)
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Apply Betti’s reciprocal theorem,

e'e]

/5x V) Omitti (2)dS2, +/ njaﬁmui(x)de
o0N

= [ H0GE I+ [ nyoGRxy)as, @101
o0

Considering the property of Dirac delta function, one can obtain:

/ fi(x)Govi(x,y)dS2, +/ i(X)Gooi(x,y)dS42.102)

a0
/ t; ’”(x y)ui(x)dSy, m=1,2,3
a0
Equation (2.92) is the well-known Somigliana identity.

2.3 Exercises

PrOBELM 2.1 Letdu be avirtual displacement field aredbe a self-equilibrium
stress field. Show

(V-a’)-5u:V-<a-5u)—a:(V®5u) (2.103)
PrROBELM 2.2 Assume body forcE= 0. The elastostatic equilibrium equa-

tion takes the form:
Ojij — 0, or V-o=0 (2.104)

/ o:edf) = / t-udS (2.105)
Q a0
wheret =n - o.

(Hint: use Gauss theorem, the divergence theorem.)

Show

PrROBELM 2.3 Suppose that there are two different solutions of equilibrium
equation,
v-0'1:0, V-O'QZO (2106)

which satisfy the same boundary conditions,

_ 140

{ E; ;on vx € Ty, (2.107)
o — ¢0

{ o “h Vxel (2.108)

wherel', |JI'; = 0.
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By using the positive-definiteness of elastic tensor and compliance tensor,
show:

Ao = o01—09=0 (2.109)
Ae = e¢—€6=0 (2.110)

PrOBELM 2.4 Show that for a given second-order tenstr,
194 — A (2.111)
149, A 1(A+AT) (2.112)

N — N

149, A - (A—AT) (2.113)
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Chapter 3

HOMOGENIZATION | — CLASSICAL AVERAGING
METHOD

"Curiouser and curiouser!" cried Alice,"Now I'm opening out like the largest
telecope that everwas!"
— Lewis Carroll,Alice in Wonderland

3.1 Representative volume element

One of the foundamental concept in classical micromechanics is the so-
calledRepresentative volume elememt RVE.

The classical micromechanics paradigm is a two-level hierarchical mechani-
cal structure: Macro-level and Micro-level, or it consists of two elements: macr
o-element and micro-element. At macro-level, a continuum is made of many
material points, and each material point is related with a micro-space. A macro
material point is also called a macro-element, or volume element. Its associ-
ated micro-space contains many micro-elements. In fact, it is a microscopic
continuum. If a material is statistically homogeneous at macro-level, to study
material behaviors, we only need to examine material properties at an arbitrary
(typical) macro-point, and the micro-space associated with that macro-point is
called the representative volume element.

An RVE for a material point of a continuum mass is a statistical ensemble of
microscale objects surrounding or constituting the macro material point. This
means that an RVE should contain a very large number of micro-elements such
that it can be a statistically representative of the local continuum properties, or
it is statistically stable.

In essence, the concept of representative volume element in classical mi-
cromechanics is a mathematical paradigm. It has no fixed length scale associ-
ated with each level.

The length scales associated macro-level and microlevel are relative. If you
study effective material properties of a heterogeous metal, the lengthscale of
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microlevel maybe from a femmto um, and the lengthscale of macrolevel
may be from a few mm to centimeter. If you study the stiffness of a dam, the
lengthscale of microlevel could be from centimeters, whereas the lengthscale
of macro-level could be meters.

In classical mechanics, at macro-level, the material properties are always
assumed to be homogeneous but unknown, whereas at micro-level, i.e., inside
the RVE, the material properties are heterogeneous but known.

At microlevel, the heterogeneous micro-structure is known and physical
laws is known. The task of micromechanics is based on information of mi-
crostructure to find homogeneous material properties at macro-level, which is
often calledoverall material propertie®r effective material properties

The methodology to find effective material properties is cdtlechogeniza-
tion. Homogenization is another word that has been widely used in many
different contexts. In this book, the term "homogenization" is used to mean
statistical averaging. There are mainly two sets of homogenization methods,
mathematical homogenization and mechanical homogenization.

The objectives of micromechanics is to find both material properties at macro-
level, or overall (effective) material properties and physical laws at macro-
level.

The first subject of continuum micromechanics if micro-elasticity. The ba-
sic premises of microelasticity is to assume that inside an RVE, the micro-
constitutive relation of a material is elastic, and in more cases, they are as-
sumed to be linear elastic. In micromechanics, the concept of the RVE is used
to derive material properties due to microstructures. In most cases, the micro-
structures are often independent with gravity or other types of body forces.
Therefore, in micro-continuum mechanics, the body force effect is often ne-
gleted. The equilibrium equations inside an RVE is often written as

V-o=0 = O'Z'jJ‘ZO. (31)

3.2 Average stress in an RVE

Definition of average operatet - >. Suppose thal(x,X) is a general
tensor field defined in an RVE. Note that haris the spatial coordinate inside
an RVE for a fixed material point, whereXsis the spatial coordinate of the
material point with respect to a macro-coordinate. If at macro-level, material is
homogeneous, i.e. material properties at macro-level do no change from place
to place X is often dropped out. We simply write= T(x), which means that
one RVE is sufficient to represent all the material points in the object that is
under investigation.

To associate a micro-level tensor field with a tensorial quantity at macro-
level is called homogenization. To do so, we first define the so-called average
operator. The average value of the tensor fig(k) at a material point is de-
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fined as 1
<T>x:= / T(x, X)dV, (3.2)
Vv

If the material is homogeneous at macro-level, we have
1
<T>= / T(x)dV, (3.3)
Vv

For instance, ifT = o(x) is a micro-stress field, the macro-stress at a
material point will beX =< o >. Similarly, if T = €(x) is a micro-strain
field, the macro-strain at a material pointis=< € >.

A very useful average theorem about micro-Cauchy stress tensor may be
stated as follows:

THEOREM 3.1 Suppose an RVE is subjected to natural boundary condition,
and the traction on remote boundary of an R\'{) is generated by a constant
stress tensow®. Then the average stress at this material point, or the macro
stress at the material point,

Y=<o>=0" (3.4)

Note that the point here is that one only knows the traction distribution on the
remote boundary of the RVE, but one does not know the exact stress distribu-
tion inside the RVE.

Proof
Consider, 5
2
—— =0;; and 0j; ;=0 (3.5)
8Ij J VA2V
One then can express Cauchy stess inside an RVE as
ox;
Oij = OikOkj = Oikljk = <0ik8732>
= (owTj)k — OikpT; = (TikTj) k (3.6)
Therefore,

1 1
<0 > = V/VgijdV_V/V<Jikwj),de

1 7{ 1 0
= = oikxingdS = ?{ 0, TinEdS
V oy V Sy

70 7.0 o)

ik ik Ty

= - nEdS = =% —=dV
% p Ting v / 2

_ O-z‘ok/(s‘kdvzagk(g.kvzgo. (3.7)
v/, v 0 ij
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3.3  Average strain and strain rate

Consider a displacement field, = u;e;, inside an RVE. Suppose that on
the remote boundary of the RVE, the displacement filed is prescribed,

ui(x) = ud(x), ¥Yx €V (3.8)

One can find the average displacement gradient field in terms of boundary data,

i.e.,
1 / 1 / 0
<wuij >= = [ uiidV == [ nju;jdS (3.9)
J Vv J V' Jav J

Note that you don’t know exact distribution of the displacement field inside the
RVE.

Moreover, one may find the average strain and rotation fields in terms of
boundary displacement data,

1 1
<y = 2 (<> + <y >) = oo fgv(nju? + nud)ds

1 1
< wij >= §(< Ui > — < Uj; >> = 2‘/% (njuf — n;ul)ds
v

REMARK 3.3.1 in general, the average displacement fields of an RVE can
not be expressed in terms of remote surface data. To see this, one may evaluate
the average displacement field. Using the trick,

ox;
T

U; = U = U0k, =uky

= (upi) | — Wk kT

Hence

<u; > = V/ u;dV = / uk:cl k—ukaZZ)dV

- V(jivukwmde / ukka:de) (3.10)

Itis clear that< u; > can not be expressed in terms of boundary data, unless
U = 0.

However, for incompressible materials, such as rubber or plastic zone of
ductile materials, it is often true that, ,, = 0. Therefore,

<up>=—= [ wdV == URTinEdS (3.11)
Vv VJor "

An average theorem for infinitesimal strain can be stated as follows.
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THEOREM 3.2 Suppose that an RVE is only subjected to essential bound-
ary condition. On the remote surface of the RVE, its displacement fields are
prescribed as

0 0

wW=€ex = = Oxj (3.12)

wheree?j is a constant strain tensor. Then, the average strain field of the RVE
equals the constant strain tensor, i.e.
<e>=€), = <ej>=¢) (3.13)
Proof:
First of all, the prescribed essential boundary condition does not necessarily
generate a constant strain field inside the RVE, i.e.

€ij(x) # €

In fact
€ij(x) = €y + &;(x), Vx eV

and the perturbation strain field satisfyigg(x) = 0, Vx € 9V.
By definition,

et =37 |
<ey> = o | edV = oo | (uig+ug)dv
J vV v J oV v J J
1
= W av(ugn]’ + u?nz)dS
1
= W 8V(;Uk€2inj + xkegjni)dS

1 0 0 0
= BYa 8V(€ki(5kjv + Ekj5kiv) = €

(3.14)
One may also show the following identities about average virtual work and
average strain energy density.

< o:de>= E t-dudS (3.15)
V Jov

<og:€e>—<o0o><e€e>

= é8V(u—x-<V®u>)-(n-(a—<a’>))d5’ (3.16)



26 INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS

SinCGO'ij(SGij = %aij(éum + 5Uj7i) = aijéui7j,

1 1
V\/‘/O'ijéeijdv = V/Va,-jéui,jdv

1 1
= V/V(aijéui)jdV = ngv aijdumde

1
= tléulds (3.17)
V- Jov

wheret; := njo;;. Hence,(3.15)holds.
To show (3.16), one may write

1
= <u, — T < Uiy >) (nk(J]m’— < Ok >>dS
V Jov
1
= = (umkaki —UiNg < Of; > —T5 < Ujj > N0k
V- Jov
Fr; <uj; >ng <ok >)dS

1 1
= = iU AV — | — i kdV i
V/VU’““”“ (V/v“”“ )<U’“ ”

1
—0jk < Ujj > V/‘/Ukidv+ < € >< 045 >

= <065 > — < 045 >< €5 > (3.18)

3.4  Definition of eigenstrain, eigenstress, and inclusion

'Eigenstrain’ is a generic name to describe a transformation strain field that
can equivalently represent induced strain due to misfit of inhomogeneities,
thermal expansion, plastic strain, residual strain , phase transformation, etc.,
all of which, when homogeneously applied produce a compatible deformation
field without generating stresses. The German weiger’ means character-
istic. It is believed that any strain field generated by an inhomogeneity distri-
bution may have a one-to-one correspondence to a fictitious eigenstrain field,
which is characteristically equivalent (in the sense of mechanical variables,
such as stress, strain, and displacements) to the induced strain field generated
by the inhomogeneity distribution.

'Eigenstress’ is a generic name given to self-equilibrated transformation
stress (internal) field that can generate equivalent perturbed stress and strain
distributions caused by one or several of there eigenstrains in bodies which are
free from any other external forces and surface constraints. The eigenstress
field is created by the incompatibility of the eigenstrains.
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C:(e'+ete * )

Figure 3.1. lllustration of Eshelby’s equivalent eigenstrain principle. (a)lnitial heterogeneous
body, (b) equivalent homogeneous bodly £ 2 U M).

The terminclusiondenotes a subdomain in the matrix subjected to trans-
formation strains (eigenstrains), while the inhomogeneity is a subdomain with
properties distinct from those from the matrix.

3.5 Eshelby’s equivalent eigenstrain method I: Traction
boundary condition

Eshelby’s equivalent eigenstrain principle is a homogenization method. It
establishes the equivalency between an eigenstrain (eitenstress) field and an
inhomogeneity distribution, such that distribution of inhomogeneities may be
replaced by the eigenstrain field with the equivalent mechanical effect. This
equivalency mapping process translates the heterogeneity of material into an
added non-uniform strain distribution, while making the material properties
become homogeneous again.

Let’s consider an Elastic solid, V, with elasticity tens@r, and compliance
tensor,D. Inside the elastic solid, there is an inhomogeneity, a subdofiain,
with different elastic constant§;* andD® (see Fig. 3.1).

The so-called Eshelby’s equivalent eigenstrain principle, or Mura’s equiva-
lent eigenstrain principle, is to replace the inhomogeneity with a homogenized
inclusion, within which an eigenstrain field is prescribed, such that the homog-
enized field is mechanical equivalent to the original inhomogeneous field.

Consider that the original inhomogeneous solid is subjected to a traction
boundary conditiont = n - 6. The presence of inhomogeneity will produce
stress perturbation and hence the strain field perturbation,

0':00+0'd, e=€e"+ €.
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The stress and strain distributions inside the inhomogeneous solid are
. — C:(e4+€) xeM
N C?: (" +€eh) xe0
D:(6°+0%) xeM
€ = Q 0 d
D*:(c”°+0% x€Q

The Eshelby’s equivalent eigenstrain homogenization method is to choose a
suitable strain field,

(3.19)

€, Vx e (3-20)

to superpose with the actual strain field; € + €?, such that the total strain
field of homogenized solid is equivalent to the total strain field of inhomoge-
neous solid, i.e.
o(x) = C:(e(x) - €'(x))
[ C:("+ € [ C:("+€Y), xeM
N C:(e24€l—€¢) | C¥:("+€?), xe0
Considere’ = D : ¢ Under the chosen traction boundary conditien,
o >=0oY bute’ #£< € >.
From (3.21), one may derive that
ocl(x) = C:(elx)—€'(x)), VxeV (3.22)
CHe"+eh) = C:(+el—€), VxeQ (3.23)
where Eq.(3.23) is calledstress consistency conditibrit is the criterion for
choosing suitable eigenstrain field. Note that+ e? — €* is the totalelastic
strain.
Alternatively, Egs (3.21) and (3.22) can be recast into following forms,
c = C:(e—€") = e=D:o+¢€ (3.24)
ol = C:(?—¢) = ed=D:ol+¢ (3.25)

{0, Vx e M
€ =

(3.21)

3.6  Eshelby’s equivalent eigenstress method II:
Displacement boundary condition
Consider the same inhomogeneous solid and following displacement bound-
ary condition
ux) =€’ -x, Vx oV (3.26)
The inhomogeneity inside the solid will generate a disturbance stress field,
o. The total stress field is

. 0.0 o.d
e(x) = { BQ ( (0.0+_|_ O.)d) (3.27)
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D:(c’+clc *)
u=gl-x
D% (c'+cd)

u=gl-x

Homogenization

(a) (b)

Figure 3.2. lllustration of Eshelby’s equivalent eigenstress principle. (a) Initial heterogeneous
body, (b)equivalent homogeneous body £ Q2 U M).

As proved in previous section, under prescribed boundary condition, the aver-
age strain< € >= €". On the other hanet, o >+# o.

To homogenize the heterogeneous medium, we introduce the following eigen-
stress distribution,

ot (x) = { ?, :z c ?f (3.28)
such that
w0 ={ Do inl g ={ D0l el xen ©2
From Eq.(3.29), we can derive that
€l(x) = D:(oc%x)—0%), VxeV (3.30)
D% ¢’ +0?%) = D:(6"+0-0%), ¥xc (3.31)
where Eq.(3.31) is calledstrain consistency conditich.
Alternatively,
€l(x)=D:(c%x)—0*) = 0?=C:el+0o* (3.32)
Comparing Eq.(3.32) with (3.25) yield the following identities,
€+D:0"=0, or c"+C:€e" =0 (3.33)

3.7 Effective material properties via eigenstrain method

In this section, we illustrate how to use equivalent eigenstrain method to
find overal material properties.
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RVE

CQ

inhomogeneity

Eshelby’s equivalent eigenstrain theory ‘

.
RO

C

d
homogeneous stress O 0 perturbed:stress(G

Figure 3.3. lllustration of Eshelby’s equivalent eigenstrain principle

We still consider the previous problem: an RVE with only on inhomogene-
ity. Denote the total volume of RVE as V, the volume of the matrix as M, and
the volume of the inhomogeneity & Assume that the RVE is a heteroge-
neous linear elastic medium and the micro-constitutive relations are:

e = D:o, xeM (3.34)
e = D%:0, xeQ (3.35)

Our objective is to find the constitutive relation at macro-level,i.e.
>=C:£ = <o>=C:<e> (3.36)

Note that here we have already assumed that the constitutive relation at macro-
level is also linear elastic. The only unknown is the effective compliance
tensor, or effective elastic tensor. This shows the primitive feature of clas-
sical micro-elasticity. In contemporary micromechanics, one does not know
whether the material behaviors at macro-level is linear elastic or some other
forms. One determines macro behaviors of the material as an outcome of ho-
mogenization.
Apply the traction boundary condition on the remote surface of the RVE,

t=n-o’

As mentioned before, under such boundary conditiom; >= o, neverthe-
less,< € ># €Y, i.e. < € + €? >#£ €°, Therefore, our goal is to find the
effective elastic compliance tensor such tha¢ >= D : ¢°
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Denote the average strain and stress in the matrix and in the inhomogeneity
as

eM = 1\14/M e(x)dv , aM = AZ/MU(x)dV; (3.37)
e = é/ge(x)dv , &% :—é/ﬂu’(x)dV; (3.38)

Thereforeg™ = D : 7, anc® = D¢ : 1.
. Q
ConsiderV = M UQ and letf := ‘V’.Then

€ — 1/edV:1 edV
Vv V Jmue
1 /M Q M Q
= —(= | edv+= [ edV) ="M+ & (3.39
V(M/M€V+Q/96 ) e tye (B39
Hence,
M
VEM = <e>—f&
= D:o’— D% : 5" (3.40)
On the other hand,
M_y M .y /M1
ve = D —D.(VM MO'(X)dV)

= D: <‘1//V0'(X)dV—‘1//QU(X)dV)
- D: <00 _ fa—Q) (3.41)

Compare Egs. (3.40) and (3.41),
D:¢’— fD%:6%=D:0"— fD: 5" (3.42)
Therefore,
(D—f)) o0 = f(D—DQ) P A f(D—DQ) <oV 1ol >q (3.43)
The equagtion is often referred toBise Basic Equation for Average Stress

By definition,
Fr=C% <+ el >q (3.44)
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From the stress consistency condition, one may obtain
€=CH(C-CY: (@ heh) = (A7) (el (345)
whereA?? = (C - C%)~1: C.
If one can relate the perturbed strain with the eigenstrain, i.e.
el =8%: ¢ (3.46)
Eq (3.45) may be rewritten as
f+el =A% ¢ = €= (AQ — SQ)_1 . €’ (3.47)
Subsequently,

e(x) = €+e —AQ € AQ:(AQ—SQ)_1260
A2 (A" S D: 6" vxeQ (3.48)

In the literature, we denotd®? = A% : (A —-S%)~! as the so-called “concen-
tration tensor”, because it represents the relation ship between the background
strain field and the actual strain field in the inhomogeneity, i.e. how are the
strains concentrated. Suppose both the Eshelby t&isand tensoA*’ are
constant tensors, theA® = const., and

ex) =A% ¥xeQ = &=4%:¢ (3.49)
Therefore,
7' =C?: A% (AP -SH D6 VxeQ (3.50)
Substituting the expression (3.50) into (3.43) yields

(D D) o' = f(D?-D):C2: A% (A® — SVl . D: ¢’ (3.51)

Consider
(DQ—D) . =104 _p.c®
and
(AQ)_l - ((C —c9)t. C) T _clic-cY
_ 1) _ o1, o
149 _p. o= ( Q—D) . %

- (DQ - D) . C% = (AQ>71 (3.52)
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Therefore
(D-D):o" :f(AQ—SQ>_1 'D:o" (3.53)

It is the straightforward to derive

D= (1 4+ f(A% - 8%)7): D (3.54)

Note that the crucial step of this derivation is the assumption that disturbance
strain field can be related to eigenstrain distribution,ée= S% : €*, where

the tensoS® is called the Eshelby tensor. Chapter 6 will be devoted to derive
Eshelby tensor for specific shapes of inhomogeneities or inclusions.

3.8  Jock Eshelby (1)

John Douglas Eshelby was born in Puddington, Cheshire, On December 21,
1916, the eldest son of Alan Douglas Eshelby. Because of ill health he missed
his formal schooling from the age 13 and ilved at the family home in north
Somerset, where he learned instead from tutors. So, as he used to say, he had
to work many things our for himself, and perhaps this helped to make him
such an original and creative thinker. Ovservant of people and things, he had
a deep physical insight into the workings of nature around him. As a child,
watching his father’s diesel generator, he noticed how a moving belt ratains its
shape when struck; and recently he was to be seen studying the spider's web
pattern of cracks in broken windows, while he pondered on the limitations of
the present theory of elastic plates.

Through a contact with Professor Mott (now Sir Nevill) he went early to the
University of Bristol and obtained a first in physics there in 1937. During the
second World War he served first at the Admiralty, degaussing ships, and then
in the technical branch of the Royal Air Force, where he reached the rank of
squadron leader. He flew sometimes in Sunderlands out of Pembroke Dock,
and there is in the Science Museum some radar equipment that he helped to
design.

He returned to Bristol in 1946, at an exciting time for solid state physics
when rapid advances were made in the theory of the deformation of crystals.
The opportunity arose for him to take up theoretical research, and here he made
his initial mark in dislocation theory, revealing quite suddently to those around
him a mastery of some of the most difficult problems of the time. he obtained
his Ph.D. in 1950 and two years later spent a year at the University of lllinois.

There followed some ten years at the University of Birmingham, a period
in 1963 as visiting prefessor at the Technische Hochschule, Sturgar, and then
two years at Cambridge, where he became a Fellow and College Lecture at
Churchhill. In 1966 he went to the University of Sheffield, holding a readership
and, from 1971, a personal chair in the theory of materials.



34 INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS

Figure 3.4. lllustration of Eshelby’s equivalent eigenstrain principle

His work was a great part of his life. His general field was the theoretical
physics of the deformation, strength and fracture of engineering materials, and
his principal interests were lattice defects and continuum mechanics.

Though motivated by the desire to understand he kept a firm eye on appli-
cation and had no time for useless erudition, like willard Gibbs his object was
to make things appear simple by "looking at them in the right way". With
a keen discrimination he selected those worthwhile difficult problems whcich
nevertheless had some chance of solution. Entirely unconcerned with personal
advancement, he hoped only of his paper that each would be a "little gem".

And so it is. Many indeed are treasure houses, abounding in undeveloped
asides on which others may later build, for often he did not elaborate. He
regarded himself as a modest "supplier of tools for the trade", and he felt to
others their day to day use. His colleagues everywhere were always consulting
him.

Eshelby was elected a Fellow of the Toyal Society in 1974, being "distin-
guished for his theoretical studies of the micromechanics of crystalline imper-
fections and material inhomogeneities”. he made major contributions to the
theory of static and moving dispocations and of point defects. By an elegant
use of the theory of the potential he obtained some remarkable results on the
elastic fields of ellipsoidal inclusions and inhomogeneities.

In 1951 he introduced, in analogy with the Maxwell tensor, the elastic en-
ergy momentum tensor, which yields forces on elastic singularities. During
his later years he was much concerned with this concept and its developments,
which can provide parameters characterizing the singular fields.

In 1968 he published accounts of its application to the calculation of forces
on static and moving cracks inelastic media. Related work, formulated for
application also to plastic-elastic media, was published simultaneously and in-
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dependently by J.R.Rice. Many others have made widespread use of these
characterizing parameters in fracture mechanics, sometimes in a way to which
Eshelby did not wholly subscribe.

Eshelby had a wide knowledge of theoretical physics and repeatedly applied
ideas in one discipline to solve problems in another. He drew much inspiration
from masters of the past and liked to regard some of his most important works
as amusing applications of the theorem of Gauss.

But his scholarly interests went far beyond science. He read French, German
and Russian and could find his way about a Chinese dictionary; indeed, he
knew a great deal about languages and the ancient world and enjoyed holding
his own in discussions with professionals in these fields. His dry jokes and
sayings will long be remembered:

"It's obvious", he would say,"l forget exactly why". One of his great plea-
sures was to find good secondhand books.

Just before his death he was in correspondence with former colleagues about
some implications of recent calculations he had made of forces on defects in
liquid crystals; and also about cracks in metal fatigue. He was also preparing
lectures to be given in California in the new year.

3.9 Exercises

PROBELM 3.1 Let

1 XX

— exp(—ﬁ), (3.55)

representing a Gaussian distribution .
For any smooth vector field € R3, define weighted average operation,

<A>(x):= /R3 w(x — x')A(x")dQy (3.56)

wheredQy := da) dabdat.
Show that

V- <A>=<V-A> (3.57)

(Hint: Use Gauss theorem (divergence theorem), and the factithat —
0as|x| — c0.)

PrOBELM 3.2 Use identidy
dir  Ois O

eijkerst = 6j (Sj (5]‘ (358)
Okr Oks Okt
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show:
€ijk€ijk = 31=6 (359)
eijkeijg = 25]% (360)
€ijk€itm = 0j00km — OjmOke (3.61)
PROBELM 3.3 Prove
s’+D:T%:Cc = 1¥ (3.62)
T +C:8%:D = 1@ (3.63)

whereS® and T are the Eshelby tensor and the conjugate Eshelby tensor
respectively.
Hint: First show that

0?=C:(e?—0%), and 6" +C:€" =0. (3.64)

ProOBELM 3.4 Consider eigenstress homogenization problem illustrated in
Fig. (3.2). Suppose that the disturbance stress fiefd,can be related to the
eigenstress fieldr™, i.e.

ol =T 6", VxeQ (3.65)

whereT* is the so-called conjugate Eshelby tensor. Show that the effective
elastic tensor is equal to

C= [1<48> + (B - TQ)—l] . C (3.66)

where the tensoB* := (D — D9%)~! : D.

PrOBELM 3.5 Suppose that an RVE (V) is subjected the following pure trac-
tion boundary condition,

n-o=t=n-o’, VxeaV (3.67)

Show that
<o:0e>=0":<de> . (3.68)
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Chapter 4

GREEN’'S FUNCTION AND FOURIER TRANSFORM

To this end, the key problem of micro-elasticity is to find the relationship
between disturbance strain and eigenstrain (transformation strain). In specific,

Find S such that €? =89 : ¢* (4.1)
or to find the conjugate Eshelby tensor,
Find T such that ¢¢ =T : o* 4.2)

A systematic and elegant procedure to deBVeand T was established by
Jock Eshelby, which is one of the most important contribution in classical elas-
ticity in the twentieth century.

To understand Eshelby’s inclusion/eigenstrain theory, we first review basic
theory of Green’s function and Fourier transform.

4.1  Green’s Function
SupposdL is a general differential operator, i.e.
Lu] = f(x), VxeQ (4.3)
Blu] = h(x), Vx € 0Q (4.4)
Suppose the above boundary value problem (BVP) is well posed. Choose
f(x) = d(x — y) (Dirac’s delta function). Then, the solution of BVP (4.3)-
(4.4) is called Green’s function, and it is denoteddx,y), i.e.
L{G(Xv y)] = 5(X - y)v Vx €Q (45)
B[G(x,y)] = h(x), Vx €00 (4.6)

Why are we interested in Green’s function, why are we so fond of Green’s
function? What makes it so special?
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To answer this question, we first consider a differential operatdguppose
that there exists an inverse operatoftaand it is denoted a5, such that,

LL'=L"'L=1 4.7)

The simplest differential operator is,

L= %(.) s L7} _/(-)d:r (4.8)

For general differential operatdr, its inverse operator may be written as

L) = / K(x — y)()dy

where K is the so-called kernel function. Once the kernel function is deter-
mined, the inverse operatdr! is determined.

Suppose that we have already known the inverse operaibirEgs.(4.3)
and (4.4). We then can solve the differential equation by applying the inverse
operation,

LI = L))
ux) = L) = / K(x - y)f(y)dy (4.9)

Equation (4.9) is usually termed as “the superposition principle”.

Next question: what is the kernel function? Or how to find the kernel func-
tion for a differential operatoL.?

Since

u(x) = Tu(x)= LI (u(x) = L / K(x - y)u(y)dy
= /L’C(X —y)u(y)dy (4.10)

Comparing (4.10) with

u(x) = / 5(x — y)uly)dy

one may find thalLX(x — y) = 6(x — y). Therefore, one can deduce that the
kernel function of a differential operatdris its Green’s function:

Kx—-y)=Gx-Yy) (4.11)

In principle, if the Green’s function of a BVP has been found, the BVP is
considered to be solved. This is becaruse one can obtain the general solution
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of the differential equatiorl.[u] = f(x) via superposition through certain
reciprocal formula.

ExaMmPLE 4.1 We consider Euler-Bernoulli beam equation with clamped bound-
ary conditions

2 2
Ly = %(EI%) = f(z), Yz € (0,) (4.12)
w(0) = u(l)=0, and u (0) =u () =0 (4.13)

Suppose that we have found the Green'’s function related to this problem, i.e.

d? /_ d>G(z,y)

LiG] = @<El o~ ) = 5(x—y), Yo,y € (0,1) (4.14)

G0,y) = G(l,y)=0, and G (0,y) =G (I,y) =0 (4.15)

Via integration by parts, one can show that
l 2 2 2 2
J (et = [(gFrgs)], - (@) (s,
+ /OI(Z?;)EI(;ZZ)M (4.16)

Letv = G(z,y). We will have the following reciprocal formula

/l uL[G]dz — /l GL[u|dz

0 0
2 2
- [ EE )] (e ),
1 G !
JeGEg)), (@) Egs)), @

Consider the fact that both(z) and G(x,y) satisfy the same homogeneous
essential boundary conditions. A simple reciprocal holds

! !
/uL(G)dx:/ GL(u)dzx (4.18)
0 0
which leads to
! l
| uwite -y = [ G- sy (4.19)
0 0

and consequently,

!
u(z) :/0 Gz —y)f(y)dy (4.20)
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In structural engineering, the Green’s function solution represents the concen-
trated load solution, and the Green'’s function is called the influence funtion.
Eq.(4.20) is obtained as an argument of superposition.

ExamPLE 4.2 Inthe second example, we consider Poisson’s equation,
Viu = fi(x), and VZ0 = fo(x), Vx € Q (4.21)
One can derive the following identity via integration by parts,

/ WY - (V) = / (V- (uV0) — (Vu) - (Vo) }d2
Q Q

- /aSz(gZ)“dS_/Q(W)-(W)dQ (4.22)

Interchange the position of u and v,

/Q OV - (Vu)dQ = /a ) (ngdS— /Q (Vo) - (Va)de (4.23)

Subsraction of (4.22) from (4.23) yields the so-called Green'’s reciprocal theo-

rem:
/Q<UV21) — UV2u> dQd = /89{ <u§2> — (v?Z) }dS (4.24)

Letv(x) = G(x,y), f1(x) = f(x), and f2(x) = d(x —y). We can then show
that

u(x) :/m{<g§)u—G(gg)}dSy—i—/QG(x,y)f(y)de (4.25)

Note that in 4.25, the Green’s function solution does not necessarily have the
same boundary data as unknown functiofx), as in the previous example.
Often times, the Green’s function in the infinite domain is chosen in a recipro-
cal representation.

4.2  Fourier transform
Consider a functionf (z) € L'(R), or/ |f(x)|dz < co. We define the

—0o0

Fourier transform as
O = A=y [ @en-ignas  @29)
f@) = FUf = / " (&) eaplica)de @.27)
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In generalized Fourier transforhjs a complex number. Assume that func-
tion f(x) has the property such thatp(Ciz)|f(z)| — 0 asz — oo and
exp(—Caz)|f(x)] — 0asx — —oo. The inversion foumula may be expressed
as the following contour integral

f(z) = / T (@) eaplica)de (4.28)

—00—17y
whereC; > ~ > (Cs. The integration contour is usually referred as the
Bromwich contour(Thomas John I’Anson Bromwich (1875-1929)).

LEMMA 4.3 (JORDAN) Suppose that on the circular aééz shown in Fig.(4.2)
we havef(£) — 0 uniformly asR — oo. Then

Jim_exp(ia€) f(€)d€ =0, (z>0)
We note that itz < 0 similar result holds for the contour in lower half space.

THEOREM 4.4 (CAUCHY-GOUSAT) if f(z)is ananalytical function at each
point within and on a closed contour C, then

f f(z)dz=0 (4.29)
C

THEOREM 4.5 (CAUCHY’S RESIDUE THEOREM) if f(z) is analytical in-
side a closed contour C (taken in the positive sense) except at pQins, - - - , zx,
wheref(z) has singularities, then

7{ f(z)dz =2mi Y Residue of f(2) at z; (4.30)
C

=1

Now, the question becomes what is a residue and how to calculate it. The
answer involves with the singularity ¢ z). For a function of complex varible,
f(z), one may expresg(z) in a local region by its Laurent expansion — an
extension of Taylor expansion of real variable. For instance around a fixed
point z;, we may write

@)= an(z—2)"+ > acu(z—2)™", 0<|z—z|<a (431)
n=0 n=1

The residue is defined as the coefficient.
There are three types of singularities:(1) essential singularity, (2) removable
singularity, and (3 )pole of ordet.
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e The essential singularity refers to a singularity, or pole of infinity order.
For instance, for the pole = 0,
< 1 ) 1 1 n 1 1 n
cos|— ) =1— — e
z 2122 41zt 6126

z = 0 is an essential singularity.
e The removable singularity is an unsubstantial singularity, i.e. the alleged

singularity disappears in Laurent expansion. For instance-a0,

sin z z z z

fe==r=tgrg at

¢ Pole of ordem: Consider the function,
1 1
1(z) = z+1 + (z—1)3
This function has two singularities at= —1 andz = 1. For singularity at
z = —1, its order is one, and it is called a pole of order one. For singularity at
z = 1, its order is three, and it is called a pole of order 3.
The formula to calculate the residue for a palg,of ordern is

1 dn—l
Residue at (z = z;) = = 1) ZILIIle o (z — zj)"f(z)} (4.32)

We call the pole of order one agmple pole For simple pole,

Residue of a simple pole at (z = z;) = lim (z — z;) f(2) (4.33)
Z—Z5
If f(2) =p(z)/q(z), one may also write
: : _ oy p(z)
Residue of a simple pole at (z = z;) = 5 (4.34)
q (25)
] +0 _ + (_\
c® C
MY

Figure 4.1. Contour integral and the count of residue

ExaMPLE 4.6 In this example, we apply Cauchy'’s residue theorem to evalu-
ate the following line integral.

° exp(ikt)
[
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wherek > 0 anda > 0.
Sincek > 0, based on Jordan’s lemma, we can use the following contour
integral to replace the line integral,

* exp(ikt) / exp(ikt) / exp(ikt)
N 7 — T S A— "N 7
I e il M e ) B e e
where the contour integral is a half circle. Thus,

/OO %dt = 2mi Residue(f(ia)) + mi Residue(f(z))

_ o exp(—l;a)(ac;— ia) o exp(ik;:)(x;- ia)
4+ a 4 +a
(4.35)

The simple pole at x is only counted for half of the residue is because that it
has only half circle.

THEOREM 4.7 (CAUCHY’S INTEGRAL FORMULA) Let f(z) be analytical
interior to and on a simple closed contour C. Then at any interior point z

1 f(©)
f&) = 5 72 T (4.36)

THEOREM 4.8 (ConvoLUTION) If f(x),g(z) € L*(R) N L*(R), the fol-
lowing identity holds

/_ " (©)g(€) explicx)de = = / T pfwdy  (437)

2 J_

Proof:
by definition,

/_Z f(©)g(&) exp(ix)dé = / 21/ y) exp(—i€y)d )} exp(i&x)dE
= / fly 21/ €) exp(i&(x — ))dg’} dy
= 9 9(5'3— y)f(y)dy (4.38)

In 3D, we have

| H@a@ et = g [ ax-yifnay  (339)
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ExAMPLE 4.9 Consider Heaviside function,

Hiz) = { Lot (4.40)

Note that at x=0 Heaviside function is not defined.

To find the Fourier transform of the Heaviside function,
1 oo
H(E) = o [ H(x)exp(—itx)dz

27 J_

= 215/0 exp(—i€z)dr = % (;;) exp(—ifx)
1

00
0

= omiE (4.41)

The result implies thaéxp(—i{oo) — 0, which requires thatm(¢) < 0.
Lighthill showed that in the sense of generalized function,

B i 1 _f1 £>0
H(¢) = exp(—;sgn({))m, where sgn := { 1 £<0 (4.42)
Note thatH (x) ¢ L'(R). Therefore, Fourier transform of Heaviside function
does not really exit fof € L. |f(x)| < oo is avery stringent condition.

It is why many functions that has Laplace transform do not possess Fourier
transform, which is the reason why sometimes we use Laplace transform in-
stead of Fourier transform. By the way, fis taken as a complex number,
Fourier transform is equivalent to bilateral Laplace transform.

ExAMPLE 4.10 To find the Fourier transform of the Dirac’s delta function,

5= % /OO 0(x) exp(—iz)dx = % (4.43)
Inversely,
@)= [ S epticnds = o [ ewliends @)

ExXAMPLE 4.11 On the other hand, consider the inversion formula,

/00 5(&) exp(i€x)dé = exp(i0z) =1, = 1(&) = §(¢) (4.45)

Hence

e}

1O =66) = 5 [ exp(-iga)do (4.46)

— 00



Green's function and Fourier transform 45

In three-dimensional space, we have the identity,

6(&) = (2717)3 /OO exp(—i€ - x)dx (4.47)
Combining (4.44) and (4.47), one may draw conclusion that
1 oo
5(&) = @ /OO cos(€ - x)dx (4.48)

EXAMPLE 4.12 The Fourier transform of (z) is

- 1 1a

f(&) = 27 €(€% — iaf —a) (4.49)

Find f(x)?
f(&) has three poles in the complex plane:

. 2 .
& =0, and@ﬁ:%i a—%:%iﬁ,ﬂzzm (4.50)

Therefore,

f@ = [ @ esslicans
—00—17y

}{ 1 taexp(ifx)
c2m(§—0)(§—&)(E — &)

3
= miResidue of € at & + 2mi Z Residue of £ at ¢;
j=2
_gexp(i§iz) | exp(ifer) | exp(i€sz)
B m{ §283 - 2(§2 — 53) - €3(&3 — 52)}

dg

_ (_a){i_i_ exp[m:( +5)] B eXP[iCU(%a - B)]
—a ia a? ia a?
Q*ﬁﬁw“4(2‘@2“—4
_ exp 2a> eXp (iBx) + (ﬁ + %) exp(—z'ﬁx)}

2
2 -
Ve g

a
Xp(
a

@

v

ra
T\ 2/

!

25 cos + asin ﬂ:c) (4.51)
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4.3 Examples of Green’s Function

ExampLE 4.13 Find the Green'’s function of two-dimensional Poission’s equa-
tion in infinite domain,

V2G(x,y)+6(jx —y|]) =0, ¥x € R? (4.52)
Use the polar coordinat®“ = — — (r—) and denotex = x — y. We have
rdr\ dr

1d d / /

- (r2-G) = —3())é(a) (4.53)
2
/ / )rdr o = — /5 dz))d(day)daydry  (4.54)
0 7’ dT

wherer’ is the dummy variable and= [x —y| = v/(z1 — y1)% + (v2 — y2)2.
The integration domain is a circular region centeredsat= y and with the
radius r.

Therefore,
d d 11
2W(r%G> =1, > G=—7" (4.55)
Finally, we find that
1
Gx—-y)= —%lnr (4.56)

ExaMPLE 4.14 Consider one dimensional Helmhotz equation,

Apply Fourier transform,

ag) = - / 2) exp(—i€x)da
A - . e exp(ign)de = ~€u(9
S(lo—yl) = / Sz — y) expli€a)de =  expl(~iy) (4.58)
and
B(E) = o= exp(—ity) (4.59)

or k2 — £2
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Therefore,

| a©exsticaris

— 00

1 o 1 .
3n | G o g Pl ~ v

1 [ expli@ — )
27 R (k""f)k‘—f)

(D) explib@ — ) — o exp(—ikta — 1)}

.2
d¢ = % Z Residues of ¢ at &;
=1

2/ L2k
_4%{ (COSk(‘T —y) +isink(z — y)> - (COSk(ﬂf —y) —isink(z — y)>}
_ﬁ (22’ sink(x — y)) = %sin k(x —y) (4.60)

(A)

(B)

Figure 4.2. Inversion paths of Fourier transform

ExamMmPLE 4.15 Find Green'’s function for three-dimensional Poisson’s equa-

tion,

whereV? =

3)

V2G4+6(x—x)=0 = Gu+06(x—x)=0 (4.61)
2

xiafci’i =1,2,3ando(x—x') = 6(x; —x))d(xe — 24)0 (x5 —
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Consider the fact that

S(x—x) = %exp(—if : x') = §(x —x) = %exp(iﬁ (x— x')>d£

Therefore, based on definition,

Gx—x)= /00 G(&) exp(iE . x)dE

— o0

one may derive that

Galx—x) = — /_ " G(E)E i expli - (x — x'))dE (4.62)
and
Cless = o = GO = golee) 469
(:3 r=x-x’
£
o

&1

Figure 4.3. Inversion of three-dimensional Fourier transform
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Leté? := &, r =x—x ,r:= [x—x |, and¢ - (x —x ) = &rcos . Then,

/ 1 >~ 1

Gx—x) = 52 exp(i - (x — x ))dé
= % 1 — exp(i€ - (x — x ))€2d€ sin §dfd¢
27r

exp(i&r cos 0)d&(—d cos 6)do

= ar / / exp(i&rt)dédt

- (2? / de / cos(Ert) +zsm(§rt)} (4.64)
Consider the fact that
L 1 1 25
/_lcos(ﬁrt)dt = g—rsin(grt)‘_lz s;r;fr (4.65)
1
/ sin(ért)dt = 0 (4.66)
-1
Hence
/ 1 ° §i
Gx-x) = 27@/0 S“gfrdg
B 1 ° sin &r 1 .
~ g | Tprdn) = i) (467

whereSi(z) = / SlTntdt andSi(oco) = g Finally, we have
0

/ 1 1

Gx—x)= (4.68)

4 [x — X/|

4.4  Static Green’s function for 3D linear elasticity

The Green’s function for static, linear, isotropic elasticity was derived by
Lord Kelvin (1882). The derivation shown below employs the Fourier integral
transform, which is a systematic and elegant procedure to find Green'’s function
for partial differential equations. Consider the Navier equation,

Ojij + fi=0 (4.69)
Denote Green'’s function vector of the displacement field as

u;n (X’ Y) = G%@ (X7 y) (470)
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We let
G oo
o = Cijner (4.71)
Y = 0(x—y)0mi (4.72)
whered(x —y) := d(x1 — y1)0(x2 — y2)d(x3 — y3), and the integem is a
free index, which indicates the direction of the concentrated load.
Then,
G oo G
"= Cinell = CiynGogy — 03,7 = CigraGroryj
Then Green'’s function for an infinite linear elastic medium is the solution of
the following equatin,

Cijki G +0(X = ¥)0mi =0 (4.73)

g

&s

s2={&:15|=1}

E.ul ‘32

Figure 4.4. The unit spheres? in the ¢-space. Green’s function at poiatis expressed by a
line integral alongS! which lies on the plane perpendicular4o

Apply Fourier integral transform,

-y = | TG @) opliE - (x—y)dE  (A74)
where/OO = ///OO , anddg = d&déodEs.
Consfc?oer -
G —y) = - /_ G (€)61E; expliE - (x — y))dE (4.75)
Sx—y) = (;r)?, / expli€ - (x ) (4.76)
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We obtain the following algebraic equations in Fourier space,

e 1
Cijri G (§)61€5 = W(sim (4.77)

Let 1
Kir = Cijuéi& = KuGoy = Waim (4.78)

Consider Laplace expansion,

Nji(§)Kir(§) = D(§)d; (4.79)

whereN; is the cofactor of{;; and D () = det{K;;(§)}.
Multiplying (4.78) with N;; yields

NAOKKOCTE) = Graln(©b (4.80)
DO6CTE) = Gralim(©) (4.81)

which leads to
GO = o e (4.82)

Change indiceg < i andm < j. Via inverse Fourier transform, one may
find that

1 > Nij .
G%}(X - y) = (271')3 /_OO D((gé)) exp(i§ - (X - Y))d£ (4.83)

For linear isotropic material, one may find that

Ny(€) = ne (42058 - A+ pes)  (484)
D) = pP(A+2u)¢° (4.85)

Letz = x —y. We have

G7 (2) = (2;)3 / ~ M((Mzﬂ)@jg?—(xw)&@) expl(i€ z)dé
(4.86)

To integrate (4.86), we dono# as a unit sphere whef¢| = 1, and denote
S' as a unit circle on the surface 6f, whereS? is intersected by a plane
perpendicular to vectar.

Apply Radon decompositon,

d¢ = dVe = d¢ydéydes = dVe = £2dedS (4.87)
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where¢? = &7 + &5 + &3 anddS is the surface element on the unit sph&fe
in §-space. Imagine that tiiespace is a expanded spherical balloon.
Denoteg = {;eg; as a unit vector pointing from the origin to the surface of
5?2 alongé direction and denote = z;e.; as another unit vector point from the
origint to the surface of? alongz direction. Therefore& = ¢€ andz = 2z
where = /&2 + &2 + &2 andz = /27 + 22 + 22. Obviously,§; = &;/¢
andz; = ZZ'/Z.
Then Eq.(4.86) can be written as

1 > 1 __
Gij(z) = (277)3/0 d§ /52 m((/\ +2p)0i5 — (A + M)fifj)
~exp{i¢z€ - 2}dS(€) (4.88)

Consider the symmetry property (chargye~ —¢& of Eq.(4.86)). We may
also have

Gij(z) = (271)3/0 dg . M(/\_lm,u)((A +2u)6i — (A + M)€i€j>
-exp{—i&z€ - z}dS(€) (4.89)
Change the scalgr— —¢. Eq.(4.89) yields
GU / /52 1 /\ ) ) (()‘ + 2#)511 (A+ N)gz@)
~exp{z§z£ -z}dS(€) (4.90)
Combining (4.88) with (4.90) yields
Gij(z) / /32 u( )\ t2u) ((/\ +2p)6i; — (A + N)ngj>
-exp{z§z£ -Z}dS(€) (4.91)
since -
/_ exp(i€2€ - Z)dE = 2n6(2€ - Z) (4.92)
one has
A 0ii — (A ¢.E -
@) = gy 006 9) O S5 ) a9

To integrate (4.93), one has to evaluate the following two integrals:

5(z€ -Z)dS? and / &i&;0(2€ - 2)dS?
52

5'2
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Consider€ - z = cos¥, dcos = —sinfdf. One may decompose the sur-
face element orf? into: dS(€) = sinfdfd¢ = —d(€ - z)dg, whered —

[0, 7] (cose -, —1]) and¢ — [0, 27]. If we lett = £ - z,

_ 1 2T 2t
0(z€ -z)dS :/ 5(zt)dt/ dp = — (4.94)
52 -1 0 z
On the other hand,
o B 1 27 o
| &gocenis= [ [ snggars (4.95)
52 -1Jo
Consider the projection of vectgr
Projzné = cosfz = cosfz;e; (4.96)
Proj; € = sinfb = sinf(cos ¢a; + sin pay) (4.97)
Considering,
a; = (a1 -e;)e; az = (az-e;)e;
one has
€ = uz,e; =cosfz +sinfb
= cosfze; +sinf (cos ¢ay; + sin ¢a22‘) e; (4.98)
Thereby,
¢, = cos0%; + sin O(cos pay; + sin paz;)
= Ezfj = (cos 0z; + sin O(cos ¢a; + sin d)azi))

wheret = cos 6.

. (cos 0z; + sin O(cos ¢pay; + sin d)agj))

cos® 0z;Z; 4 sinf cos 0 [ZZ- (cos ¢pai; + sin paz;)

+Zj(cos pa; + sin gbag,-)}

+ sin? 6(cos ¢ay; + sin pag;)(cos ¢pay; + sin pasg;)

tQZiZj +ty/1 —t2 |:ZZ'(COS QZSCLU + sin gbagj)

+Z;(cos pay; + sin (ba%)}

+(1 — t*)(cos ¢ay; + sin pas;)(cos gaj + sin pas;(4.99)
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Consider the fact that

1
/ t25(zt)dt = 0

1

/1 tv/1—26(zt)dt = 0 (4.100)
1

We have
o 1 2m
?{ d(zt)&i€;dS = / o(zt) {cos? payja;
52 -1 0
+ cos qb sin qb(aljagi + aliagj) + Sin2 gbagjagi}dtdqﬁ
0 ™ _
= ;(alialj + aziag;) = > (61']‘ — zlz]) (4.101)

becauseui;a1; + aziaz; + Z;Z; = 0;;. Note thata;, a, andz form a triads.
Let Qi = a1, Qai = az andQs; = Z;. FromQuQy; = QixQjx = dij, ONe
derives thati;a1; + asiaj + Z:Z; = 0;5.

Consequently,
Gy¥(z) = (271r)2 % [%(A - 2u)6@pz;r+(A2:)u)(5ij _z Ej)}
- gglﬂi,i (QJQ/L)){AAT%:% + gl.gj}
— ey (6w + B

(4.102)

4.5 Variation in a Theme: Radon Transform

Let x = (z1,22,73) be the positoin vector of a spatial point in* Rnd
consider a regular functiofi(x) (image density) defined in ‘R The Radon
transform off (x) is defined as

f(s,n) = R{f(x)} = /OO FX)5(s — 1 - x)dx (4.103)

f is the projectin off (x) on the planen - x = s, wheren is a unit vector, and
s is the distance from the plane to the origin of the coordinate (see Fig. (4.5)).
The integral is the integration of image densifyx), along the plane. The
collection of all f(s,n) for all unit vectorn is called the Radon transform.

The inverse Radon transform is carried out by two steps:

1. f(s,n) = &f(s,n) (4.104)
2. fx) =R :-# . f(n-x,n)dS(n) (4.105)
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X»

s-nx=0

X3

Figure 4.5. Projection plane of three-dimensional Radon transform

The Radon transform has the following properties:
1 f(s,n) is an even and homogeneous, of order -1, function, i.e.

fas,am) = |a|"1f(s, n);
2 linearity: R(c1 f + c2g) = c1f + 20;
3 transform of derivatives:
R(azf(x>) = niasf(‘S? 1’1)
R(9,0;f(x)) = nin;0f(s,m)
ExAMPLE 4.16 Consider animage density functigi{z, y). The two-dimensional
Radon transform may be defined as

g(p,0) = / / g(z,y)o(p — x cos B — ysin 0)dxdy (4.106)
which is identical to the following line integral

g(p,0) = / g(pcosf +tsinh, psinh — t cos)dt (4.107)
where parameter, t, is the length of straight lines 6z + sinfy = p. Itis
shown in Fig (4.6) that

x=pcosf+tsinf, and y = psinfh — tcosh (4.108)

In Fig. (4.6), it can be seen that two very bright spots are found in the
Radon transform, and the postion shown the parameters of the lines in the real
physical image.
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Y
\t
0
[
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\t @

Frachontranstormation

by 2R ©

Figure 4.6. Two-dimensional Radon transform: (a) prjectinline, (b) image in the physical
space, and (c) image in the Radon transform space

EXAMPLE 4.17 Let f(x) = 6(x). The Radon transform of Dirac’s delta
function is

§(s,n) = R(5) = / 5(x)3(s — n - x)dx = 3(s) (4.109)
wheres = n;x;.
Subsequently, B
§(s,m) =" (s) (4.110)
and the inverse Radon transform is
1
0(x) = "8 Ja 8" (ngxy)dS (4.111)

One can verify this by considering the identity (4.94), i.e.

d(ngxy)dS = 2—77 (4.112)
52 x|
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Figure 4.7. Two-dimensional Radon transform: (a) projection line, (b) image in the physical
space, and (c) image in the Radon transform space

2

Applying the harmonic operatdv? = to the above identity and con-

L;0T;
sidering Example (4.15) (Eq.(4.68)) yields

/ 8" (npap)nindS = 27TV2( ! ) = —871%5(x) (4.113)
52 ]|

Now we use the Radon transform to derive 3D static Green'’s function of a
linear elastic medium. Consider the concentrated load is acting at the origin of
the coordinaty = 0).

CijkitGrm,1j + 6(X)0im = 0 (4.114)

Assume that the Green'’s function can be written as a form of inverse Radon
transform,

o (X) = —8% g G (&nan)dS (4.115)
Then
k.17 (X) = e / G fnxn &&;dS (4.116)
On the other hand,
o(x) = R’l(S(s)) = —# g 8" (Enrn)dS (4.117)

We then obtain
Ciii&i6G2 " (Enttn) = —6imd" (Enn) (4.118)
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which leads to

G (8) = —K;;1(€)0(Enwn) + Cr&nn + Co (4.119)
where No(E
K Ciju&iy = 0rr, or Kij = 5(5)) (4.120)

Note thatC, = Cp = 0 because it is required that? (x) — 0, asx — oo.
For isotropic materials,

K (&) = p [62] Ot 20 (4.121)
and, correspondingly,
- 1 U
Gij (x) = 87r2/sz K" (€)0(Enn)dS (4.122)
and subsequently,
o) = L [0 _Atm)
G50 = T [\x| 20\ + 241) i) (4.123)

4.6  Joseph Fourier(l)

Joseph Fourier was born in 1768 in Auxerre, the ninth child of a master
tailor. Although the death of his father left him an orphan at the age of ten, his
intelligence gained him a free place at the local Benedictine school. At the end
of a brilligent school career he applied to enter the artillery only to be informed
that such a profession was only open to those of noble blood and was closed to
him 'even if he were a second Newton'.

Fourier began to prepare to enter the Benedictine teaching order but, what-
ever his plans may have been, the course of his life was violently altered by
the outbreak of the French Revolution, .... The situation of the new Republic
called for ruthless measures which the government, conscious of its own revo-
lutionary virtue, was well prepared to take. Treachery was fought by a political
terror in which opponents both to the left and right were executed and, as the
definition of treachery was extended, it became clear that no one was safe.
Fourier himself was arrested, released and then rearrested. A deputation from
Auxerre which, with considerable courage, went to Paris to plea his case, was
told-"Yes, he speaks well, but we nolonger have any need of musical patriots.’
Only the fall of Robespierre saved Fourier’s head.

However Fourier's release did not mark the end of his troubles. As coup
d’etate follows coup d’eta, and the revolution swung erractically to the right he
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Figure 4.8. Joseph Fourier

would remain a marked man. No one had been executed in Auxerre but Fourier
had been an agent of the terror there. His arrest was on a charge of H'ebertism
and the H'ebertists were to the left of Robespierre. The word 'terrorist’ then,
like 'Trotskyist’ now, denoted a defeated yet feared opponent.

Luckily an opportunity to leave Auxerre now presented itself. A new col-
lege (the Echole Normale) was being set up in Paris to help train teachers and
Fourier could now study under men like Lagrange, Monge and Laplace and
excape his terrorist past. Fourier’s talents were soon noted, but the college was
not successful and its closure was followed by further problems for Fourier.

"'We shudder when we think that the pupils of the Ecole Normale were cho-
sen under the reign of Robespierre and his proteges. It is only too true that
Balme and Fourier, pupils of the department of Yonne have long prefessed the
atrocious principles and infernal maxims of the tyrants. Nevertheless they pre-
pare to become teachers of our children. Is it not to vomit their poison in the
bosim of innocence (From an address to the National Convention, quoate by
Herivel)’
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Fourier was again arrested, released, rearrested and finally, following yet
another political swing, released to become a teacher at the new Ecole Poly-
technique.

Here Fourier remained for three years. That his talent was recognized is
shown by the fact that he succeeded Lagrange in the Chair of Analysis and
Mechanics. The quiet interlude was ended by a gonernment order to join the
invasion of Egypt. Ostensible intended to liberate Egypt from the Turks and to
threaten the British position in India, the expedition may have been seen by the
government as a way of keeping a troublesome general as far away as possible
and by the general (Napoleon) as the first step toward becoming Emperor of
the East. Fourier wa one of a ghroup of scientists and intellectualls intended to
form part of the immense cultural benefits that France was to bestow on Egypt.

Both before and after Napolean’s departure, Fourier occupied several im-
portant administrative and political posts in Egypt. When the French expedi-
tion finally surrended in 1801 and Fourier was repatriated, Napoleon offered
him the post of Prefect of the Department of the Isere centred round Grenoble
(France had been divided into 83 Departments and each Prefect governed his
Department of behalf of the central government.)

Although he could have continued a Professor at the Polytechnique, Fourier
accepted the offer. Herivel suggests that Egypt had given him a taste for admin-
istration and that he hoped to rise higher. Herivel also accounts that Fourier’s
close association with Kleber after Napoleon’s departure account for the fact
that these hopes were not fulfilled.

Fourier seems to have been popular and efficient Prefect. His greatest achieve-
ment during his 14 years of office was by reconciling the conflicting interests
of some forty communities to enable the swamps of Bourgion to be drained.
The draining of twenty thousand acres of swamps resulted in major economic
and health benefits and was achieved during a period morenoted for grandiose
paper plans than for concrete achievements. Fourier’s other administrative
memorial was a new road across the Alps (now Route 91).

Apart from his perfectorial duties Fourier helped organize the Description
of Egypt. This work written by the intellectuals attached to the Egyptian ex-
pedetion did much to inspire European interest in Egypt and was thus one of
the two permanent results of the expediton. (The other was the discovery of
the Rosetta Stone, atrilingual inscription which was to provide the key to the
deciphering of hieriglyphics.)

Fourier's main contribution was the general introduction — a survey of Egyp-
tian history up to modern times. An Egyptologist with whom | discussed this
described the introduction as a masterpiece and a turning point in the subject,
was surprised to hear that Fourier also had a reputation as a mathematician!

—T.W.Korner FromFourier Analysis
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4.7 Exercises

PrOBELM 4.1 Findthe Green’s function for a both end clamped Euler-Bernoulli
beam, i.e.

d? dQG(a:,y)
and
G(0,y) =G(L,y) =0, G'(0,y)=G'(L,y)=0. (4.125)

PRrROBELM 4.2 Forisotropic materials, elasticity tensor has the form

Cijre = A0ijone + (00055 + dirdje) (4.126)
Show
1.
Kir(§) = Cijre€i&e = (N + )&k + poiné;&; (4.127)
2. (Hint . useez-jkeimn = 5jm5kn — 5jn5km)
1
Ni;(§) = §€ik€€jmnKka€n
= (N +20)5:;8% — (A + w)&i&y) (4.128)
3.
D(&) = p* (A + 2p)¢° (4.129)

PRrROBELM 4.3 The Green’s functionG*°(x, x’), satisfies the 2D Laplace
equation,
V2G®(x,%x') + 6(x —x') = 0, Vx € R? (4.130)
0? 0? 0?
007 " a3~ Dol
7 5 00T,
x)d(z2 — 24). Use Fourier transform method to derive

whereV? = a=1,2. Andié(x — x') = d(z1 —

G®x—-x)= —%ln|x—x’| . (4.131)
Hints
, 1 o0 o0 . ,
(5(x—x):W/_w/_ooexp<z§~(x—x))d§ (4.132)
and

0 [ exp(i(§121 + &ox2))
[ Ny =

= —2minR (4.133)
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whereR = \/(xl —27)2 + (32 — 79)2.

PROBELM 4.4 In isotropic materials, the static Green’s function of linear
elasticity is

1§y 1 0?
dmpx — x| 16mu(l — v) Ox;0x;

G (x,x')

v

Ix — x| (4.134)

Letx = x — x’ andz = |x| = |x — x/|. Show that for isotropic materials,

-1 5mi£n + 6m‘£m - 5mn§7i TmTnT;
) o= = l(1=2
C]EmnGz],E 871'(1 _ I/) {( V) 73 +3 75
(4.135)
wherev is the Poisson ratio, and, A are the Lane constants with
2 1-2
A= “”,uzéi——ﬂ,yz—;L—f (4.136)
1—2v 2v 2N+ 1)

Hint: (Cjémn = Adjﬁémn + ﬂ(éjméﬁn + 5jn5€m))
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Chapter 5

EIGENSTRAIN THEORY

There are mainly two homogenization meghods used in engineering appli-
cations today. The first one is Eshelby’s, or Mura’s eigenstrain theory. The
central part of the theory is Eshelby’s eigenstrain solution for ellipsoidal inclu-
sion. The theory has been further refined, detailed and articulated by Professor
Mura and his co-workers. Today, it is called eigenstrain theory, and it has
widespread applications.

5.1 Fundamental equations of micro-elasticity
Consider equilibrium equation in an RVE

Ojij = 0 (5.1)

After homogenization, inhomogeneities are replaced by a eigenstrain distribu-
tion €*;;(x). Assuming that material is linear elastic, and the total strain is the
sum of elastic strain and eigenstrain,

€ij = €ij + € ij (5.2)
o , 1 . .
The total strain is defined ag; = i(UiJ' + u;,;). And elastic strain is related
with Cauchy stress by Hooke's law
0ij = Cijie(ere — € ko) = Cijre(Une — € ke) (5-3)

The equilibrium equation then takes a form

Cijkeviej — Cijie€ie; =0 (5.4)
Note that one interprets the effect of eigenstrain distribution as a type of body
force, fi = —Cijree* 1,5, and the original equilibrium equation has the form

0jij + fi=0.
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Let,

o0

) = [ (e explit - x)dx

= / Uy (&) exp(i&mxm )dx (5.5)

—00

e (x) = / () explimam )dx (5.6)

—00

Hence

g (x) = — / i€ (€) exp i€ )dx (5.7)

€rej(x) = z/ €10(&)&; exp(i&mam)dx (5.8)

Substituting (5.7) and (5.8) into (5.4) yields
/ (Cijketuneds + iCijkeere(§)&5) exp(i€mm)dx = 0 (5.9)

which leads to

Cijei€etie = —1C;jk0€,(€)E; (5.10)
Denote
K; (E_) = Cirei&e (5.11)
fi = —iCijRe€r&; (5.12)
They are related by
Ky Ko Kis Uy fi
Koy Ko Ko uy | =1 fa (5.13)
K31 Kz Ks3 us I3
We find that
_ Ni;(€) 7 17
W) = = K 5.14
where
1
Ni;(§) = §€ike6jmnKkaén (5.15)

D) = emneKmiKnaKes (5.16)
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For isotropic materials,
K¢ = ¢€-C-£=¢- {)\1(2) ®1®@ 4 2,&1(45)} €
= Moe+p(Eaerigh®)

= (A +pE®E+ pler1® (5.17)

Denote
Q&) =K '(¢) (5.18)

Q must be an isotropic second order tensor in Fourier space as well. Assume
that

Q&) ={¢-C- ¢t =Atw¢+B1O (5.19)
then
[()\ FERE+ u|5|21<2>] : [Ag ®E+ Bl<2>] =1® (5.20)
subsequently,
[AO+ 2l + BO+ w0 €+ BulgP1® 1@ (5.21)
One can then determine the constant A and B,
(A+p)
A= — = 5.22
KO+ 20l 5-22)
1
B = —— 5.23
€| (5.23)
Hence,
AP [ S CE ). )
Q) =(¢ce) == {- et 1?) (6529

or in component form,

€12 {_ (A+p)
1(

Q=K' =
’ I m A+ 2p) €]

566 +05)  (5.25)

Consider N
(&) = Qig (6)f5 = —iCtmnépnt 5(%)

Applying Fourier inverse transform,

w(x) = —i / Citmmim (€)E0

(5.26)

Nij(€)
D(&)

— [ i exntie xde (5.2

exp(i€ - x)d¢  (5.27)
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Consequences of (5.27) are

@500 = 3 [ Cuomen(©6(Nal@)6s + Ni(©6) D™ (©)

-exp(i€ - x)d€ (5.29)
7509 = Coe{ [ (G @66 ©D €
-exp(i€ - x) ) d€ — k() | (5.30)
5.2  Method of Green’s Functions
Consider
Gif(x~¥) = Gz | Nu@D  ©expli€ - (x— v (6.3

Based on convolution theorem and according to (5.28) and (5.29), one can
derive that

ui(x) = — /_o; Citmn€ mn(y)Gije(x — y)dy (5.32)
W) = [ G-y (5.39
The corresponding expressions for stress and strain are
€j(x) = _% /Z Cretmn€ mn (Y){Gik,e5(x — ) (5.34)
+Gjkei(x —y)}dy (5.35)
oij(%) = — z’jkf{ /_ Z Cpgmn€ mn(¥) Gp,qe(x — y)dy
+€*k£(x)} (5.36)
Eq.(5.37) is rewritten by Mura(1963) as the following form
0ij(x) = Cijke /Z esthCenh CpgmnGlp,gt (X — ¥ )€ smdy (5.37)

To prove the equivalenct between (5.37) and (5.38), we use the idegtity,., =
0s00tn, — dsn 0y tO €xpand (5.38),

Oij (X) = Cz’jkﬁ/ Cpqmn <5s£5tn - 5sn5tl> ka,qt (X - Y)e*smdy

= Cz'jkl / C’pqmn <ka,qn (X - Y)E*Em - ka,qé(x - y)e*nm) dy
(5.38)
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The first term of the integrand is
Cpqmnka,qn (X - Y) = Gmnqukp,qn(X - Y) = _5mk5(x - Y) (539)

Therefore,

[eS)
Cz‘jk@/ Cpqmnka,qn (X - Y)G*Zmdy
—00

= —Cz‘jkz/ O(x —y)€ redy = —Cijree e (5.40)
We then recover (5.37).
Recall,
G _ 1 1) 5.41
ij(X—Y)—@ o ((X y): E)QU(E) (5.41)

whereQ;;(§) = N;;(£)/D(§).
Substitute (5.42) into (5.34),

u(x) = e 5 (Lo(e=v)-€)ues) sivray
_ /Qw / ¥)3(5 — ymém)dy| dS

- /S Qu(€)f(5,€)ds (5.42)

wheres = r,,£,, and

5.6) = / T H )55 — ymbn)dy

is the Radon transform of;(y).

ExampLE 5.1 Assume that a linearly distributed eigenstrain is prescribed in
a spherical ball(|x| < a).

1
¢ = plawzetery) |x[<a (5.43)
0 x| > a
Hence 1
G*M’j = B (Ck5gj + Cg(skj) (5.44)

and for isotropic materials

. 1
fi==Cijree"rej = 5 (Cijkjck + Cijjﬂ@) = —(A+4p)c
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The area of intersection of the plagg,x,, = s with the sphere of radus a is
n(a® — s?), if |s| < a and zero otherwise. Thus

ﬁ@£>:=—1f”u+4mq&s—%gmmy

= —/ (N +4p)cidS = —(\ + 4p)eim(a? — %)
Sen{€mzm=s}
= (A +4p)ein(a® — (Enam)?) (5.45)
Therefore, the induced displacement field inside the sphere is
4
Uz(x) = ()\;;[_2”) /52 Qij(&)cj(GQ - (gmxm)Q)H(a2 - SUm-Tm)dS (5.46)
whereH(-) is the Heaviside functior,,,&,, = 1, and

e (A&
Qij(ﬁ)—ﬁ[dw_ ()\4—2/1)]}

'k Bt e

_-.:_l-'_.“__l_ E..:. :- = r_::. .-_'...:.-
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Figure 5.1. lllustraions of dislocations: (a)edge dislocation, and (b) screw dislocation

5.3  Application I: Dislocation problems

A dislocation is a distorted region among substantially perpect crystal lattice
environment. In other words, a dislocation is a linear defect around which
some of the atoms are misaligned or crystal lattice being distorted. There are
two types of dislocations: (1) edge dislocation, and (2) screw dislocation (see
Fig. 5.1). Use of eigenstrain theory to describe the effect of dislocations and
their induced disturbance mechanical fields is a success. Eigenstrain theory has
been an important approach in the development of dislocation theory. Here we
only introduce some simple examples.

Consider a straight screw dislocation on a half space. There is a jump or
discontinuity in displacement a, = 0 and—oco < z1 < 0, with the magni-
tude of b(burgers vector). A ficticious eigenstrain field is prescribed on the slip
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plane to mimic the mechanical effect of dislocation,

a3 = %bé(:cg)H(—ml), X € Q3
0. x € R°/Q

where the slip surface may be described as

(5.47)

Q= {(xl,O,xg)‘xl <0,—0 < x3< oo}

andH (-) is the heaviside function.
The eigenstrain field may be considered as the consequence of the displace-
ment field,
wh(x) = OH (22) H(~1) (5.48)

« _ LgOouy  Ouz\ b
€23 = i(aTcQ M 373) = g0mH(=21)

(Question: what about s, ?)
Apply Fourier transform

since

€ = Gy | mlx)en(-i€ 0)ix
= L - b(5 H ; d 5.49
~ G | §H ) (i€ X (549
Consider
/OO d(x2) exp(—i&oxa)dre =1 (5.50)
o 0
/ H(—x1) exp(—i&1x1)dxy :/ exp(—i&1z1)dxy
_ ;1 Im(€1) <0
217T/—oo exp(—i&sx3)drs = 0(&3) (5.51)
Therefore, Lo
€3 = @22 (é>5(§3) (5.52)

Substituing (5.53) into the general formula of micro-elasticity,

w(x) = —i /_ CtmmEin €6 (€) exp(i€ - x)dE

= —22'/ Cir23€3360Qi5 (&) exp(i& - x)d§

Y N ——
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where the factor 2 is due to the presence’gh, if the minor synmmetry is
being considered. For isotropic materials,

Figure 5.2. A screw dislocation

Ciezs = Adjed23 + (1(dj20¢3 + 053062)
= (82003 + 6;300)

The only non-zero components aess3 = 1 andCsag3 = . Therefore,

u(x) = ((23)2) /_Z (5(513)) (@323@12(5)53 + 032236213(5)52)
exp(if - x)d§

Us(x) = ((2:)2) /Z (5(513)) <02323Q22(€)§3 + C3223Q23(§)§2>
exp(i§ - x)d§

uz(x) = ((2:)2> /O; (5(513)) (02323(0232(5)53 + C3223Q33(§)§2)
exp(i§ - x)d€

in which,
_ A+p) &&
QIQ(E) - _M()\+2,U) 54
[ +2m)E = (A + el
D2lf) = (A + 2p)€4 :
Qus(6) = A +p) &é&s

Cp(h+2p) €4
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o (At &8s
Q32(§) = Q23(¢)
(A +2p)€% = (A + &3]
Q2(€) AOTIE (5.54)
Obviously,
| ean@eds - o
/_OO 0(£3)Q13(&)&edés = 0
/_OO 0(£3)Q22(€)&3dés = 0
| dean@eads - o
| s@en@ada = o
o0 B l 52
/ 0(£3)Q33(§)&dEs = G
Therebyu; (x) = us(x) = 0, and
uz(x) = 27T / / G §1+§2 eXP<i(§1$1+52$2)>d51d52
- ;ta <;1) (5.55)

according to the inverse Fourier transform (Mura’s book page 17),

. /w&&+@ p(i(6171 + €aa2) ) drdgy = 2mtan™" (2)

5.4  Application Il: Stress intensity factor for a flat
ellipsoidal crack

In late 1960s, John Willis used eigenstrain method solving a class of crack
and contact problems in anisotropic space.

In the following, we illustrate Willis’ solution procedure in the case of a 3D
ellipsoidal crack in an isotropic space.

Consider an ellisoidal crack embbeded in an infinite space. Suppose that the
crack regiorf? is:

2
Q: —2+x—§§1, and z3 =0. (5.56)
a3
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‘XS

FET | ey
|

e

- X2

X1

gF = ag
.

Figure 5.3. A three-dimensional ellipsoidal crack

For simplicity, we assume that the crack opening has the following form:

$2 ZL‘2
fus] = by |1 - 2 — Z2x() (557)
1 2

where parametédr is the Burger's vecter, ang(?) is the characteristic func-
tion of crack region, which can be defined as interpreted as

@) =m@-x={ o X o 5:58)

whereH (-) is the Heavyside function.
This is equivalent to prescrib the following eigenstrain on the crack region,

. 2 22
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Therefore,

/// ") exp iE-(x—x’)dx/:

x/12 .’L‘/22 . . ’ ’ogd
// byl—— — ol exp(—i&sxs — i€ - (x — X ))dxldx2(5.60)

where in the second line, all vectors become 2D vectorsgi-e.£1e1 + £2e9
andx = z1e1 + zoes.
Employ the fundamental formula of micro-elasticity,

1

w(x) = / { / Ctmne” ()6 N3 (€)DL(€)

(2m)3
exp(—zf S(x—x ))dg} X' (5.61)

Changing the dummy indicés— k,j — p,m — 3,n — 3,{ — ¢, we have

2
ug(z1,2,0) = / / Cpq33\/j§qglzz()g>

~exp<—i£ (x — X )ddE (5.62)
and
ug (21, 22,0) = 27r / /Cpq33\/qu%;\(fg(£)
-exp(—ig C(x — X)) dQde (5.63)
subsequently,
oij = Cijreure = b /OO kafcpqlii;(fgféNkp(ﬁ)

/1/ exp —i€ - (x— x))dxlda:Q (5.64)

We first calculate the inverse Fourier transform algng.e. evaluating the
following integral,

/°° CijttCpg33&q&eNip(§)

G exp(—€ - (x — x )dés . (5.65)

For isotropic materials,

Nip(€) _ [N+ 20)0kp€” — (A + 1)€k6p]

D(E) O\ 2p)El (5.66)
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where the denominator may be decomposed into

f=(8+8+8) =(6-ifag+8) (s+i/d+8) 6o

Since the problem is symmetric, we only consider the upper halp $pace
0). Because the convergence requirement of Fourier transform, we are only
interested in the root with a negative imaginary patrt, i.e.

& = —i\ /& + & (5.68)

which is a double root as shown in Eq. (5.67).
Suppose; is a n-th pole off (z), its residue is then
1 d”

(n— 1)1 22 o

Residue at (z = zj) =

(= 2)"f(z)]  (5:69)

Therefore, the integrand inside (5.65) is

o 0 NabaleNip(€) ,
Fim = CupaCo - { 62— 25708 expig - (- x)
(5.70)
After some tedious calculation, we find thatgt= 0,
_ (A ) 2 2
F333 = 27()\ o) V&t & - (5.71)
Hence,
bu(A + )
o33(x1,22,0) :—m -5 — 3

{/OO /OO exp(—i& - (x — x')d&ldﬁg} dx' dx), (5.72)
where¢ = /€2 + £2.

Lety; = x1/a1,92 = w2/ag; (1 = a1&1, (o = azxée; andny = (1 /¢, =
C2/¢, where¢ = /¢? + (2. Then

E-(x-x) = ¢-(y-v) (5.73)
d$'1dx/2d§1d§2 = dyidyéd{ld@ (5.74)
xl12 3:/22 9 9 2
ay as
2 2
e=yJarg = /A (5.76)

ay a3
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Thus in Eq. (5.72)

/_ /_ € exp(—i - (x — x')dérdé
B 0o 00 7]2 ,,72 ) ,
- S\ + g e (—ien v =) )dadé

= [T (8 e (icn v - ) )dcas 77

Denoteg = —n - y. The above integral becomes

/QW/OOCQ\/ [S) 2+ 9 2exp<—icn.(y_y’)>d<d¢
i, V@)
o, ()

27r

/o V()

eXp (iC(g+m-y')dnde

+(2)
+<C2 {( )/Oooexp(iC(ngn'y’)dC}dfﬁ
(i

- )2 = >d¢ (5.78)
9g*g+n-y' '
Denoten -y’ = ' cos(f — ¢) and consider following integral identity,
2 .
/ db-9) __ 2 (5.79)
0 g + y/ COS(Q - ¢) 92 J— y/2
. 2T 2 ,
s _ zb,u)\+,u)/ \/ + 2 / y'/1— y2dy dldyg
23=0 2r( N+ p) CLQ 99 Ja g+ cos(0 — @)

_ ibp )\+u)/2”\/ + 2 / y'\/1— ’2dy
27T)\+/J) CLQ ag 1/9 _y

Let

Change of variable

, 21 12
y?= g (w — —) (5.81)
One can show that
°I 1, g+1 g

g . 5.82
82~ 2 g—1 " g1 (5.82)

} (5.80)
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Interior solution (y < 1):
Wheny < 1 z3 = 0, itis crack region. Obviouslyy| = | - y| < 1. Since

g+1 = _(H—ig) = exp(—m)(l —i—g)

g—1 I—g I—g
then,
0?1 1
oL +9 EPLTI (5.83)
dg? H . 2 2-1

Both In|(1 + ¢)/(1 — g)] and g/(g — 1) are odd function ofp, whereas

1/2
((3052 #/a? + sin? gzb/a%) is an even function ap.
Hence wherny < 1

o33(z1, x2,0)

Cbu(A + p) /2“<c032¢ N sin2¢>)1/2d¢

AN +2p) a? a3
buE (k)
_ ) 84
2a2(1 —v) (5:84)
where
/2 2 2
E(k) = / (1 — k%sin? ¢)2dop, k2 = % . (5.85)
0 1
If
0 buE (k)
o33(8)) = —o33 = " 2as(1—v) (5.86)

it then links the Burgers’ vector with the prescribed stress on the crack surfaces,

2(1 — v)agody

)

(5.87)
This suggests that the type of prescribed eigestrain is equivalent to prescribed
constant stress on crack surfaces.
Exterior solution:

We are only interested the asymptotic solution, ye—~ 1. Wheny — 1,
the term|g/(¢> — 1)| > In|(g + 1)/(g — 1)] — oo is the leading term of
asymptotic expansion. Therefore

ibu(\ + 2 2 qd
o33(z1,29,0) = MA+5 / \/ ’72 g*g_d’1+0(1) (5.88)
- mo, myY2 Y 5 89
f(’?)—g(a%‘f‘a%) , an Y—E- (5.89)
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Crack surface

Figure 5.4. The shortest distance between the crack surface and a point

_ bt ) [T fm—f@) L [T fE)
0'33(1‘1,:E2,0) = 27r()\+u)/0 ﬁd¢+% 0 g27_1d¢
_ 1)
= 5] oo —d¢ + O(1) (5.90)
Assume thay = —n -y = ycos. Then
/2” do 2m d(¢ — ) _ "2 2w (5.91)
o 9*-1Jo ycos?(p—9)—1 J/1—¢2 y2—-1 .

and

buN+p) vy (i, G 1/2‘
_ LA L) .92
o33(71, 2, 0) (A +2u) \/y27_1<a% * a%) y—9 (5:92)

The stress intensity factor is defined as

ky := hn%)(zml/%gg (5.93)
For an ellipsoidal crack,
(y — 1)y?
r= —3 2 n (5.94)
(Z+3)
ai a3

and

V2rbu( A+ p) Vy —1 (37%+x§>1/4 —1 (5.95)
v po1lel ey Y |

ap Gy
Substitutingy = (2(1 — v)az0%;/(1E(k)) into the above expression, one has

k1

Vragols (23 xd\1/4
ki ="—>—7+— . 5.96
! E(k) (a‘ll a%) (5-96)
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5.5 Isotropic inclusion-Eshelby’s solution

From 1957 to 1961, J.D.Eshelby published three landmark scientific papers
systematically solving inclusion problem in an elastic medium.

Eshelby’s ellipsoidal inclusion problem is stated as followsd induced
displacement, strain, and stress fields by an ellipsoidal inclusélpembed-
ded in an isotropic unbounded elastic medium, in which a uniform eigenstrain
is prescribed, i.e.

* E*i i, X S Q
€ ij(x) = { O,J = R3/Q (5-97)

Using the fundamental formula of micro-elasticity,
W) = = [ Comn€ )G~ )i

= _e*mn/QCjémnG?ﬁé(X_Y)de

For isotropic elastic materials,

0 -1 Omizn + OniZm — OmnZi ZminZi
Ciomn G5 0(2) m{(l —2v) 3 +3 s }
_ gzmn(e)
 8n(1 —v)|z)? (5-98)
wherez = x —y and¢ = —z/|z|, and

55.1 Interior solution

Considerx € (. Let z = |z. Take a radon decomposition centering around
a the pointx dfy = dzdS = z%dzdw, wheredw is the volume angle 052
We can rewrite displacement field as

—€ oy,
W) = iy e O

= Emn //gmm )dzdw
].—I/ S2

- MLQT(E)Qimn(E)dzdw (5.100)

where vector = y — x, y € 02 and the scalar(€) is the distance between
the pointx and a pointy on the surface of the ellipsoidal in the direction of
r. In other wordsy(£€) is the distance betweenand the interseption point of
straight liney = x+r, y € R? and the surface of the ellipsoidal. To find such
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Figure 5.5. An ellipsoidal inclusion

interception point along a fixed direction &f We assume that the interception
point is marked ag’. Since it must be on both the straight liné,= x + r,
ie.

Ty =z +rl

1"2 =x9 + 1rls (5.101)

zh = w3+ 1l

and on the surface of the ellipsoidal

2 2 2
T (5.102)
ay ay; 4z
One can substitute (5.139) into (5.140). For fixed psiaind a fixed direction
£, it yields a quadratic equation,

(w1 +141)? N (g + 142)? N (w3 + 1l3)?

2 2 2

-1 (5.103)

of unknown variabler(€). More explicitly,

2 2 2 x1¥ Tl x3l
7“2(_%“‘_%"‘_?5)"'27"( 121+ 222"‘ 323)

ai az as aj a3 az

¥? 23 a?

+[<—%+—§+—§>_1] =0, = gr’+2rf—e=0(5.104)
ai a5 a

1 2 3
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where
2 g 2
g == (S+2+3) (5.105)
ar ay; aj
0 xoly sl
;o= (GRS 5R) (5.106)
2 2 2
e = 1-(G+2+5) (5.107)
ap az aj

Eq. (5.142) has two roots,
_ f f2 e\ 1/2
) =~ (? + 5) (5.108)
f? e

1/2
Since(— + —) is even in¢, while g;,,,(£) is odd in,
9 g

2 e\1/2
/52(92 + g) Gimm (£)dw = 0 (5.109)
Let\; = £1/a2,\a = {3/a3 and\3 = £3/a%. We have

€ mn f
i = —Gimn £)d
W) = o p L@

_ € mn Ty )
- 8n(l-v) f{gz( g )gzmn(ﬁ)dw

_ E;r(flmffy) 722 ();)gimn(ﬁ)dw (5.110)

Then

(x) = ﬁ*mn%‘f Ay,
uig(x) = 8r(1l—v) 52<g)glmn(£)dw

_ Sﬂim_"y) %92 <);>gimn(£)dw (5.111)

One can find induced elastic strain field by symmetrizing the elastic distor-
tion,

(5.112)

1 * o s
e¢j=§(m,j+uj,z') € mn f;ﬂ igjmn + AjGimn, 0,

- 167(1 —v) g
l; . .

where \; = —; is the component of the normalized vector= \;e; and
a

g=A-A= )\
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Figure 5.6. lllustration of integration scheme over an ellipsoidal

Consider
gijk(f) = (1 — 2V) (5z‘jlk + 0;0l) — 5jk€i) + 3£i€j€k = gikg(ﬂ) (5.113)

The last two indices of the third order tensgy;, is symmetric. We can then
define a fourth order symmetric tensor,

S = f At Rty (5129
J 16m(1 —v) Jge g
This leads to the long anticipated result,
€ij(x) = (or e?j(X)) = S5 € mn (5.115)

It is obvious that

Q Q Q
Sijmn = Sijnm - Sjimn

where the superscript indicates that the Eshelby tensor is for induced strain

field inside the ellipsoidak).

REMARK 5.5.1 The most amazing fact of this result is that the induced strain
field and stress field inside the inclusion are uniform, and the Eshelby tensor
for any ellipsoidal shape of inclusion is a constant tensor.
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Define the following elliptic integrals

dw o ds
I;(0) = L =2 —_— 5.116
10 = [y =2 [ G 6110
22w
0,0) = 3 / i
52 ajatg
e ds
= 27ra1a2a3/ (5117)
o (a%+s)(a% + s)A(s)
Jrg(0) = ajl;;—1; (5.118)

whereA(s) = /(a? + s)(a3 + s)(a? + s) and argument0) indicating the
lower limit of the elliptic integrals are zero.

One can show that Eshelby tensor can be explicitly expressed by these inte-
grals through the following identity,

87T(1 — I/)S%M = (5ij5kg(2VI](0) + J[K(O)) + (5ik5k£ + 5jk5z’£)
(1= 2)(I(0) + 1(0) + J1s(0))  (5.119)
where the upper case indices are not summed with lower case indices.

EXAMPLE 5.2 To computes$?,, we consider

8t(1—v)S%y, = 2vI(0) + J11(0) + 2(1 — )21 (0) + 2J11(0)
= (4-2v)I1(0) + 3J11(0)(ai111(0) — I1(0))
(1 —2v)I1(0) + 3a2111(0) (5.120)

which leads to
3a? (1—-2v)
Q 1
Siin = 8r(1—v) I (0)+ 8r(1—v)

The integral/;(0) andI;;(0) can be expressed in terms of standard elliptic
integrals. For example, assumiag > a2 > a3, we have

1,(0) (5.121)

4marasag
no) = [P0, k) — E(6,k)}
(e~
4dmaiazas az(a? — a§)1/2
I3(0) = AN
e 0 B A s .00}

where

0
dt
F,k) =
(6,k) /0 (1 — k2sin?t)1/2

0
E6,k) = / (1 — k2sin®t)Y2at (5.122)
0
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1/2

andd = sin~'(1 — a2/a?)/2, k = [(a? — ad)/(a? — ag)] .

In applications, the following invariant formulas are very useful,

11(0) + I(0) + I3(0) = 4

3111(0) + T12(0) + N13(0) = 4/af
3a1[11( )+ a2112 (0) + a3113(0) =31
I12(0) = (I5(0) — 1,(0))/(af — a3)

When the ellipsoidal becomes a sphere, Eshelby tensor become simple num-
bers. Leta; = a3 = a3 = a. We have

g
Hy o= -

and hence
S5v—1 2(4—5v)

B P O (S0 + 010 12
Sy = (15(1_V)>5]5M+15(1_V)(5k5ﬂ+5jk54) (5.123)

A remarkable property of the Eshelby tensor for spherical inclusion is that
it does not depend on its size, i.e. it does not depend on its radidhis
implies that no matter how large or how small spherical inclusions are, they
share the same Eshlby tensor. In other words, there is no embeded length
scale or scaling factor for spherical inclusion. This property will lead to some
remarkable consequences in ensuing homoginization process.

For other specified shape of ellipsoidal inclusions, readers may consult Mura’s
book for detailed information. A systematic documentation on Eshelby’s ten-
sor in various cases can be found in Mura [1987].

5.6  Exterior Solution of Ellipsoidal Inclusion

Forx ¢ Q, the exterior disturbance displacement and strain fields due to
eigenstrain distribution had been also found by Eshelby, though evaluation of
the induced exterior displacement fields and strain fields are often difficult.

Suppose that eigenstrain distribution inside the ellipsoid is constant. For any
pointx € R?, we have

UZ(X) = —Cjkmne*mn /Q Gij7k(x — X,)de/ (5.124)
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where
ComnGEy(x — %) = — 1
glmnig 3 %)= 8m(l —v)
. _ . o _ -
{(172y)5m2(xn xn)+5m(x,? ) — Smn(w; — )
%3
(Tm — 2,) (20, — 27,) (25 — :U;)
+3 o }
- 8n(l-v) {8@8%8% %l —2(1 - ){Txn x|
Dz |5<|} Vomn g yx|} (5.125)

Introduce the following potential functions,
P(x) = / |x — x/|dQy (5.126)
o(x) = / ———dQy (5.127)

|x — x|

wherey(x) is the biharmonic potential, whereagx) is the Newtonian poten-
tial. This is because of the fact

-8 x€Q
Vi = 2v2¢p = (5.128)
0 xeR3/Q

To verify Eq. (5.166), one can show first
Vi = / Ix — x'|dQy
(9332

- [ (- =g,

\XI |

_ / 0 = 26(x) (5.129)
a [X|

Subsequently,
Vi = V2V =2V2%p

= /v dQ—87r/V2
47r\x]

= 8r / V232Gt (x — x')dQy (5.130)
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whereG' (x — x') is the Green’s function for three-dimensional Laplace equa-

tion, i.e.
VIGE(x —x) +d(x—%x) =0 (5.131)

Consequently,

Viy = 2V2¢p =81 / §(x — x')dQy
Q
81 x€N
= (5.132)
0 xeR3/Q

We can then express induced displacement as

ui(x) = —/Qe*mangmnGijvg(x—X/)der
€ m 9 P P
= ~2(1— ) (i + Oni—
87(1— ) {axiaxmawn‘/’ (-5 o, 1O axm)¢
)
_2”5’”"”@72-¢} (5.133)

Similarily for elastic distortion field and strain field,

€ mn
Us 5 (X) = m (w,mm] - 2(1 - V) (6mz¢,n] + 5nz¢,mj>
—zyamngs,ij) (5.134)
1 € mn
eij(x) = i(ui,j + uj,i) = m{w,mnu - 2V6mn¢,zg

- (1 - V) (6mi¢,nj + 5m'¢,mj + 5mj¢,ni + 5nj¢,mi} (5135)
One can rewrite the above expression in a succinct manner,

el (%) = S5 (X)€" ke, Vx € R?/Q (5.136)

which defines the exterior Eshelby tens$fy ,(x).

1
m (w,ijké(x) - 2V5k€¢,ij(x)

—(1 = v)(Okith 05 (x) + 00i 1 (%)
O, Li(X) + 0036k (x))) (5.137)

ffktz(x)

It depends on where the tensor is being evaluated.
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The derivatives of Newtonian potential and biharmonic potential can be also
expressed by elliptic integrals. For instance,

(;Sij (X) = —5ijI[()\) — JJZ‘I[J()\) (5138)
Vajre(x) = —0i(wplin(N) e + (xizjlrg(N)) ke (5.139)
where
oo ds
I\ = 27Ta1a2a3/)\ m (5.140)
oo ds
Ir;(N) = 27Ta1a2a3/)\ (@@ +5)(@ + 5)A0) (5.141)
TN = allJ(A) = 1;(N) (5.142)

where) is zero wherx € ) and\ is the largest positive root of the following
equation,
IQ 1,‘2 562
; 1 4 5 2 4 5 3
(@i +A)  (a5+A)  (a5+ )

A very useful identity that relateﬂffké(x) with elliptic integrals is

=1 (5.143)

87(1 —v)S(x) = 8m(l— V>53‘k£(/\)
+(1 — I/) [@gkuK,j()\) + (SkEIK,i()\)
0, (N) + 8l r,i(N)

dijerJrre(N) + (0 + 0jk2:) J170(N)
(5igl‘j + 5jgxi)J[J7k()\)

‘a2 ke(N) (5.144)
where
8m(1—v)Sihe = 0ij0ke(RuIr(N) + Jrx (X)) + (6indre + Ojudic) -
(=) () + 1) + 1) (5.145)

whenx € Q, Eq. (5.144) becomes (5.145). Ju and Chen [1994] developed a
more simple and explicit way to evaluate exterior Eshelby tensor. From

Uz(x) = - /Q CjkmnGij,Z(X - Y)e*mn(Y)de (5-146)
one may derive that
1 %
€j(x) = —3 /Q Chremn (Gik,zj'(x —y) + G pi(x — }’)>€ mn (y)dSdy

= /Qgijmn(X—Y)ﬁ*mn(Y)de (5.147)
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where

1
gijmn(X - Y) = —§Ckgmn <Gik,€j(X — y) + ij,éi(x _ y)>
1
T Sl — ) [(1 — 20)(8im6jn + GinGjm — 0ijOmn)
+3V((5im£j£n + (5mﬁjﬁm + 5jm€i€n 4 5jn€j£m)

+38imbn + 3(1 — 20)8n il — 15£,~ejemzn}(5.148)

whereg; ., is called the fourth order Green'’s function (the second derivative
of the Green’s function).

If €*,,n(x) IS constant inside the inclusion, the exterior Eshlby tensor can
be defined as

Gijmn (%) 1= / Gijmn(x — y)dQy = S55 1, (5.149)
Q
For a spherical inclusiofu; = a2 = a3 = a), one may find that
4rad 4rad a2
= Qa0 = —-— . 5.150
6= g MU =g (11 + 5‘X,) (5.150)

The exterior Eshelby tensor can then be obtained by straighttfoward differen-
tiation,

0P

30(1 —v)
+(3p% — 100 + 5)(Simjn + Simbjn)

+15(1 — p*)8ijlmbn + 15(1 — 2v — p*)Spmnlil,
+15(v — p2)((5im€j€n + 0inlilm + Ojmliln + 0jnlilp,)

+15(7p? — 5)5,-@@,”54 — 5% (5.151)

Giimn(x) = [(3;? + 100 — 5)3i;0mn

wherep = a/r. Note that whem — a, S7% . # Sf}mn which indicates that
both disturbance strain field is not continuous across the interface of the matrix
and inclusion.

In fact, whenp — 1,

o] = el = el = (Sn — Sthan )€
-1 1
F8imliln + Binlilm ) = il bl emn (5.152)

which is the weak discontinuity at the interface between matrix and inculsion.
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5.7  Jock Eshelby (Il): Lessons from J.D.Eshelby

The measure of your education is what you remember 15 years afterward,
says one wiseacre. Well, it's been a little more than 15 years, and | don't think
that | learned anything at the time, but the lectures | had from Professor J.D.
(Jock) Eshelby still leave a mark.

Undergraduate students in materials science at Sheffield University were
barely aware of the towering stature of this man, in the intellectual sense any-
way. If you don’'t know who he was or what contributions he has made, then
you probably have some serious holes in your own materials education, but
you can still read on. A few Britishisms must be explained, though. First,
the term "Jock” is used in the United Kingdom not for an athlete, as in the
United States, but is a nickname commonly accorded to Scotsmen living in
England; the U.S. sense could never apply to Jock Eshelby. Second the term
"Faculty” in England is equivalent to a college in a U.S. University. Third, a
professorship in the United Kingdom is a distinguished academic rank that has
almost no equivalent in the United States. The closest would be a "leading
professorship”.

Way back then, Sheffield had a Faculty of Materials, with departments of
Metallurgy, Ceramics, Glasses, Polymers, and the theory of materials. The
department of the theory of materials was arguably a little top heavy. It had
two professors, Eshelby and B.A.Bilby (whose name you should also know),
one other lecturer, and a computer programmer. In a good year it had one
undergraduate student.

Eselby taught courses in elasticity and solid state bonding to the undergrad-
uates in all of the departments, and his lecturing style was not particularly
student-friendly. He did not work from notes. He would walk into the lecture
hall, apparently already half-way through this lectur, pick upthe chalk, and
start writing on the board. Whether he was trying to show us how to solve
Schrodinger’s equation or develp the strain compatibility relations, the tech-
nigue was always the same. He would clear a patch of board and start deriving
a theorem. Running out of space, he would clear another patch, not neces-
sarily connected with the first, and fill that up. Eventually, small pieces of
the theorem would be scattered more-or-less at random across the chalkboard,
stochastically mixed with the detritus of the previous lecture, and with random
parts missing—erased to make space for more. It did not help that his writing
was arocious, and his speech sounded as though he had filled his cheeks with
marbles before starting. On one occation, one of my classmates managed to
ge the professor’s attention (a challenge) and asked him if he could possibly
write a little more clearly. For a few lines, the writing was four times as large,
but still as ilegible as before. Several lectures ended with Eshelby’s discovery
that he had misderived the theorm in question—a significant risk if you try to
do it without notes, even if you are a bona fide genius. When this happened,
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he would stand back and survey the board. Agter a few moments, he would
announce something like, "Well, there’s a sign error there. You can correct it
and work through to the result for yourselves." As if.

As time went by, our horror at his teaching style gave way to an understand-
ing that the man was, in fact, a genius. Eccentric, yes but a genius. Apparently
addicted to cheap cigars, he would smoke them down to the smaalest butt, then
draw a cherry pipe out of his pocket, and stuff the remains of the cigar into it,
tob e smoked until not a scrap of tobacco was left. He cared little for what peo-
ple thought of hom, | think, and did not pay much attention to the politics of
academia and the scientific community. This resultd in anunconscionalbe de-
lay in his being elevated to the rank of Fellow of the Royal Society, which does
seem to have been a sore point. In one memorable lecture, he described all of
the current theories on a particular topic, listing the names of their authors on
an uncharacteristically cleared chalkboard. He then described what was wrong
with each of their work, condemning the weak-mindedness of these "so-called
scientists" in quite direct terms. Having disposed of their failed logic, he then
wrote the magical letters "FRS" after each of the names. He was elected an
FRS himself that year and did not repeat the performance as far as | can gather.

Eshelby’s impact on material sience is far, far out of proportion to the num-
bers of his publications. In total, he published less than 20 papers over his
entire career (This is not true by the way. Eshelby published alomost 50-to-
60 papers in his lifetime, but the point is valid: this days, you can see a lot
of mediocre people published hundreds of junks, and good papers can not be
published-Li’'s comment), but each of them is a classic. A fine demonstraion
of the futility of today’s obsessiion with publication-counting as a means of
career assessment. Eshelby’s work is characterized by real physical insight,
complemented by elegant mathematical analysis (He was a professor of ap-
plied mathematics at Sheffield, in addition to being a professor of the theory of
materials.) In contrast with his lectures, his written work is a modl of clarity.
Although he was a powerful mathematician, he felt that we should only engage
in "mathematical weightlifting" if we could not reason our way to the desired
result through simple physical logic. Goodness knows what he would have
made of today’s computer simulation techniques. | think he would probably
have thought of them as the last desperate resort after both physical reasoning
and mathematical analysis failed.

An insight into Eshelby’s motivations was provided to us in an informal mo-
ment one day, sitting in the small but splendid museum of glassware belonging
to the Faculty of Materials, in a traditional British tea break. The usually unap-
proachable Esheby was unusually affable that day—perhaps he had just receibed
word of his FRS election—but we fell into conversation and one undergraduate
student adked him what had led to his being a "pure theoretician". He told
us the story of a formative experience in his life. It seems that as a young
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teenager he had made a calculation of the thermal shock resistance of a piece
of glass. This resulted from his mother’s always using a thick cork pad beneath
a coffee table. She explained the reason to him and he set to work calculationg
the effect of the anticipated thermal shock. A short while later, he came to his
mother and announced that he had completed his analysis, and that table would
withstand a sudden local rise to the boiling point of water. His mother, being a
wise woman, advised him that the obvious experiment would not be forthcom-
ing and that he was forbidden from performing it himself. Well, curiosity and
the budding scientific mind got the better of his youthful judgement one day
when he was alone in the house. He boiled a pan of water and place it at the
center of the prized coffee table. In his own words, "Well, cracks flew in ev-
ery direction, and | suddently received a discouragement that from performing
experiments that has lasted me the rest of my life."

True to the creed of the theoretician, however, he refused to allow that the
analysis was flawed, and instead blamed the experiment. " Of course, | knew
immediately what was wrong. The d***d thing hadn’t been annealed properly.

It was FULL of residual stress!"

By all accounts, this attack on the quality of the prized table did not endear
him to his mother. Let all theorists beware of blaming the experiment lest they
suffer similarly.

—By Alex King(From MRS Bulletin, July, 1999)

5.8 Exercises
PrOBELM 5.1 Show that the integral

J-
/ exp{i€ - x}dV, :47r\/?a3 3/32(277) (5.153)
Vo 2 n /

,and(¢] = /&8 + & + &3

wherel, is a sphere with radius a; = a|¢
Hint:
(1)Consider the identity

Vx exp (zﬁ . X> =€ exp <z§ . X)

@) 1
/0 tsin(alg]t)dt = T(1)(al€]) Y23 (al€])

wherel'(1) = \/Z Js2(n) is the Bessel function of the first kind.

PrOBELM 5.2 Derive the displacement field inside an inclusion in which pre-
scribed eigenstrain is a linear functin of coordinates, i.e. Example 5.1.
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PrOBELM 5.3 Derive Green'’s functin for plane strain problem by solving the
following Navier equations,

0Ba,p +0(Xx —¥)0ay =0 (5.154)

where~ is the direction that the concentrated force point at.
Assume that the 2D elastic tensor is

COéﬁC?? = )\(5,15507 + /L((Sagégn + 5an55§)7 a, 3, C, n=12 (5155)
define 2D permutaion symbol
eag . €11 = 0, €19 = 1, €91 = —1, €99 = 0 (5156)

The corresponding é-identities are:

5041 5042
1 =
W) o= G
(2) €acepn = 0apgden — Sandpc
(3) Canesn = 0ap (5.157)
(4) €anon = doa = 2! (5.158)

Hints:

e}

I
/.

— 00

[e.e]

exp(i(§121 + £222))

/ & +&
/.

dé16s = —2rIn R (5.159)
gafﬁ

o &

whereR = /2% + z3.

PROBELM 5.4 Let() be the half planex®, = 0, x; < 0), ande;; be pre-
scribed as

Tl
exp(i€ - x)d€ = —mlagIn R — 7 326 (5.160)

€h1(0) = 20(a2) (1) (5.161)

Show

b —_1({ X2 b 1 12
_ b T2y, O 162
ul(x) 2ﬂ_tan (x1> +47r(1—v)m%+x% (5.162)

wherev is the Poisson’s ratio.
Hint: (Mura’s book page 17)

/ /005 (&2 +&3) exp{i(§11 + §aw2) 1dSy = 2Wtan*1<%)

/ / é»ff; exp{i(&xl—i—&@)}d&d& _ _;%xj_x;%
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'X2

Figure 5.7. A straight edge dislocation

ProBELM 5.5 Verify the following Hilbert transform formulas

1 T
H((x2 +a2)> - a(z? + a?) (5.163)
H(sin(br)) = —cos(bx) (5.164)

Hints: use Cauchy’s residue theorm.

PrOBELM 5.6 Derive Eqgs. (5.131), (5.132) and (5.134). Start from (5.111).

Hints:

Hirth and Lothe [1992] Theory of Dislocations, Reprint Edition, Krieger
Publishing Co. pages 228,235-237

Cottrell, A.H. [1953] Dislocations and plastic flow in crystals, Oxford Uni-
versity Press. pages 62-64, 98

PrOBELM 5.7 The 2D Green'’s function for plane strain problem is

11 (x0 — xp) (25 — @)
Gop(x—x') = e r— { 72 B _ (3—4v)dopIn Ry a,f=1,2

(5.165)

whereR = /(z1 — 2})2 + (22 — 24)2.
Consider the following elliptical inclusion problem,

e’&B; Vxe
€ap(X) = (5.166)
0; vV x € R?/Q
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2 2

. €T €T
wheree?, ; is a constant tensor, and := {x ‘ 2422 < 1}.

2

X2 R
S1

X’

r(l)

Figure 5.8. 2D elliptical inclusion

Find the Eshelby tensor for interior problem € §2). Hint (see Li (2000)
pages 5606-5607 ).

ProBELM 5.8 Consider a spherical inclusion with radius a. Use identities

2

4
btgdS = =-dy (5.167)
52 3
4ra?
/ CilillndS = ——(8:i0mn + OimOjn + 6indjm)  (5.168)
s2 15
to show that
Q — j j
Sijmn 167 (1 — v) %92 g ds
-1 2(4 — 5v)
T 15(1—v) 0ijOrmn + 15(1 — v) (Oim0jn + 0jmdin) (5.169)

Wheregijk = (1 — 2V)<5ij£k + 5zk€j — (Sjkﬁz) + 3£i£jgk1 g = &&/CLQ = af2,
and); = &/aQ.
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PROBELM 5.9 Show that

1
g(x - Y) = _§Cklmn (Gik,lj (X - Y) + ij,li(x — y))
1
= 1 __ N3 - im9jn 5zn5m - 5@ '5mn
8r(1l —v)rd [(1 20)(GimOjn + ind, j0mn)

436l + 3(1 — 20)0mnlil; — 15zizjzmzn} (5.170)

whereg; ;... is called the fourth order Green’s function (the second derivative
of the Green’s function).
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Chapter 6

EFFECTIVE ELASTIC MODULUS

We now present Eshebly’s equivalent eigestrain theory and its related engi-
neering homogenization methods.

6.1 Effective elastic moduli for composites of dilute
suspension

First, we apply the engineering homogenization theory to composites whose
second phase concentration or other phase concentrations are small in compar-
ison with the concentration of the matrix. In literature, we usually refer this as
the composite with inhomogeneities of dilute suspension.

6.1.1 Basic equations for average stress and strain

Consider a solid with multiple phases of inhomogeneities; 1,2, --- , n.
The elastic tensor and compliance tensor in the matrix is denot€daasi D,
and the elastic tensors and compliance tensors in the heterogeneous phases are
denoted a€* andD® wherea = 1,2--- | n.

Define the averge stress and average strain in the matrix and in the inclu-
sions,

1 1

< o>y = M/M O'dv, < € >pNpi= M /M edV (61)
1 1

<o >4 = — odV, <e€>q4= N edV (6.2)

« Qa (€3 Qa
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By definition,

o=
<o> = — odV = — odV
Vv VI mua.

1M "\ Q
- V[M/Madwr;%/gaadv]

= fo<o>u+Y fa<Oo>a (6.3)
Therefore,
fo<o>y = <o>-) fa<0o >,
= C:<e>—2faca:<e>a (6.4)

On the other hand,

M1
fo<o>u = fOC:<e>M:C:[VM/ edv}

M
1
- C- [V /V . edv}

- C: [;/‘/edV—%:?;Qla/QaedV}

= C:(<€>—Zfa<6>a> (6.5)
Combining Egs. (6.4) and (6.5) yields
(C—C) :<e>:Zfa(Ca—C> <€ >q (6.6)
If the prescribed displacement boundary condition is applied, it may be also
written
(C—c) :eO:Zfa<Ca—C) <€ > (6.7)
Following a similar steps, one can show that
1 / 1
<e> = — [ edV == edV
Vv V Jmue.

= fo<e>n+Y fo<e€>q (6.8)

«
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Therefore,
fo<e>y = <e>-=> fa<e>,
«

= Di<o>-) foD*:<o>, (6.9)

and

M 1
fo<e>y = f0D3<0>M:D3[7M MO'dV}

1 Oy 1
- D: [V/VadV—za:VQa/ﬂaadﬂ
= D:<<a>—2fa<a>a) (6.10)
Combining Egs. (6.9) and (6.10) yields
(D—D) :<a>:Zfa<D°‘—D> <o > (6.11)
If the traction boundary condition is applied, it may be written
(13 - D) 0= fa (DO‘ - D) <O >q (6.12)

We name Egs. (6.6) and (6.11) as the basic equations of average stress/strain
fields.

6.1.2 Homeogenization: Equivalent stress/strain conditions
Consider the prescribed macro stress boundary condition,

t=n-0’, YxedV

Based on the averaging theoremg >= o.
One may note that the remote background strain as

e =D:o'"=D:<o>#<e> (6.13)
Similarly, for prescribed macro-strain boundary condition,
ux)=x-€, xcav
the averaging theorem asserts that in this case

e =<e> .
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The background stress,

o' =Ci<e>#<o> . (6.14)
Suppose that there ate= 1, 2, - - - , n distinctinhomogenous phaseé& €
Q., the stress and strain equivalent conditions are
C:(®+e)=C: (" + e —¢) (6.15)
or
D*: (6" +0?) =C: (6" + 00" (6.16)
Then one can find the average stress and strain fields inside each inclusion,
<€>, = A%:€ (6.17)
<o>, = B%:0" (6.18)
where
A = (C-cyt:.cC (6.19)
B® = (B-B%) ':B (6.20)

Since the inclusion population is small, one can neglect the interaction among
inclusions. The disturbance field inside each inclusion can then be related to
eigenstrain fields,

el = S, vxeQ® (6.21)
ol = T%:0*, VxeQ® (6.22)

Subsequently, one can decide how much the eigenstrain or eigenstress have to
be prescribed by the following conditions,

e = (A—8Y71:¢ (6.23)
of = (B*—T%!:¢g"° (6.24)
Therefore the average strain/stress insidedtfth phase inclusion may be
expressed by eigenstrain/eigenstress, i.e.
<€>y = A%:€" =A% (A* -8 (6.25)
<o>, = B*:0"=B":(B*-T !¢’ (6.26)
Subsequently, one can relate the average strain and average stregsih the

inclusion (inhomogeneity) with the background strain and background stress
through the so-calledoncentration tensors

<€e>q = A€ (6.27)
<o>, = B*:0° (6.28)
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where the concentration tensors are defined as
AY = AY: (AY -89t (6.29)
B* = B%:(B*-T%)! (6.30)

Since by definition< o >,= C* :< € >, and< € >,= D% :< o >,, One
can rewrite Egs. (6.27) and (6.28) as

a . fo . . -0
<a>a={ga:'ﬁ)'D'” (6.31)

or 0
<€>a:{ﬁa;§):c:e (6.32)

Suppose that prescribed macro-stress boundary condition is applied. Sub-
stituting both expressions in Eqg. (6.31) into the basic average equation (6.11)
yields,

B n C*: A*:D:o”
(D-D):0=) fo(D*-D): (6.33)
a=1 B¢ : 0'0
Therefore, for prescribed traction boundary condition, we have the following
estimate on effective compliance tensor,

D+) fu(D*-D):C*: A”:D
a=1

w]
I

(6.34)

D+ ) fo(D*-D):B"
a=1

By considering the identities,
(A)"'=(D*-D):C% and B*=(D-D%"':D  (6.35)

Finally, we obtain

D+ fo(A*—8*)"":D
a=1

w]
I

(6.36)

D - zn: foD: (B* — T !
a=1
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If prescribed macro-strain boundary condition is applied, one may substitute
the both expressions of (6.58) into the basic average equation (6.6). It leads to

n De:B*:C: €
(C-C):e"=> fu(C*~C): (6.37)
a=1 .Aa : 60

The following estimate on effective elastic tensor may be obtained,

C+Y fa(C*~C):D*:B*: C
a=1

Q)
I

(6.38)

C+) fa(C*—C): A
a=1

Using the identities,
(B)'=(C*~C):D?% and A®=—(C*-C)"':C  (6.39)

we have the following estimate on effective elastic stiffness tensor

C+) fa(B*-T%)':C
a=1

Q)
I

(6.40)

C—Zn:fa:c:(Aa—sa)*l
a=1
Note that the index: starts froml, and eachx is an inhomogeneous phase.
One of the drawback of dilute distribution homogenization is
D:C+#1 or D£C L
This can be shown far = 1:
D:C = (1<4S> 4 fa(A® — sa)-l) .D:C: (1<4S> — fa(A% - sa)—l)

1(45) - fg(Aa - Sa)—l . (Aa o Sa)—l
= 1% L O(f2) £1%9) (6.41)

Obviously, the effective elastic stiffness is not consistent with the effective
compliance tensors.
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6.1.3  Elastic moduli in isotropic case

Suppose that there are different phases of inhomogeneities in a solid.
For prescribed traction boundary condition, Eshelby’s equivalent strain method

yields,
D= {1 + ) fa(A” - sa)—l} :D
a=1
whereA® is defined as
A*=(C-Ccyl:.C

HereC is the elastic tensor of the matrix, which is assumed to be isotropic, i.e.
C = 3KEW 4+ 2,E®). We can then calculate

C-C*=3(K - K*EW 4+ 2(jy — u*)E®
and
A* = (C-Cc':cC
1 1
= (— EOL__ -
<3(K—Ka) 2(p — p®)

K p
= EV 4 2 g®
K-ke~ © p— pe

E<2>) : (3KE<1> + 2,uE(2)>

Since the composite is isotropic, we use the Eshelby tensor of spherical inclu-
sions, For spherical inclusion, the Eshelby tensor is

5v—1 2(4 —5v)
Q _ 27 49 (2) 4 2% 7 9V 1 (4s)
S -t Tt pao)?t
3(1—-v) 15(1 —v)
= SlE(l) + SQE(2)
wheres; = Lty andsy = M
3(1—v) 15(1 —v)
Then
K
a_Qo_(__ * L« (1) Lia (2)
A S <(K—KO‘) Sl)E +((,u—,u”‘) S2>E
and
-1
(Aa _ Sa) _ 7 1 E(l) + 7i 1 E(Q)
N — — 55
(K — Koy 1 (n—pe) 2
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Hence

D - @+§émmﬂ—w)ﬁzn
a=1

~ BV LED 1Y Kjb e
a=l —— — g%
(K -Ko)
fa @) Loy, 1 pe
- Je E (—E E
+l44i247__sg (3}( 4‘2M )
(1 — pa)
Finally,
_ 1 n f
D = 1 2 EW
3K ’ az::l K 5§
K— Ko !
1 " A
+— L+§:—7fi——f E® (6.42)
2” a=1 - 5%
p— pe
Assume thaff, << 1,
-1
K " fu
[ — 1 + Z - =
K a=1 L _ 8?
K — Ko
_ = - 2
a=1 Ko -8
and
—1
i & fa
- 1+
Z Z s
/‘I’ _ o
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Similarly, by considering remote traction boundary condition, we have the
estimate of effective elastic modulus for solids with dilute suspension of inho-
mogeneities,

= {1 + ifa(B"‘ - TO‘)_I} :C
a=1

whereB¢ is defined as
B*=D-D%':D

Here D is the elastic compliance tensor of the matrix, iIB. = %KE(I) +
ﬁE(Q). We can then calculate

B® = (D-D*)!':D

R L

a —1
_ <K — K 1 —ME@)) : (LEa) N LE@))

SKK« 2 3K 2u
KOL MCM
- . EO__7 g@®
K- K~ p— pe
Subsequently,
K()f 0%
B - T — B e (1) _lu’i - e (2)
( tas il ) )BD + ( e 55))E
K
_ e (1) I a (2)
(K K« 81>E (M_Ma 82>E
and
-1 1 1
S - _ @ _ 2
<B T ) - saE T S%E
(K- Ko) ! (1 — pe)
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Finally

c = (1 + Zn:fa(Ba - Ta)*l) . C
a=1

(K — K*)
: BKEW 4+ 2,E@)

— 3K<1—Zn: Kf“ )E(1)+2u<1—znjﬂfa_a)E(2)

=1 — — =1 S
K _Key % T -pa) P
Therefore
K - Ja
K 1- Z K N
a=1 — 8
K — K«
and

7 - f
2 _1= . Ja
I Zl P
= p
It is obviously that these results are different from the results obtained from
prescribed traction boundary condition. They are only agreeable to the first
order of the volume fraction. In other words, these two results (the results
obtained from prescribed stress b.c. and the results obtained from prescribed
strain b.c.) are not consistent in the homogenization scheme for dilute inhomo-
geneity distribution.

6.2 Self-consistent method

As shown above, effective elastic tensor and compliance tensor obtained
via homogenization of inhomogeneities of dilute distribution are not recipro-
cal to each other as supposed to be. As the volume fraction of inhomogeneity
increases, the accuracy of dilute suspension homogenization schemes deterio-
rates, because the interaction among inhomogeneities become strong.

To take into account the interaction among inhomogeneities, a so-called
self-consistent homogenization method is proposed, which is largely attributed
to a series papers by Hill ([1962],[1963],[1964]). Rodney Hill is a highly intel-
lectual individual, whose writing style is very close to mathematics literature,
which is rigorous, terse, and often esoteric.
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The following presentation is mainly adopted from Nemat-Nasser and Hori,
and it is blended with authors own interpretation, which is more engineering
oriented.

There are two main differences between self-consistent homogenization and
dilute suspension homogenization.

The first difference is in the treatment of remote (background) strain and
stress.

Consider the prescribed macro stress boundary condition,

t=n-o0’, YxedV

Based on the averaging theoremg >= o. In self-consistent homogeniza-
tion, we define the remote background strain as

e€=D:6"=D: <o > (6.43)
Therefore in this case,
e =D:<o>=<e> .
Similarly, for prescribed macro-strain boundary condition,
ux)=x-€, xcav
the averaging theorem asserts that in this case
e =<e> .
If o = C : ¢, the background stress will be the average stress,
o'=C:<e>=<o> . (6.44)

The second main difference between the self-consistent method and dilute
suspension method is that Eshelby’s equivalent inclusion principle is applied
with respect to the homogenized solid, instead of matrix. Suppose that there

area = 1,2, --- ,ndistinct inhomogenous phasé& € (),
CY: (" +el)=C: (" + el —€Y) (6.45)
or B
D%: (6" +069) =C: (6" + 0?0 (6.46)

Moreover, the disturbance field generated by eigenstrain is also calculated with
respect to homogenized solid, i.e.

e = S¥:¢*, VxeQ® (6.47)
ol = T: 0", VxecQ° (6.48)
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Therefore the average strain/stress insidecttt phase inclusion may be
expressed by eigenstrain/eigenstress, i.e.

<€e>, = A“:¢€ (6.49)
<o>, = B%:0" (6.50)
where
A* = (C-CcH71:C (6.51)
B® = (B-BY!:B (6.52)

Subsequently, one can relate the average strain and average stresa-i the
inclusion (inhomogeneity) with the background strain and background stress
by concentration tensors,

<e>, = Av:€ (6.53)
<o>, = B*:0" (6.54)
where the concentration tensors are defined as
AY = AY:(A® -8t (6.55)
B* = B*:(B*-T%"! (6.56)

Since by definition< o >,= C% :< € >, and< € >,= D% :< o >,, 0One
can rewrite Egs. (6.53) and (6.54) as

a. fa .17y . A0
<0'>a:{(83a:':%'D'U (6.57)

or _ _ 0
<e>a:{2a:'§)'c'€ (6.58)

Note that the relationshipd =< € > ando® =< o > are used.
Suppose that prescribed macro-stress boundary condition is applied. Sub-
stituting Egs. (6.57) and (6.58) into the basic average equation (6.11) yields,

n C*: A*:D:g"
(D-D):0"=)" fo(D*-D): (6.59)
a=1

B : o
Therefore, self-consustent method gives the following estimate on effective
compliance tensor,

D+ ) fo(D*-D):C": A*: D
a=1

w]
I

(6.60)

D+ ) fo(D*-D):B"
\ a=1
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If prescribed macro-strain boundary condition is applied, one may substitute
Egs. (6.57) and (6.58) into the basic average equation (6.6). It leads to
B n De:B*:C: €
(C-C):e"=> fa(C*=C):q (6.61)
a=1 A€V
Hence self-consustent method gives the following estimate on effective elas-
tic tensor,

C+)) fa(C*—C):D*:B”:C
a=1

Q)
Il

(6.62)

C+ ) fa(C*—C): A
a=1

Note that the index: starts froml, and eachy is an inhomogeneous phase.
We now show that

Consider
D = D:1=D:C:C!
- D: [c+ fa(C®—C): A°| . ¢
a=1
= C'+) fD:(C*—C): A*:C! (6.63)
a=1
Since,

D:(C*-C) = D:C*-1
= —-14+D:C*
= —(b*-D):C*

The last line of (6.63) may be rewritten as
D=C"'-) fu(D*-D):C*: A*:C"" (6.64)
a=1
which leads to

C'=C'4+) fuD*-D):C*: A”:C! (6.65)
a=1
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Compare (6.65) with the first line of Eq. (6.60). One can conclude that
C'=D (6.66)
Similar arguments can be made to show Bat' = C

ExAMPLE 6.1 For isotropic composites, the effective moduli obtained from
self-consistent scheme can be further simplified.
Consider

C=C+ i fa(C¥—=C): A (6.67)

Step 1.

C =3KEW +2,E® | and (C*—-C) = 3(K* — K)EW +-2(u(®) — )E?)
Step 2:

1 1 _
= ED E®) . BKED + 2E(®
3K K 2n ) ) : GKE® + 2E2)
_ K go P g
K — K« o= p
Then
Aa — AO‘(AO‘ _ Sa)—l
R 1 M 2 R = 1 1
- [I_(—Ka v ﬂ—uaE()H(K—Ka_SI) B
P )V 'E®
(75 %) B
K i
K — (K- K5 i = (i — p)S2
Therefore,

C = 3KEW +2iE®

= C+Zfa(C°‘—C):/T°‘

- <K+ZfaK+ K Klzf)s )E(l)
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Figure 6.1. Schematic illustration of Mori-Tanaka lemma

which lead to

S [ SR
Z = 1+ az: fa(f ~1)(1+ (‘:_j ~ 1)52)_1 (6.69)
Note thatv = m

6.3 Mori-Tanaka methods

6.3.1 Tanaka-Mori lemma

In 1972, a less than two-page technical note was publishddumal of
Elasticity by Tanaka and Mori (Tanaka and Mori [1972]), which revealed an
importance consequence of the scalability of the Eshelby tensor.

That result is the well-known Tanaka-Mori lemma, and it then leads a very
effecient homogenization procedure calldri-Tanaka method Today, the
Mori-Tanaka method is one the most popular homogenization methods used in
composite industry. Its applications include abraided composite, nano-composites,
and reinforce fiber composites.

We start with the Tanaka-Mori lemma first.
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LEMMA 6.2 (TANAKA AND MoRI) Consider two coaxial, similar ellipsoidal
domains 2o, 2 (2 C ),

2 2 2
G — {X(f”; $g+<1}

ay az; ag
3
Q = ‘b2+w*' <1 (6.70)
where
a1 @3 _
b1 b2 b3
Assume that a uniform eigenstrain staftg., , Is prescribed in the smaller

ellipsoidal region, i.e.

ffj(x) =

The the average disturbance strain field is zero, i.e

1
< €>0-0y= O— /Q o €Z‘j<X)dQ =0. (6.71)
—o

Efj X € Q
0 X € R?’/Qo

Proof:
Suppose that there are three coaixial, similar ellipsoida)s; Q1 C Q5 in
an infinite homogeneous medium, and a uniform eigenstrain is presecibed in

Qp, 1.e.
% _ efj X & Q()
€ij (x) { 0 x € RS/QO

The disturbance displacement field can be then written as
ui(x) = —/ €5 ChtmnGig o (x — x')dx’ (6.72)
Qo
and the disturbance strain field is

* C mn
61']' (X) = — /Q emn ke <Gik,€j (X — X,) + ij,fi (X — X,))dX/ (673)
0

2

whereCysn,, IS the elastic tensof7;,(x — x’) is the Green'’s function in the
infinite domain, and

C mn
Skemn = — / kg (Gik,ej + ij,ei) dx’
Qo
S xeQ
= (6.74)
Sl??mn’ X € RS/QO
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Q2

Figure 6.2. Schematic illustration of the Proof of Mori-Tanaka lemma

is the Eshelby tensor.
Now consider the average strain in the region— .

/ Eij(X)dX:/ [efm/ —Ckgmn (Gik,gj(x—x')+ij,gi(x—X’))dx'}dx
Q2—N Qo—Oy Qo

Sincex € 29 — 1, the integrand does contain singularity in either integration
domainsy)y and 2, — ;. We can then change the order of the integration,

/Q 0 [efm/g _ Ot (Gik’gj (x —x) + G pi(x — x’))dx/} dx
2841 0

2
= / [e;‘nn / _ Chtrnn (Giuj (x —x') 4+ Gjpp(x — x’))dx’} dx
Qo Qa— 2

= /Q [e:‘nn /Q — Ckgm" <Gik7gj(x —xX') + Gk pi(x — x’))dx'} dx
0 2

0 1

= G [ [580 SEh]a = uu[5E - ] @79
0

Since Eshelby tensor only depends on the material property and the aspect ratio
of the ellipsoidals,

€500 | Sinn = Stitn] =0 (6.76)
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if o, Q¢ are similar. Hence,

/ €ij(x)dQ2x = 0. (6.77)
Q-
LetQ; — Qo andQy — Q. We have the desired result,
/ €ij(x)dx = / €ij(x)dQx = 0. (6.78)
Qa— Q—Qo
)

REMARK 6.3.1 1 Itis also true that the average disturbance stress field is
also zero

/ 0idQ% =0 . (6.79)
0Q—Q

2 Eq. (6.75)isvalid as long &3; C €2,. They don’t need to be confocal, but
they definitely need to be similar, and they may need to be coaxial (some
people questioned nececity of this requirment too, the real issue is : does
Eshelby tensor depend on coordinates ?).

3 This result can be generalized into the cases that the inclu3ipis not
ellipsoidal and the eigenstrain distribution {&, is not uniform.

6.3.2  Mori-Tanaka’s two-phase model

In this section, we present a straightforward application of Tanaka-Mori
lemma for a two-phase double inclusion problem.

We assume that there are only two phases in an RVE, and both the RVE and
the inhomogeneity have the shape of ellipsoidal. The are coaxial and similar
in shape.

Suppose in the far field, there are constant stress and strain #élds)d
€. Due the presence of inhomogeneity, the total strain and stress fields consist
of two parts: constant far fields and perturbed fields, i.e.

ex) = € +€lx), ¥xeV (6.80)
ox) = o'+olx), VxeV (6.81)

Inside the inclusionx € €2, the disturbance field may be expressed in terms
of eigenstrain

e =8¢ = ex)=€e +8%: ¢ vxeQ (6.82)

)

Therefore,
<e>q=€"+8%: ¢ (6.83)
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v=MU Q

Figure 6.3. Schematic illustration of two-phase model

Recall that the homogenization condition (Eshelby’s equivalent principle),
Cl: (24 e))=C: (" + €l —€), (6.84)
let to
e +el =A% € VxeQ (6.85)

whereA? = (C — C®)~! : C. Combining withe? = S : €*, one can find
that
€= (A -8 ¢ (6.86)

Substitute (6.86) back to (6.83). We finally have
ceso— <1<4s> 482 (A - sﬂ)—l) . € (6.87)

The average stress inside the inclusion can be also evaluated by considering
homogenization condition and (6.86)

<o>q = C: (60 + el — e*) =C: (eo + (8% — 1(48))6*)
= C: (1<48> 4 (82— 169(A2 - sﬂ)*l) . (6.88)

One the other hand, by the Tanaka-Mori lemma, the average strain in the
matrix is
<e>y=<e+e>y=¢ (6.89)
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and hence
<o>y=C:é€. (6.90)

Let f be the volume fraction of the inhomogeneity. We then have the following
balance equations for average strain and stress

<e>y = (1-fi<e>y+f<e>q (6.91)
<o> = (I-fil<o>y+f<o>q (6.92)

One can readily find that

<e>y = (1—f)e°+f(e°+SQ:e*)
= 4 fSHA? -89 0
(1(‘“) + fS%(A" — SQ)—l) ¢l (6.93)
and
<o>y = (1-f)C:€e"+fC: (1(45) +(S? -1 (A% — sﬂ)*l) L€l
= C: (1994 (82— 169 (A% - 871 p e (6.94)
By definition,

<o>y=C:<e>y (6.95)
It leads to

C: (1(4s)+f(SQ—1(4s))(AQ—SQ)‘I) = (1(4S)+fSQ(AQ—SQ)‘1> . ¢

Finally, the effective elastic tensor is obtained

_ —1
C=cC: (1(4s)+f(SQ_1(4s))(AQ_SQ)—1> . (1(45)+fSQ(AQ_SQ)—1>
(6.96)

6.3.3  Mori-Tanaka mean field theory

In previous homogenization procedures, the disturbance strain and stress
fields due to an inhomogeneity are approximated by Eshelby’s single inclusion
solution in an infinte space.

In real applications, an RVE is finite, and it is subjected with remote bound-
ary conditions, e.g. prescribed traction condition or prescribed displacement
condition, i.e.

u=x-€, xecdV (6.97)

or
t=n-o’, xedV (6.98)
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Let e?* and o”! representing perturbed strain and stress fields due to Es-
helby’s single inclusion solution in an infinite medium. If we let

e(x) = e+el=¢€+€" (6.99)
ox) = og+ol=0y+o" (6.100)

Obviously,
o’ +oP #0° or € +et £ VxedV (6.101)

Therefore, either boundary condition (6.98) and (6.97) will not be satisfied.
This is because a finite size RVE will cause additional interaction between
matrix and inclusions, interaction between the boudary and inclusions, and
interaction among inclusions themself. Note tle#t o?!, — 0 only when
|x| — oo.

To take into account the effects of a finite size RVE, additional stress and
strain fields are need to faithfully represent total stress and strain distribution
in an RVE, i.e.

o = o’+6+0o" (6.102)
e = +ée+ e (6.103)

whereo ande are the so-called image stress and image strain.

In literature, especially literatures on dislocations, additional stress and strain
fields that accommodate the stress solution of a infinite space to satisfy bound-
ary conditions are called image stress and image strain fields, because in prac-
tice some of these stress and strain fields are found by placing certain image
external sources to achieve their objectives.

Nevertheless, the homogenization problem in a finite REV becomes com-
plicated, because in general it is very difficult to know the precise distribution
of image stress and image strain fields. To circumvent this difficulty, Mori
and Tanaka [1973] proposed the following mean field assumption, which is an
ingenous and very successful method.

Mori & Tanaka’s theory was later refined in a landmark paper by G. Weng
(Weng [1990]). The following presentation is an adaption of Weng’s formula-
tion. Suppose that in an RVE there are many inhomogeneities, or the density
of inhomogeneities are statistically stable. Then the strain or stress field in the
matrix may be written as

ex) = € +e,VxeM = <e>y=e+ <el >y
o(x) = oc’+ol VxeM = <o>y=0c'"+<o? >y,

In general we don’t know the precise disturbance fields in a matrix,sﬁﬁor

d
UM-
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Consider the matrix is the dominate phase in a composite. We denote the
average field in the matrixz € >); or < o >4, as themean field which
include boundary effects and effects of interactions of many other inclusions.

Now we add an inclusion into the average ensemble—the RVE. After the
inclusion is added, we call the field as the new field in contrast with the old
field before the inclusion is being added. Therefore, in the matrix,

<€ Sy=< el >y <t >y 4+ <eMm>y, Vxe M (6.104)

whereeP! ande’™ are the inclusion solution for infinite space and the corre-
sponding image strain solution due to the finite RVE.

By the Tanaka-Mori lemmay €”* > ;= 0. Mori and Tanaka then further
argued that since there have been so many inclusions inside the RVE, the aver-
age effects of the image strain or image stress field for a single inclusion may be
negligible without alter the mean field of value of the RVE, kee’™ >),= 0,
which is the essence of Mori-Tanaka mean field theory. Note<theft? >,
does take into account the average effects of the image stress/strain fields all
other inclusions.

Therefore, we have

<€ > y=< el s y=<e>y VxeM. (6.105)

Inside the inclusion, we still neglect the effects of image strain or image
stress field of the newly added inclusion, we then have

<e>q = <e>y <l >q+ <e™>q
= <e>y+<el>q
= <e>y+Sti€e, ¥xeQ (6.106)
Similarly, for the stress field,
<o >y = <oM>sy=<o>y, xeM
<o>q = <o>y+T%: 6" xe0 (6.107)

Based on Eshelby’s equivalence homogenization conditions,
C? < e>q=C: (< € >0 —e*) (6.108)
or
D% <o >0=D: (< o >q —a*) (6.109)
One may obtain

<e>q = A% = <e>y+<e>q=A%: €
or <og>q = B%:0" = <o>y+<olt>q=A%: o
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whereA := (C - C*%)~!: CandB% := (D - D%)~!:D.
Subsequently, one can obtain that

<e>q = A :<e>y

or <o >q = Bgfl < o>y (6.110)

according to different boundary conditions or different homonization schems.
In passing, we note that that the concentration tensors may be written in
different forms,

1

AGL = AT (A% ST = (A% -8 A%
= |1-s?at]
- [1 _s%.cl(C CQ)}_1
- [1 L PO (CO C)} - (6.111)
and
Bil = B (BY-TY!= [(BQ — T AQ’l]fl
= [1-12:B] -
- [1-1%:D7": (D—DQ)}_I
= [1+Q%: (0%~ D) - (6.112)
where
P? = s%.c! (6.113)
Q¥ = T:D! (6.114)

are called polarization tensors.
SinceC — CM = 0 andD — DM = 0, itis easy to see that both

A%ty =1 and BY,, =1 (6.115)
By definition,

<e> = (1-f)<e>y+f<e>q (6.116)
<o> = (I1-fl<o>y+f<o>q (6.117)
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From (6.116) and (6.117), we may find that

air |71
<€>y = |:(1—f)1+fAZQi| < € >
dil dil -1 ~
= |:fMAzM+fQA ZQ} < e>=Ap:< € >(6.118)
. . -1 ~
<o>y = [fMBd”M + fQBd”Q} < o >= By :< o >(6.119)
where
~ . . —1
Ay = [fM.Adle + fQAleQ:| (6.120)
~ . . —1
By = [ FaBily, + fQBd”Q} (6.121)
Accordingly,
<€eE>q = AdilQ < e>y= AdilQ : Ao < € > (6.122)
<o>q = BUlg:.<o>y=B%g:By:<o> (6.123)
Therefore,
<o> = fu<o>y+tfa<o>q

frCl < € >u +foC? < € >q
= fMCO < €>)Mp —i—fQCQAdilQ < E€E>Mm

_ (fMCo +fQCQ.AleQ)AO <€e>
— Ci<e> (6.124)
and

<€e> = fu<e>y+fo<e>q
= fuD’ <o >y +foD < o >0
= fuD’ <o >y +foD%: Bl < o>y

= <fMD0 + fQDQ : BdilQ) Bo < €e>
— Di<o> (6.125)
Recall that4%!,; = B%!,; = 1. We have
~ 0. gdil Q. 4dil dil il \ 1
C = (€ A+ O s Ay (farA™ sy + foA™)

b - (fMDO . By, 4+ foD® BdilQ) : (fMBdilM + fQBd“Q) -1
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Figure 6.4. Comaprison of effective bulk modulus among various homogenization methods:
dilute distribution (DD & DT), self-consistent, and Mori-Tanaka
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In general, for a solid with n+1 phases (frem= 0 to « = 0), the Mori-Tanaka
mean field theory gives the following estimates,

c - (Zn: £,Co Adila) : (Zn: faAdila>_
a=0 a=0

D = (i faDa;Bdila>:<Zn: faBd”a)_l (6.126)
a=0 a=0

where the pahse = 0 represents the matrix, and non-zeraepresents the
inhomogeneous phases.

RODNEY HILL

Figure 6.5. Rodney Hill

6.4 Rodney Hill

Rodney Hill was born on the 11th June 1921 at Stourton, near Leeds, in
Yorkshirt. He comes from a family with deep roots in the practical and culture
tradtions of the West Riding, although with no known mathematical ability
in an earlier generation. Rodney’s father, Harold Harrison Hill, had been an
only child and he was educated at the University of Leeds, gaining an M. A.
for postgraduate work in history. He also took an external London degree in
economics. After wartime service in the Royal Navy he became a schoolmas-
ter, and was eventually senior History Master at Leeds Boy’s Modern School.
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Rodney’s mother had been a student at Leeds School of Art. Rodney himself
was also an only child, in an immediate home background which encouraged
scholarship and self-sufficiency.

Rodney entered Leeds Grammar School with a scholarship in 1932, and
there gave regular prize-wining evidence of all-round intellectual ability not
only in mathematics, but equally in art, English literature, and other Arts sub-
jects. During this period he taught himeself to play the piano, and became
proficient at chess in which he was later to represent Cambridge University
and town. Thus were developing the powers of accurate observation and anal-
ysis to be brought to bear on the mathematics and physics which became his
formal specialism from the age of 15. The customary large-team games did
not attract him as school, but Rodney enjoyed the one-to-one sports of squash,
fencing, and golf. He left school as Head of House, and in December 1938
he was awarded an Open Major Scholarship at Pembroke College, Cambridge.
However, it needed the State and County Scholarships gained in the preceding
summer to make a financially independent undergraduate.

Hill went up to Cambridge to read Mathematics in October 1939, againt a
background of external events which must have seemed the least auspicious
since the very founding of the University. Major Scholars were expected to
take Part Il of the Tripos in two years instead of three by omitting all first-year
courses. This imposed a heavy workload, to be carried under spartan condi-
tions created by wartime restrictions such as blackout and rationing combined
with antique College plumbing. For example, there was no running hot wa-
ter, the nearest bath was courts away, and the winter allocation of one sack of
coal per week fuelled a fire in one’s room only in the evenings. Hill was not
deflected by the adverse general situation from his aim of a first-class honours
degree, and he became a Wrangler in June 1941. This entitled him to take
Part Il of the mathematical Tripos, in the applied mathematical part of which
guantum mechanics figured prominently at the time. However, he felt obliged
to war-work, and so lost the opportunity for advanced training which those
lecture courses would have provided.

Problems brought to the Theoretical Research Branch were distributed ini-
tially according to specialisms of the more senior members, some of whom
had acquired relevant experience at Woolwich Arsenal. Those problems which
were quite new in context tended to go to the young inexperienced graduates
newly arrived from university. This was indeed a baptism of fire for them,
but it was a test which was to reveal Hill's true metier. One of his initial as-
sigments was the deep penetration of very thick armour by Munoroe jets and
high-velocity shells with tungsten-carbide cores. This required a mechanics
of plastic deformation with unlimited magnitude, and thus was aroused Hill's
interest in the field in which he later became perhapse the foremost world au-
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thority. At this stage, however, he had no prior knowledge of the physics and
metallurgy of plasticity, and little of stress, strain or the tensors which the
mathematics would eventually require. There was no useful textbook, but G.
I. Taylor had written one or two helpful reports on shaped charges and Munros
jets. Nevertheless, working at first with Mott and Pack, Hill was soon able
to show, for example, that penetration by a tungsten—carbide core with pure
ogival head would be seriously degraded if too much of the tip were ground
conical (the British practice for manufacturing convenience). The demonstra-
tion was achieved not only theoretically, but also in field trials planned by Hill
in collaboration with an experimental group under Dr. Charles Sykes, F.R.S.

The problems at Fort Halstead called for simple but effective mathemat-
ics guided by physical intuiation and a willingness to communicate with oth-
ers, including non-mathematicians and experimentalists. There was not time
for complicated mathematics, there were no electronic computers to assist it,
and the experimental data were ususally too crude to warrant it anyway. He
acquired a lasting taste for a pragmatic blend of rigour, elgance, and simple
realism in the application of mathematics.

The sense of purpose discovered at this time was noticed by colleagues as
a cheerful and sparking earnestness. Popular relaxations among the group at
Cambridge had included music, books, and lightning chess. At Fort Halstead
ballroom dancing was added as a consuming passion for some, and Hill was
not slow to find that he had medal-winning ability in this new enthusiasm. He
met his future wife, Jeanne Wickens, early in 1945. She had been transferred
to work at Fort Halstead from the bombing range at Shoeburyness. Previously
she had trained as a dancer and teacher of ballet, but war cut short a promising
career. They were married in Cambridge in 1946, and they have one duaghter,
born in 1955. The strength of his wife's support could already be detected in
the Preface to Hill’s first book, and the passage of years has happily reinforced
this bond.

By this time the applied mechanics of both solid and fluids was being forced
to push the boat out onto a sea of nonlinear problems, and away from the haven
linearity in which much pre-war work had lingerd. The trend was evident not
only in England, of course, but in other countries too. Hill found himself in
demand as the sole adviser on continuum plasticity in England, not only con-
cerning problems arising from the interests at Fort Halstead, but also fot new
theories of metal-working processes needed by engineers in the steel indus-
try. He obtained a Cambridge Ph.D. in 1948 for a Thesis entitled “Theoretical
studies of the plastic deformation of metals”. From the Ph.D. Thesis grew a
much more extensive monograph on “The Mathematical Theory of Plasticity”,
published at the Clarendon Press, Oxford, in 1950. This very rapidly estab-
lished Hill as an international authority. The final draft was written in his spare
time, i.e. in the evenings and weekends. He was then still only in his 28th year,
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and it is timely to recall a remark from the review of the book in Engineering:
“The author has done his work so well that it is difficult to see how it could be
bettered. The book should rank for many years as an authoritative source of
reference.” This prognostication was fully borne out. The book was in print at
Oxford for 21 years, Japanese and Russian translations have been made, and
total sales currently approach 13,000.

The Journal of Mechanics and Physics of Solids was launched with the en-
couragement of the infan Pergamon Press in 1952. Hill suggested the title and
the general aim of a forum for effective applied mathematics, linked with ex-
perimenation, in engineering science. From the onwards the Journal has been
regarded as among the foremost in its general field, and unique in flavor. Hill
served as Eidtor-in-Chief untill handing over in 1968 to H.G. Hopkins.

The University of Nottinggham had received its Chater, and independence
from London, in 1948, and was shortly to embark on two decades substantial
expansion. Professor H. R. Pitt was appointed in 1950 to head the existing
Mathematics Department, and he was soon instrumental in securing the cre-
ation of a new Chair of Applied Mathematics. Rodney Hill applied, and was
offered the post in 1953 while still on 31. It was his responsibility to modernize
the teaching of applied mathematics. Hill took over some existing course him-
self, and instigated new ones with the aim of encouraging research students.
His undergraduate lectures were characterized by conciseness and tendency to
brevity. He would never exceed the time limit. But those stidents who took
the trouble to write down what he said, in addition to what was written on the
blackboard, found after reflection that they had a first-calss and substantial set
of notes.

It may only have been a coincidence that emergence of interest in the so-
called rational continuum mechanics was taking place in some American and
British universities at this time. Hill's writings demonstrate an independent
view of these development, and no taste at all for axiomatics. He was beginning
to lay down the basis of general studies of non-uniqueness and instability in
continua which were to prov highly influential over the next two decades, and
which in due course brought further students and able collaborators.

The University of Cambridge conferred the degree of Sc. D. upon Rodney
Hillin 1959. The highest honour to which any British scientist aspires followed
in 1961, when he was elected a Fellow of the Royal Society. This gave much
pleasure to his colleagues at Nottingham and to his friends elsewhere.

In 1963 Hill was elected to a Berkeley Bye-Fellowship at Gonville and Caius
College, Cambridge. This he held for 6 years until the University conferred a
personal Readership in Mechanics of Solids. Thus he became a member of
the teaching staff of the Department of Applied Mathematics and Theoretical
Physics, and in 1972 a personal Professorship was conferred.
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During this Cambridge period (he is still at Cambridge under semi-retirement—
Li's comment), properties of heterogeneous media (including fibre compos-
ites), single crystals, continuum plasticity, and an independent reformulation
of rubber elasticity were explored, .....

His standards of scholarship and intellectual honesty are the highest. He is
ready in his appreciation of the good work of others; and he has been sharp
in candid criticism of misguided thinking or slack presentation (especially by
those mature enough to know better) if he thought the subject-matter would be
best served thereby—as some celebrated footnotes and book reviews testify.

The outward character of the man is not unlike his papers: physically tall
and slim, with the long fingers of a pianist, and having a quiet but compelling
presence. His unusally deep reserve has meant that casual social gatherings
and conferences have held less interest and been less rewarding for him than
for others.

—— By Geoffery Hopkins and Michael Sewell
From Mechanics of SolidBergamon Press

6.5 Exercises

ProBELM 6.1 Consider a n-phase composite material, and each phase has
its own elastic tenso€®, compliance tensoD®; and matrix has elastic ten-

sor, C, and compliance tensal). Assume that in the representative volume
element (RVE), each phase only appears as one ellipsoidal inclusion. Under
dilute distribution assumption, the corresponding Eshelby tensor and conju-
gate Eshelby tensor for each phase 8feand T respectively. Denote

A* = (C-CcY1:C (6.127)
B® = (D-D*!:D (6.128)
Show
C*:A%: (A°-8*)"1:D = B*:(B*-—T%! (6.129)
D*:BY: (B*-T% ':C = A“:(A“-8%"! (6.130)
PRrROBELM 6.2 For an isotropic two phase material. Assume the inhomogene-
ity phase is random distributed spherical cavitiesg (= 0; K; = 0), and

the matrix is an incompressible masteridl (— oo). Use the self-consistent
scheme,

g:1+§h@ﬁQQﬂf—mgl(mm
Z - 1+§fa(f_1)(1+<‘§—1)52)1 (6.132)
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where
1+v
g = —_— .1
5 30— 7) (6.133)
_ 2(4—5p)
= == 134
2T B -p) (6.134)

to find the effective bulk moduluk,, and the effective shear modulys,

Hint:

J.R. Willis, “Variational and related methods for the overall properties of
composite”, in Advance in Applied Mechanics, Edited by C.-S. Yih (pages 45-
46), (1981), Academic Press, New York.

B. Budiansky, “On the elastic moduli of some heterogeneous materials”,
Journal of Mechanics and Physics of Solids, Vol. 13, (1965), pages 223-227.

PROBELM 6.3 Assume thatin an RVE there are n+1 phases; 0,1,--- ,n
Mori-Tanaka mean theory states that

D = zn:faDa:Bd“a:(zn:faBd“a)l (6.135)
a=0 a=0

C = zn: faCa:Ad“a:(zn: foAH,) (6.136)
a=0 a=0

Show that Mori-Tanaka scheme is self-consistent, i.e.

C=D! (6.137)

Hint: First show that
Cco: A%l = pdil . 0 (6.138)
D> : pdil, = A4l . DO (6.139)

PROBELM 6.4 Consider a two-phase composite with randomly distributed
spherical inclusions. The ratios of material constants between inhomogeneity
and matrix are

= 25, and K% =750MP, (6.140)

= 4, and =04 (6.141)

== :\%N\%

. K 7 . : .
Plot the ratio of?, =, and Y Verses the volume fraction of inhomogeneity,
14

£, by using homogenization methods under the assumption of dilute suspen-
sion (both prescribed traction and prescribed displacement), self-consistent
method, and Mori-Tanaka mean field method.
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Figure 6.6. Definition of the Volterra dislocation
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Chapter 7

INTRODUCTION OF DISLOCATION THEORY

In material science, a dislocation may be defined as a disturbed region be-
tween two substantially perfect parts of a crystal. In elasticity theory, a dislo-
cation is defined as the strong discontinuity of the displacement field. In this
Chapter, we shall first study dislocation theory within the framework of linear
elasticity, and then we shall examine dislocation theory by considering lattice
structure, i.e. we shall study the Peierls-Nabarro model and a screw dislocation
solution in the framework of molecular dynamics. At the end of this Chapter,
we shall discuss one of the most important applications of dislocation theory:
dislocations in thin films.

7.1  Screw dislocation

A multiply-connected region is defined as a region that it at least contains
one irreducible circuit, i.e. a closed curve that can not be contracted to a single
point without passing out of the region (see Fig. 6.6). Consider a multiply-
connected regio’. A Volterra dislocation is defined as the displacement or
rotation discontinuity over the line segmef(2D) or surfaceS (3D), i.e.

[u} = uPH-uP)=b+dxx
W = wE)-wrP)=a (7.1)
whereb is the Burgers vector that can be defined as
T
b= (By)+x-y)x[VxEW] )iy (72)

and

d=— ﬁ(v X E(y))Tdy (7.3)
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andE is the strain tensor.

X2

Figure 7.1. lllustraions of dislocations: (a)edge dislocation, and (b) screw dislocation
Historically, there is another type of dislocation: the Somigliana disloca-
tions that are defined as
[u} = ut—u =b, Vxe 8 (7.4)
M = tT—t7=0,vxes (7.5)

That is the traction is required to be continuous across the slip plane. However,
the solution of such boundary-value problem is difficult, and people have not
found any important applications of such dislocation model.

7.1.1 The solution of screw dislocation

We first derive the solution for the screw dislocation. The kinematics of the
screw dislocation belong to that of anti-plane problem:

up =0, ug =0, and ug = w(z,y) . (7.6)
All the strain components are zero, except the out-plane shear strains
_1ow 10w

€xz = 20z’ €yz = 5073/ ‘ (7.7)
The corresponding non-zero shear stresses are
ow
Ozz = /‘% (7.8)
ow
Ogy = Naiy (7.9)

The non-trivial equilibrim equation

0oy, Ooy, 00,
= 7.1
Oz + oy + 0z 0 (7.10)
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leads to the governing equation

Pw 0w 2

We denote the displacement jump in wat 0 andx > 0 asb, i.e.b = b,e,,
and the jump condition may be expressed as

i (we,—n) —w(a.n)) = [w@0)] =t n>0  (7.12)

Use the polar coordinate,

0?2 10 1 0°
2 = _— —_—— —_—— =
Viw= (G4 e+ s Ju=0. (7.13)
Separation of variables and let
w(r,0) = f(r)g(6) (7.14)
we have ) 2 " )
re /d 1d 1 d°g
2, 2% — _~J_9. 7.1
f(r) (dr2 * r dr) g(0) db? 0 (7.15)
We then end with two ordinary differential equations,
ef 1d et
ar? " rdr 2
(7.16)
d29 2
If n =0, one may find that
g(#) = A+ B (7.17)
f(r)y = Clar+D (7.18)
Forn # 0,
g(0) = C,cosnf+ D, sinné (7.19)
f(r) = Epr"+Fr™" (7.20)
This is true because
> 1d n* , 2\, .n—2 _
(ﬁ_‘_;%—ﬁ)r —<n(n—1)+n—n)r =0. (7.21)

Because the displacement, has to be finite, we can only consider the case
n = 0. Again, because the convergence requirement for displacement field,
C = 0; and because of jump conditiod, = 0.
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By absorbing the constat into the constanB, the displacement field is

w(r,0) = B
Use the jump condition,
w(r,2m) —w(r,0) =b

one may find tha2x B = b and hence

b
B=—
2w
Finally,
0b b
w(r, ) = — = — arctan(g)
2 2 T
and
@ b 'y bsinf
or  2ma+y?  27r
ow b T _ bcosd
oy  2maz+y? 2wy
Consequently, the non-zero stress components are
o _<%>L
vz 21/ 22 + y?
- ()
vz = \op) 22 + 92
In the cylindrical coordinate,
Opr  Oprg Oy cos@ sinf O 0 0 o0z
opr Ogo Op, | = | —sinf cosf 0 0 0 oy
Ozr 0z0 Ozz 0 0 1 Ozx Ozy 0
The non-zero stress components are
oy, = cosbo,, +sinfo,, =0
b
0p, = —sinfo,, +cosfo,, = lal .
2mr

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

cos
sin 0

0

(7.30)
(7.31)

—sinf 0
cosf O
0 1

In the following, we calculate the self-energy of the screw dislocation in a
hollow cylinder with inner radius, and outer radiug?. Note that the self-
energy of a dislocation is defined as the strain energy contribution from stress-

strain field of the dislocation solution in an unbounded region.
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Assume that the length of the hollow cylinderfis The energy per unit
length inz-direction is,

w 1 2
f = Z - / / / ZG TdrdQZ
v’ u d v u
= — P 2 7.32
Am ro T T 4r n ) ( )

First, asR — oo, W/L — oo. This shows that the self-energy of the dis-
location depends on the size of the crystal. On the other hand, for a finite
size crystal, the dislocation solution of unbounded domain does not hold true
because the image stress caused by the boundary.

Assume that the dislocation is far away from the boundary, the boundary
effecrts are abated inside, one may choose the dimension of the crystél, say
as R; in polycrystallines, one may choose the size of a grain as R, where the
dislocation resides.

Second, asy — 0, W/L — —oo. This abnormality is due to the limitation
of linear elasticity model. Within five atomic spacing of a dislocation core, the
linear elasticity model is no longer valid. In general, the length of the Bergurs
vector is close to the lattice spacing. Therefore, in practice, we usually choose
ro =5borrog =b/a, 0 < a < 1 such that the elastic self-energy equals to

Wb,/ w ,ub2 ozf

By defnition, the self-energy should include the core energy, i.e.
Wself Welas 4 pyeore (734)

The core energy is relatively small, but may not be negligible, because it is
10% to 20 % of the elastic self-energy. It may be relatively small, but can not
be neglected. Overall, the linear elasticity theory gives a good estimate of self-
energy. In Sec. 4 of this Chapter, we shall discuss the Peierls-Nabarro model,
which provides a means to estimate the core energy.

7.1.2 Image stress of a screw dislocation in a half space

Consider a crystal occupying a half space 0. Consider a screw disloca-
tion located at the position = —/ (see Fig. 7.2). The screw dislocation in an
unbounded space gives the following stress distrubution,

by Yy
o = —— 7.35
sz(l',y) I (l’ + Z)Q + y2 ( )
bu  (x+10)

oy (,y) = @t O+ (7.36)
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b Y

%ion—free boundary

the real dislocation the image dislocation

Figure 7.2. Animage screw dislocation

This solution does not satisfy the traction-free boundary conditian &t 0,
because

bp y
To enforce the traction-free boundary condition, we place a fictitious screw

dislocation with the Bergurs vecto¥, = —b, at the positionz = ¢, and it
generates the following so-called image stress distribution:

b
ol (z,y) = ﬁ—(x_ ;)12 7 (7.38)
oLy = -kl (7.39)

21 (x — 0)2 4+ y2

The total stress distribution is then the superposition of the solution in the infi-
nite space and the solution of of image stress distributionaj e aio;’ + a{J
where the superscript, oo, andI denote the total stress solution, the solution
obtained in the infinite space, and the image stress solution.

By anti-symmetry, the traction-free boundary conditionza 0 is then
enfored,

t e} 7 4
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REMARK 7.1.1 1. Note that the image stressesiat= —¢ andy = 0, i.e. the
position of the real dislocation, are

by

I (—0,0) = I (—0,0) = 2= . 7.41
0..(=£,0) =0, 0,,(-¢0) ™ ( )
2. When|x|, ly| >> ¢,

oh.(x,y) =0, and o, (z,y) ~ 0, (7.42)

Tz

which means that outside the region{ok, ) | (x +¢)? +y? < £?}, the total
stress is almost negligible.

7.1.3 Eshelby’s twist: screw dislocation in a finite whisker

Consider a screw dislocation in a finite cylinder (whisker). One may find
that the solution of a single screw dislocation in an infinite space actually sat-
isfies the lateral boundary conditions of the problem:

b

0,9 = —, Wr<R (7.43)
4rr

Opp = Opg=0,,=0, 0<r<R (7.44)

However, there is one problem there are resulting moments or torques at the
two open ends of the cylinder, i.e.

R 27
M, = / / rog,rdrdf
0o Jo
pb (7

bR?
= a2 par =2 (7.45)
2 0 2
To negate the end moment, we superpose two ends moments with the oppo-
site direction ofM, = —M., such that the total moments at the two ends of

the cylinder become zero, and then based on Saint-Venatet’s principle we can
declare the validity of the solution.

The superposed two-end moments will result the following stress distribu-
tion that can be calculated by the elementary torsion formula,

/ Mr pbr
In the last equation, we used the fact that the polar moment of a circular region
isJ = wR*/2.
Then the stress distribution in a whisker is
pb  pbr
L= = —. 7.47
70 2rr TR ( )

where the extra term-(ubr)/R may be viewed as an equivalent image stress
steming from the superposed boundary moment.
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7.2  Edge dislocation

The edge dislocation problem can be solved as a plane strain problem.
Introduce the Airy stress function, such that

9% 0% 0%
X — A 9 = a5 9 Ty — T . 7.4
o 052 Tyy = 52 and oy 920y (7.48)
The in-plane equilibrium equation,
003y OOy
= 7.49
leads to the following bi-harmonic equation,
ViVi) =0. (7.50)
Let ¢ = 040 + 0yy = V1. Then
V2V2) = V2¢ = 0, and in the polar coordinate :
02 10 1 0?
— 4+ 4 = \b=0. 7.51
(8r2+r(‘97‘+r2892>¢ 0 ( )

Based on the general solution obtained in the previous subsegtioas the
following form,

¢(r,0) = (ao+folnr)+ Z <anr” + ﬁnr_”) sin né

n=1

+ i (’ynr” + 5nr_”) cosnf (7.52)
n=1

Because the defect configuration, for an edge dislocation, the region right
above around the dislocation core should be in compression, whereas the re-
gion right below the dislocation core should be in tension, i.e.

QZ)(TOa 7['/2) = Pmin, and @b(TO» _77/2) = Qbmaz . (7-53)

In consideration with the convergence at remote region, g.e=(0,r — o),
the right choice of the solution should be= 1 and

¢ =pir 'sing. (7.54)
Then,
02 10 1 0? 1.
(ﬁ ;E + 7’*2@)7,/1 = ,81’/“ 51n«9 . (755)
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Lety = h(r)sind. One may find that

(et e om) - o

By straightforward integration, one can verify that a particular solution is

Yo = %r sinflnr = % ln(ﬂc2 + y2) ) (7.57)
Consider the jump condition,

rdr

lim — [ [eas(w.n) = caula, —m)|de = b (7.58)
n—0 —00
One can determine the constaht
) _ vby
A=) = YT Tma—u)

One can then find stress components

B = In(z? + ¢?) . (7.59)

pb y(3z? 4 y?)

- — 7.60
7 21— v) (2 2P (79
pb  y(a® —y?)
_ 7.61
W 9r(l—v) (22 + y2)2 (7.61)
pb a(a® —y?)
= . and 7.62
T T a2+ g2 (7.62)
Oz = V(0gg + 0yy) (7.63)
or in the polar coordinate
ubsin @
= Ogp = — 7.64
7 700 2n(1 —v)r (7.64)
pubcos 6 b sin 6
- = (o — OV (7.65
o0 2r(1 —v)r 7 v(orr + o) (1l —v)r (7.65)

It is then easy to find the strain fields by simply applying Hooke’s law of
plane strain condition,
2 2
o = WU @A (7.66)
T (A4 2p) (2 + )
C_ by @A+t — py?)
" 21 (A +2p) (22 + y?)?
b x(a® —y?)

Coy = S 2n(1— ) (22 + y2)2 (7.68)

(7.67)
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1Y
Z
%ion—free boundary
the real dislocation the image dislocation
. o
— - X
i i
“

Figure 7.3. Animage edge dislocation

By neglecting all the integration constants, a straightforward integration of the
above strain components gives

b 1Y Atp o wy
= ——t =z —_— 7.69
u(@,y) 27r[an :c+)\+2u3:2+y2] (7.69)
b 1 5 oy, Atu Y
_ _2_ 1 ——((7.70
v(z,9) 27r[ 2N +2u) n(z” 4y )+)\—|—2uzc2+y2]( )

7.2.1 Image stress for an edge dislocation

The solution of the image stress distribution for an edge dislocation is more
complicated than that of a screw dislocation.

Consider an edge dislocation being placed: at —/ inside a half space
(x < 0). The solution obtained from the unbounded space,

o ,Ub y(3(1’ + €>2 + y2
Ouz = Coar(1—v) (x4 €)% + y2)2 (7.71)
o _ pb y((x 402 —y?
ST (=) (0 + )2 (7.72)
oy = g Ol Oy .73

2r(1—v)  ((z+0)? +y?)?
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will not satisfy the traction-free boundary conditionat 0 i.e. 0., (0,y) # 0

ando,,(0,y) # 0.
If we place a fictitous dislocation at= ¢ with the opposite Burgers vector.
The induced image stress fields,

B pob yB(z — 0> +y?

" = B (=0) (@ PP (774
_ pb  y((x — 0% —y?

= (=) (e P PP (7o)
o @0 —P -y

" S 0 (- 0P PP (7.79)

will cancel the normal stress on traction-free surfacegi (0, y)+o.,.(0,y) =
0, but it can not cancel the shear stress at 0. In fact,

pb U —y?)
1—v) (2 +y?)?

To cancel the shear stress on traction-free surface, one has to superpose another
stress field, such that the third stress fields satisfy the condition,

#0. (7.77)

00 1 _
ny(07 y) + ny(ov y) - 7T(

pb U —y?)
T w(l—v) (2 +y2)2

Tup(0,9) =0, and o, (0,y) = (7.78)

Consider the Airy stress function/(z, y), which satisfies the bi-harmonic
equation,
ViV =0. (7.79)

Introduce the Fourier-sine and the Fourier-cosin transforms,
1O = = [ rwsinds f) = [ F©sinena 7.80)
O = o[ fcostendn, )= [ (e costén)ds (780

Sinceo,,, must be even iny, the Airy stress functioh, is anti-symmetric in
y. We apply the Fourier-sine transform to Eq. (7.79), and it yields a ordinary
differential equation,

d4, 5 d2 W
—2
dz? ¢ dz?
Solving (7.82) yields the following solution,

Us(2,€) = (ao(€) + ar(§)) exp(x) + (bo(€) + b1(8)) exp(—¢z) . (7.83)

+ &4, = 0. (7.82)
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The boundary conditions,

1. 2 — —o0, ¥y —0, =by=0b =0; (7.84)
2. =0, 042(0,y)=0, =ap=0. (7.85)

Therefore U (z,¢) = a1 (&) exp(éx), and

Vo) =+ [ al@res(esn@.  (7.80)

[e.9]

Using the boundary condition for the shear stress,

O*V =
S | [ a©costenay

I GRS
T (- v) (2 + y2)2 (7.87)

—rn0y) = (

and the definition of the Fourier-cosin transform, one may find that

1 /O@ b U2~ y?)

a1(§)§ = — cos(&y)dy

T Joo (1 =v) (€2 +9?)?

o0 2 o 2
7T2(fb— V) /_ féf n y‘%; exp(i€y)dy .  (7.88)

. 002 —92)
The last line is because (CESTEE sin(&y)dy = 0.

Use the residue theorem to evaluate the integra,

[es) 2 _ .2
/ M exp(ily)dy = 2mi Z Res F(yn) ‘

—00 (62 + y2) yn =1l

— i (—% exp(—§£)) — nélexp(—El) . (7.89)

Wer then find that
bt ¢l (7.90)

al(g) - 7_‘_(1 — V) exp( g ) .
so that
b [
Vo) = A7 /O 7 exp €(z — £) sin Eydg

- pbry (7.91)

(1 =v)[(x =02+ 97
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Figure 7.4. A virtual displacement of a dislocation loop

and
2 .2\, 2 2 2 2
Y (1 —v)\(z —€)? + 97| [(z — 0% +y?]
" _ 2,ub€acy . 2 .2
Opx = 7_‘_(1 . l/)T‘G [3(6 ﬂf) Y } (793)
Indeed, it can be found that
" ,ubf 62 — y2 "
= d =0. 7.94

Moreover, sincef;f'y(é, 0) = 0, the shear stress acting on the real dislocation
due the traction-free boundary is the stress applied by the image dislocation
(the second dislocation), i.e.

" ,LLb

I _
oL, (—£,0) + oy (—£,0) = it (7.95)

7.3 The Peach-Koehle force

Consider a dislocation loop undergoing a virtual displacemgnsee Fig.
7.4). Aninfinitesimal dislocation line segmedX will sweep through an area,

dA = dX x 61 . (7.96)

Note that the direction of A is its out-normal.
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All the atoms on this area will be sujected a discontinuous jump with the
direction and the magnitude of the local Burgers vedioiT he traction forces
on the infinitesimal area can be expressee-agA. Be precise, it is
o-dA =0 (dX xdn) (7.97)
If we assume that the work done by the stresses relates to the decreases of the
potential energy of the dislocation,
d(0E) =—b -0 - (dX x dn) (7.98)

The change of the total energy due to the virtual displacement field is

6E:—/Lb-a-(dX><6n):—/L(a~b)><td£~6n (7.99)

wheredX = td/.
By definition, the decrease of the potential energy under the virtual displace-
ment field is the external virtual work done along the dislocation loop, i.e.

SE=-F n= —/ Fodl - 6m , (7.100)
L

whereF, is the force per unit length along the dislocation loop.
Hence, we derived the celebrated Peach-Koehle equation,

F-/ﬁ(a-b) X tdl, and Fy = <0'-b> t . (7.101)

whereF, is the force per unit length. In the case of straight dislocation line,

. F
we often denote it as-.

Now, let’s look at a few examples.
To simplify the computation, we denote

g:=o-b. (7.102)

Then the Peach-Koehle force formula can be conveniently written into a matrix
form,
e ey e3
Fi=gxt=|g 9 g3]. (7.103)
1 t2 t3

ExampLE 7.1 This example is illustrated in Fig. 7.5. We are examing the
external forces exerted on a straight screw dislocation.

Letz = 1,y = 2,z = 3. In this case, the unit vector of the dislocation line
ist = e,, the Burgers vector ib = be,, and the stresses other than self-stress
are

O =0.6,0€,+0,,e,0e, +0y.e,0€, +0,e,e,. (7.104)
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X
Figure 7.5. A straight screw dislocation.
and
Gz = 0z2b, gy = 0y2b, g.=0. (7.105)
Hence
e, e, €,
Fp=gxu=|o0:b o.b 0 | =o0y.be, —o0,.be,. (7.106)
0 0 1

To interprete the meanings of this expression, we would say that the shear
stress,o,,,, moves the dislocation line tex direction, whereas shear stress,
o moves the dislocation line towards the negative direction of Y-axis, i.e. -Y
direction.

ExaMmPLE 7.2 In the second example, we consider a straight edge disloca-
tion. This example is illustrated in Fig. 7.6. In this example, agais e, but
b = be,, and

O =06, D€+ 0y, ey + 0y.€y D ey . (7.107)
Thus,
9z = Ozzb, gy = 0oygb, and g, =0, (7.108)
and
e, e, e,
Fr=gxu=| 04:b ozb 0 = ogybe, — oy bey . (7.109)

0 0 1
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Figure 7.7. Interactions of two parallel screw dislocations

This is to say that the shear stress,,, will move the dislocation line along

the slip plane in the positive direction of X-axis. On the other hand, the normal
stress,o .., Will make the dislocation line tranlating along its own direction.
This is an unconservative motion, because if the motion is addmissible, one
has to remove material at one end of dislocation line and add material (atoms)
at the other end of the dislocation line. In literature, we refer such dislocation
movement as “climbing”.

From Eqg. (7.109), one may find thawif, < 0, which means the material is
under compression, the Peach-Koehle force will squeeze the dislocation line up
in Y-axis, and whem,, > 0 it will pull the material apart and let dislocation
line climbing down.
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ExaMpPLE 7.3 In this example, we consider the interactions between two
parallel screw dislocations along the Z-axis,= e, S; and Ss. They have
different Burgers vectors, i.db; = bje, andbs = bse,. For the dislocation,

S1, the stress field is

I :_Lblsmﬁ o :LblCOSQ _ (7.110)

o
vz 2 r 0 YVE 2

and for the dislocation$s, the stress field is

11 fuba (¥ — o)
ol — M2 , 7.111
21 (z — x0)% + (y — yo)? ( )
II pba (z — x0)
= —= . 7.112
vz 21 (z — x0)% + (y — v0)? ( )

In this case, the Peach-Koehle force equation is
F;=o0y.€, —0,.€y. (7.113)

1. Calculate the forceF;—’Q, which is the force exeretd on the dislocati®h,
by the dislocationS;. Letr = ry andf = 6, in (7.110) and substitute them
into (7.113). We have

1-2 I
FE = O'yz

I
b26x — Oy, bg ey
Z0,Y0 Z0,Y0

,LLbl bz COS 90 e, + ,ub1 bg sin 90 e

- 2T ro ot rg Y
b1b b1b

— Kb (cos@oex +sin00ey) Y Qfo, (7.114)
217 2mro

wherery = r(/|ro| is the unit vector inr( direction.

2. Calculate the force exerted on the dislocati6n- 1 by the dislocation
So. Inthis case, welet = 0,y = 0in (7.111) and (7.112) and substitute them
into (7.113),

F?_’l = aéi - bire; — a;ﬁﬁ . biey
ub1bs cos by ub1bs sin O
e — e{[ — ey
2 To 27 To
B ,ublbz ,Ubl bo

- (cos foe, + sin 90ey) — K2 (7.115)
27rg 27ro
Itis obvious thatF} —2 = —F2~! (see Fig. 7.7).
We then conclude that whén andb, are along the same direction, the two
screw dislocation repel each otherpifbs < 0, i.e. by andbs are in opposite
direction, then the two screw dislocations attract to each other.



144 INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS

REMARK 7.3.1 [Biot-Savart analogy]

In electro-magnetics, if there are two parallel wires having electric current
passing through, the interaction force between the two wires can be calcualted
by the well-known Boit-Savart law,

T
F@:f(thj), i#jand i,j=1,2 (7.116)
C

WhereF;; is the force exerted on the wireby the magentic field generated
by the wirej; I; is the electric current density in the wiig while B; is the
magnetic induction flux density generated by the wijrndc is the light speed
in the medium.

In the Peach-Koehle equation, if we defiig¢ = o - t, then
g=0, b, =0 th = G;b; . (7.117)
We can rewrite the Peach-Koehle force as
F,= bt xG;. (7.118)

It has a similar form with the Biot-Savart law. Singgis the analogy of;/c,

we may call the strength of a Burgers vector as the dislocation current density.
By the same token, we may call the stress projection due to the dislocation line
E;, j = 1,2 as the stress induction flux.

The only difference between (7.116) and (7.117) are is the minus sign in
(7.117). Thisis because in electro-maganetics. Two wires with the same (oppo-
site) electric current direction attract (repel) to each other, whereas two screw
dislocation lines having the same (opposite) dislocation current direction repel
(attract) to each other.

7.4  Configuration force: Eshelby’s energy-momentum

tensor
Assume that if the solid that contains the edge dislocatton=( be,) is
under external hydrostatic pressutg; = o99 = o33 = —p, this will cause

the edge dislocation climbing. While an edge dislocation climbs, it does not
produce volumetric strain, thus;; never does work any work in the process.
Therefore, there is actually no real force acting on the dislocation.

Therefore, there is no actual force acting on the dislocation. Then the “vir-
tual force”! defined as the decrease of the potential energy change due to the
change of the dislocation position,

ow

Fn — —%,

(7.119)

1Do not confusion this with the statically admissible virtual forces in continuum mechanics.
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T

L W

Figure 7.8. Eshelby’s argument on configuration force

is really a force due to the change of material's configuration.

Configuration mechanics has been an active research subject since Eshelby’s
pineeor contribution on configuration force study. In this section, we outline
the basic theory of configuration mechanics, and introduce Eshelby’s energy-
momentum tensor.

In order to evaluate the configuration force acting on a defect, we first cal-
culate the change of potential energy due to the change of configuration.

To do this, we follow the Eshelby’s famous thought experiment. The set-
ting of Eshelby’s thought experiment is a solid that is subjected external forces
or displacement constraints at boundary. Inside the solid, there is a point de-
fect denoted a®), and we link the defecD with its local configuration by
embedding it into an arbitrarily chosen local voluivie We define the local
configuration as the relative position bfinsideV. We denote the boundary
of the local volume ag = 9V (see Fig. 7.8(a)).

The basic idea of Eshelby’s thought experiment is to change the global con-
figuration or the defect position, while comparing the energy change in a local
configuration.

The following is the adaptation of Eshelby’s imaginary operation, which
mainly consists of four steps (I reshuffled the order):

(1) We first change the global configuration, or the position of the defect
by amount of6X in the material configuration. We denote the original local
volume containingD as V'. When the defectD, moves its new materials
position, we still choose the same local struction, or local configuration (but
a different sets of material points), to identify it, i.e. we surround the defect
D with local volumeV, which has the same local configuration és It
means the relative position @ is the same with respect 16 as it was before
with respect tol’’. The comparison is made under the same local structure,
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Eshelby called the local configuration ®f is a replica of the original local
configurationV’”.

Under this condition, the material virtual displacement field represents a
change of configuration. One may observe this in Fig. 7.8(b).

(2) Before calculating the difference of the energy stored ingidandV/,
we would like to clearify the following point: since the defect changes its
position +4dX, this may change the self-stress field as well as image stress
field of the defect, and consequently the energy density at each point. How-
ever, the change of energy density due to the defect movement is at order
§X:0X; ~ (6X)?, and it is a second order effect that can be neglected if
0X is infinitesimal. Therefore, we can calculate strain energy stored ifside
andV’ without taking into account the effects of the defect's movement.

(3) We then calculate the energy difference in two local voluieand
V', which have the same local structure with respect to the defect, due to the
variation in global material location,

0E, = WdV—/ Wwdv . (7.120)
1% 1%
From Fig. 7.8, one may observe that the area difference betWeandV is

wi — wo, i.e. adding the area; and removing the area,. Hence the stored
strain energy difference is

6E1:/ de—/ wadv . (7.121)
w1 w2

Sinced X is infinitesimal,

wl—wgz/ dA:—(FX-/dsn
w1 —wsg L

wheredA = —6X - nds . shown in Fig. 7.9. Therefore,
0F| = —5X-/Wd£n = —(SXg/ Wdsny . (7.122)
L c

Note that in this step, all the operations are performed in the material config-
uration. We are comparing the energy difference between two adjacent local
material volumes differing a translation.

(3) During a configuration change, the defect mov@X from its original
material position to the new material position, it will cause the relative material
virtual displacement,

_ 8u2
-~ 0X;

6’LL@'

5X; . (7.123)
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' ™

ds 3

86X

Figure 7.9. Eshelby’s imaginary operation

This is to say that if there is no displacements alofg, the displacement on

oV is du; = 5)7? 0X; vX € L. Then the difference of the work done to the
J

environment of the two local configurations is:

swert  — / O.T'Z-dg/(;uiﬂd,S:/(suiUijnde
r r L

= —/ui,kUijnde(st, (7124)
L

which will cause the decrease of the potential energy of the local configuration,
i.e.0Ey = —gWert,
Then the total variation due to the change of configuration is,

F = (SEl + 5E2 = —5Xg {j{ (Wnﬁ - Ui,ﬁgijnj)ds}
L

= =—-0Xy {%/;<W5€k — Ui,ﬁ‘%‘k) nkds}

To honor the tradtion, the force on the defect is defined to be minus the rate of
increase of the total potential energy of the system, i.e.
OF

OE = —F™ . §X = TXK‘SX‘ (7.125)
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Therefore the force acting on the inhomogeneity is
F%”h = j{ (W(Sgk — ui740ik)nkds . (7.126)
c

In two-dimensional space, the special caées 1, is Rice’s celebrated J-
integral,

Firh — J = 7{ (de - ui,laiknkds) : (7.127)
L

which can be interpreted as the driving force of a crack that grows along x-axis.
The integrand of (7.126) is Eshelby’s another celebrate tensor: the energy-
momentum tensor. The name comes from the fact that the tensor is obtained by
tranlating or giving a motion to the energy of a local configuration. We denote
it as
ng = W(Sgk — U 0Ok - (7.128)

Just like the Peach-Koehle force, Eshelby’s energy momentum tensor was in-
spired by an electromagnetic analogy as well. As Eshelby pointed thet, “
archetypal energy-momentum tensor is Maxwell’s stress tensor in electromag-
netics” We juxtapose the two for comparison,

P = wi1® —EgD (7.129)
PM = wi1® —vuwe. (7.130)

where the supercriptdy and M, denote mechanical and electrical energy-
momentum tensors respectively.

In the following, we show that the energy-momentum tensor is divergence-
free in homogeneous solid, which is in essence the path-independence of the

J-integral.
The straightforward differentiation gives,
0Py, OW O€mn, 5 " "
= W O — Ui 1O
8$k aemn 8$k lk i,0kVik 09k, k

OrmnUm nkOrk — Wi (kT ik
= OmnUmmnt — OikUi ke = 0. (7.131)

Therefore, for homogenous solids,

F, = 7§ Ppnpds = 7{ (W(Sgk — w0 s = 0. (7.132)
L L

For inhomogeneous solids, the above statement is no longer true, this is
because,
OC;jmn (Xx)

oxy,

# 0,
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and
1514

— Z# OmnUm.nk -
81’k7é mnUm,n

Suppose that there is a defect at a material g@jne assume that this may
be captured by an equivalent inhomogeneous elastic stiffness EpsdiX —

£),l.e.

o VX £ ¢
Ciie(X =€) = ikt 7.133
jke( £) { Cijk@(g)a VX — 5 ( )
where
82”7* 1 ..
Czjké (5) Cz]ké aeijaeké and 1} 9 C €ij€ke ( 3 )

ande;; is the character eigenstrain of the defect.
Therefore, the total strain energy of the inhomogeneous body is

1
E = 2/ Ci]‘k@(X — E)Eijekgdv (7.135)
14

By the definition,
_OE _ 1 [ O0Ciu
agn B 2 1% agn
1 1
= / Cijkt,m(Omn — Um ) €ijeredV ~ / Cijken€ijeredV
2 )y 2 )y

1
= 5 / [(Cijkfﬂjjﬂcﬂ> - 2Cijk£ui,juk,£n:| AYA
1% n

inh
IFn

Gijekgdv

ConsiderCjjreu; ; = oy and integration by parts for the second term of the
integrand.

. 1
Firh = / {<§Cijk€€ij6k€) — (opeurpn)e + O'k,ééuk,n} av
v

)

- /‘/K;Cijkzt‘ijﬁkz)n - (kauk’”)’z} av

= j{ (Wéng — uk,nakg) neds = 7{ Pmeds . (7.136)
L L

ExaAMPLE 7.4 The asymptotic stress fields for a mode Il crack is

K . 0 Kirr 0
013 = — sin —, o093 = cos — . 7.137
b \2mr 2 23 V2rr 2 ( )
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n

—d

Y xo®
™  ni=cos ©
o/ o sing

Figure 7.10. Contour for J-integral around a crack tip

We choose the integration contdr: 1 = rcosf, xo = rsinf, —7 <0<
T .
The J-integral reads as follows,

J = ﬁ(Wd%g — g;biaiknkds)

= / (Wr cos O — %(0’31711 + 032712)Td9) (7.138)
8.%1

—T

Oug 031

Considem; = cosf,ny = —siné, o 2€31 = 7, andW = K%U/(4,u7rr).
1
T KQ KQ s
J = / T 65046 — m/ (sim2 Q cosf — singcosgshﬂ)dﬁ
_x A 2y ) 2 2 2
K? i 0 0 0 0
= ﬁ /_7r (2 sin? 3 cos® 0 — sin® 3 <c052 3~ sin? 5))(10
K2 T 0 K2
= ”f/ sin? —df = L1 (7.139)
2 ), 2 2u

7.5  Continuum theory of dislocation

One of the popular meso-scale simulations in solids is the discrete disloca-

tion dynamics, which is often referred in the literature as DD. Since Kubin and
Devincre’s pioneer work, numerical simulations of dislocation dynamics has

become an indispensible part of multiscale simulations. The current trend is to
develop con-current multiscale simulations to couple the atomistic molecular

dynamics (MD) simulations with continuum based dislocation dynamics (DD)

simulations. In this section, we shall briefly introduce the basic concepts and

theories of dislocation dynamics.
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7.5.1 \Volterra and Mura’s formulas

We begin the discussions with the displacement and the stress fields of the
curved dislocations. The general theory of curved dislocations in anisotropic
media was developed by Volterra [1907], De Wit [1960, and Mura [1963,1968].
The special case of curved dislocation in an isotropic medium was attributed
to Burgers [1924] and Peach & Koehler [1950]. The presentation in this book
is an adaptation of Mura’s work with contemprorary flavor.

Before we proceed to derive the Volterra and Mura’s formulas, it is expe-
dient to lay out some useful formulas. Consider a simply connected region,
Q) € R3, with a smooth boundary. Define a characteristic function,

x(x) = { ) e . (7.140)

Consider a (slip) plang that is characterized by its normaland its distance
to the origin of the coordinate, The Radon transform of(x) will be

/00 x(x)d(s —n-x")dx' = / ds (7.141)

—00 SNQ

if Q = R3, we have

/oo X(x’)é(s—n-x’)dx'z/_Zé(s—n-x’)dx’:/SdS (7.142)

— 00

Conceptually, we can generalize the Radon projection formula to a two-
dimensional curved surface (2D manifold),i.e.

/ f(x)o(s —n-x)dx' = (x')ds’ (7.143)
Q SNQ
/ f(x)o(s —n-x)dx' = / f(x"as’ (7.144)
o S
or
/ F)S(S — x)dx = (x')dS" (7.145)
Q SNQ
/ f(xN6(S —x)x' = / f(x"ds' (7.146)
oo s

whered (S —x) is an abbrieviation of (dist (S, x)) anddist(S, x) = inf{|x —
yl,Vy € S}.
Now we consider the following integral,

/ §(x —x")dS’ (7.147)
S
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whered(x — x’) is Dirac’s delta function in three-dimensional space. Based
on 7.146, we have

/ 5(x —x')dS" = /OO §(x —x)§(S —x)dx' =46(S —x)  (7.148)
S —00

Figure 7.11. Curved dislocation loog and the Burgers circui.

Assume that there is a dislocation loop embedded in an elastic continuum.
To define a dislocation line, we take the tangent at a posiiam the dislo-
cation loop,t, as the local direction of the dislocatin. Obvioudlyies on the
tangent plane at point. We denote the tangent planesatis S. S is also the
local slip plane. Itis assumed that the upper plane of S (denoteét bylips
a distancé relative to its lower plané&—. Choose a circuit around the vector
t in a plane that is perpendicular tdor t is the normal of the plane). Circle
the circuit (the Burgers circuit) in a direction that makas a right-handed
rotation vector.

In this definition, both the tangent vectbrand the local Burgers vectds,
could depend on the spatial location, though in the rest of the presentation, we
assume thab is a constant vector. Note that the real slip plane may not be the
tangent plane at, it could be a curved surface, but the tangent plane of the slip
surface at the interception of Burgers circuit should coincide with the tangent
plane of the dislocation loop at poigt

To homogenize such dislocation field, one may assume that the total dis-
placement gradient can be written as two parts,

Ujj = ﬁi]‘ + ﬂ:j (7149)
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whereg;; is elastic distortion, an@* is equivalent eigen-distortion, or plastic
distortion. 2

The total straing;;, elastic straing;;, and eigenstrair”;; can be expressed
as

1
€5 = 5 (ui,j + u]',i) (7.150)
1
ey = 5(By+0) (7.151)
* _ 1 * *
€ij = 3 (@j + ﬁjz’) (7.152)
where the eigen-distortion is prescribed as

where the normal vecton, is pointing fromS* to S—.
The eigen-distortion caused by slipof planeS™ may be wretten as

Bi(x) = =bind(S — x) (7.154)
(Question: why is there a minus sign?) Therefore,
1
€ij=—3 (binj + bjni)(S(S - x) (7.155)
2
Therefore,
uz(x) = - / ijmnE*mn(y)Gij,E(X - y)dy
—00

:!/ Cotmm€ mn(¥)3(S — y)Guye(x — y)dy

= / ngmnbmnnGij’g(X — y)dSy (7156)
s
The above expression was derived by Volterra, and it is called Volterra formula

(Volterra [1907]).
Differentiating (7.156) yields

Ui, (x) = /ScjﬁmnbmnnGij,Ej (x — }’)dSy (7.157)
and the elastic distortion becomes

Bji(x) = / CitmnbmnnGij i (x — y)dSy + bin;o(S — x) (7.158)
s

2There are many attempts to derive plasticity theory from this formualtion.
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Mura showed (Mura [1963]) that the above surface integration can be written
as a line integration,

Bﬁ(x) = iejnhcpqmnGip,q(X — y)bmthdfy (7159)
which is termed as Mura’s formula.

To prove the equivalency between (7.159) and (7.158), we first consider
Stokes’ theorem of a third order tensor fiell,= Aj;se; ® ey,

/n- (V x A)dS = ?{t - Adl (7.160)
S
or in component form
/ekghnkAjihldS = fthAjihdg (7161)
S

Let Ajin = €jnhCpgmnbmGip,q- We have
% €jnhCpgmnbmGip,q(x — y)tndly
L

= - /S €kehTk (ejnhcpqmnmeip,qé(X - Y))dsy (7162)

0 _ . .
whereG;, o = —WGip,q. Utilizing the identityeienejnn = 0kj0en — dknde;,
X
¢
one can obtaion

— /S((Sk.jégn — 0kn 02 )b Cpgmn Gip,qe (X — x')dS’
= - /S<njbmcpqm€Gip,q€(X —x') - N0 CpgmnGip,qj (X — X/)) dS
_ /S (3B = X') + b Cpgran G gy (x — x') ) S’
= /anbi5(S —x)6(x — x')dx" + /Snnme’pqmnquj(x —x')dS’
= n;bo(S —x)+ énnmepqmnGip7qj (x —x)dS’ (7.163)

Finally, we showed that (7.158) is equivalent to (7.159).

7.5.2  The Burgers formula

For isotropic materials, the Volterra formula can be simplified and explicited
expressed in terms of elementary line integrals, which are instrumental in con-
temporary discrete dislocation dynamics formulations.
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To derive the Burgers formula, we start from the Volterra formula,
U (X) = bi/ Cijkngom7ﬁ(X — x')dS§- (7.164)
S

where the surfacé is the dislocation surface, which is a cap of dislocation
line C' = 08, anddS’; := n;dS.

For isotropic materials, both the elastic tensor and the Green'’s function are
quite amieble

Cijke = Aijoge + 11(dirdje + diedjk) (7.165)
. 1 A
km (X> - 87ru |:5km7",pp - N+ Q/L’r,km:| . (7166)

DenoteR = x — x andR = |x — x | = \/(xl — x;) (@ — ).
Then,

1
CijktGrm o (R) = (Adijoke + p(dindje + 5ie5jk))% {5ka,ppg

A 1 A
t R,km@] = { r 0 R,ppm

A+ 2 Srp \A+p
+M(5imR,ppj + 5J'mR,ppi) -2 (;IQIL)MR,MJ} (7.167)
Utilizing the identity,
A 2()\ +u) )

A2 TA+2u
one may find that

00 1
biCijMka,f(R) = % {meR,ij + ﬂ(bﬁR,ppf(Sjm — bR ppm)
At p
+ 2()\ + QIM)'M(bJR:me - bzR,mzj) } (7168)

Changing the dummy variable, we can then write
1 / 1 / /
un(x) = oo [ bnBopsdS)+ o S(bngppgdSm ~ bR ppmdS) )
1 X + % ’
s QMbj /S(R,pmpde — R jmpdS,) - (7.169)
Consider Stoke’s theorem,

/(VxA)-dS: A-dl. (7.170)
S
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Let,
0

—e
O ms

V= A=A e, dS=dSie;, and dl = tpdley, = dryes .

A special case of the Stoke’s theorem is,

0A ..
/€mnk’dsk :% A7...dflfn . (7.171)
S 0T, s

Change the free-index, — k,

S a.ﬁUm 88

We then have

eijlcemnk/ AymdSn = Eijk% A7dl‘]C

s as
_(5im5jn - 5in5jm) / A7...mdSn == Gijk% A7d:17k (7173)
S a8
which eventually leads to the desired form,
/ (4,.4dS; = A,.idS;) = i f A,..dzy, . (7.174)
s as

In (7.169), we may viewr ;, as A ,, in the second integral ang ,,, as
A ,,p inthe third integral and then apply the Stoke’s theorem (7.174) to (7.169),

by / (RoppedSy, = RppmdSy) = s / (RppirdS, = RopprdiSy )
S S
= —by 7{ eme R ppdizy
C

b, /S (RompdS; = Ropmyd,) = —b; /S (RymprdS; = Rymyrds,)

= —bj% GjkaJ)deC;€
C

We derive the Burgers formula,

1 / 1 /
um(x) = &T/Smeppdej—&F/Cbgemgkﬂppdxk

1
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: _ LA 1 . .
In the last line, the |dent|ty—+ P~ _isused. Consider the fact that
A+2n 2(1—-v)

Ti—T: R Om R.,.R
Ry= =g =g o Ry = 3 ="
hence 5 oR
R,pp = E and R,ppj = F‘] .
Therefore,
1 [byR; ., 1 mekbe
U (%) = " 4s, L

Cdm Jg R3O axm g

1 9 (Ry\
e fc O <E>dxk (7.176)

which can be put into an elementary vector form, i.e. the Burgers formula

. (7.177)

u(x) =

by 1 [bxda 1 fbe-dEl
4 47TC 87T(1—V) C R

In (7.177),d£' = trdle, = dx}cek, and(? is the so-called solid angle, which
is defined as the surface ar@aof a unit sphere covered by the surface’s pro-
jection onto the sphere. In this case, the angle is subtended by the dislocation

surface,s, i.e.
R;dS’, n-ds
Q:/ J J:/ (7.178)
s R3 s R?

wheren := R/R is a unit vector from the point to the dislocation surface,
S.
If the surface is a spheréS = R%dw and

2 .
52 R S2

= j{ n;n;dw = 47 . (7.179)
So

7.5.3 Peach-Koehler stress formula for dislocation loop

The objective of this section is to express stress field of a dislocation loop in
terms of line integral. Take derivative of the Bergurs’ displacement formula,

1 / 1 /
Unye = &r/Smempjgde — &r?iemnkbnR,ppédxk

1
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In the above equation, only the first term is not a line integral. Nevertheless,
we claim that

/ bR ppejdS; = —816(S — X)bymng — b, 7{ €ionR ppidy, .
S C

Proof:
Apply Stokes’ theorem,

7%; eijupdry, = /S [¢7dei—¢,idS;} (7.181)

to the above expression,
jé eka’ppdx;{ - / (RJ’M' dS;' - R,ppj/dsé
c s

_ /S <R,ppjds;—R,ppeds;) (7.182)

Therefore,

8 ! ! !

a f €jen R ppda), = / [Ryppjjds,z - R,ppgjdsj} (7.183)
dz; Jo S

Since

/

GP(X—X):

1 2 p o !
e and V°GP = —§(x —x ),
we then have

2 / / /
R, = R 87GP (x—x) and R = 87V2GF (x—x) = —8md(x—x ).
Consequently,

b j’{ €tk R ppjdit), = —87by, / §(x —x)dSy — b / R ppejdS;

c s S
Use Radon transformation,
/ 5(x —x)dS, = / §(x — x )nedS
S S

= /R3 5(x —x )ngd(S —x)dQ =6(S —x)ny  (7.184)

Hence, we verfied the claim.
Note that3} , = —8b,,n/(S — x), we again recover Mura’s formula
* 1 :
ﬁmﬁ = Umye — ﬁmé = _87£ Ejﬂkme,ppjd$k
(e

1 , 1 /
_ 87TjgcEmnkzbnR,’pMd-’L'k - W—W%C«EjpkbjR’mpedxk(7'185)
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Shifting the dummy indices, one may find that

1 1 1
eij = 5B+ B =g ji {—2( jkebiR ¢ + €igebj Ry

1 /
—€jkebe R — eikZbZRJ‘)—i‘il — VemnkbnRij} dx,, (7.186)
Repeatly using the é4identity €;;jepmn = dimdjn — dindjm, ONE has

€ike(biRy —beR;) = €ke(0isOer — 00s0it)bs R = €jpe€iop€stpbs Ry
EpstfijGiprsR,t = 6pst(éji(slﬁp - 5jp5ki)bsR,t

= (€rst0ji — €jst0ki)bs Ry (7.187)

Similarly, one may find,
€ike(bjR e — bR j) = (€pstOij — €istOrj)bs Ry (7.188)

which enable us to write

1 1 1
¢j = - 2 {_bsR,ppt [Gkstéij - ifistékj - §€jst(5kz}
1 /

+1_V6mnkbnR,ijm} d.%’k (7189)

For linear isotropic elastic materials,
0ij = Cijreere, and Cijre = Nijope + p(ixdje + 0iedjk) (7.190)

Finally, one can obtain the Peach-Koehler formula for stress field of a disloca-
tion loop,

1% bn i /
oij = yp g (?Rmpp + (ejmnd:ci + eimnd:pj)
by, ,
+ 1 €kmn (R,ijm - 5@']'R,ppm)d$k) (7191)
— VUV
Considering,
2R, 0 /2
R = 5 = ()
Rijm = V- (Vi ® ij)> (7.192)

One can re-write the Peach-Koehler formula in a vector form,
,U, ’ 1

= — bx V)=

o (bx V)

LA nL
i | ® de +47T]id£ @ (bx V)4
Y S " . R
= 4W(1_V>]QV (bxdl) (VoV-1V*)R. (7.193)



160 INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS

7.6  Discrete Dislocation Dynamics (DD)

The first discrete dislocation dynamics simulation was attempted in late
1980s by Lepinous and Kubin [1987] and Ghoniem and Amodeo [1988]. The
simulations were conducted then were the interactions among infinitely long
straight dislocations. Since 1990s, more realistic DD simulations have been
proposed in situations that are involved with more complicated micro-structures.
In the following, we shall outline one of the latest formulations of DD simula-
tions.

7.6.1 Galerkin weak form formulation

The Galerkin weak form formulation is proposed by Ghoniem and Sun and
their co-workers.

The following presentation is mainly based on a series papers by Ghoniem
et al [1990] [2000], and [2004].

In this approach, the formulation focus on simulating one dislocation loop
among many different dislocation loops.

To formulate the discrete dislocation dynamics, we employ the virtual work
principle. For a given virtual displacement fielik, the virtual work will be
balanced on the dislocation loop considered.

The internal virtual work consists of the virtual work done by all the stresses
acting on the dislocation loop, which includes the stress fields of all other dis-
location loops and the stress field due to external loads, the virtual work done
by the self-stress field. The external virtual work is mainly the virtual work
done by the friction forces that resist the motion of the dislocation loop.

We first consider the virtual work due to all other internal stresses except
the self-stress,

5WPK = depK%;X:%[(b'szdﬂ}-(SX
C C
- ja{ (b.z x t)dﬁ-éx - f{ (€16 D jmbmbrdas)de (7.194)
C C

whereb is the Burgers vectot, is the tangential vector along the dislocation
loop, and
Sij = 0} + o5 (7.195)

Here a{j are the stress fields of all other dislocation loops inside the solid,
which can be expressed as

1% 1 ’ ’
a{j - =t bn, [§R7mpp(6jmnd(£i + €imndz;)
+ €mn (Roijm — 055 R ppm) | dz), (7.196)

1—v
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ando?; is the stress field due to externally applied loads.
Denote

K = €k S jmbmts. (7.197)

7

One may write
Wpi = 7{ PR des ;. (7.198)
c

In principle, the virtual work done by the self stress field can be also ex-
pressed by Eq. (7.196). However, in that case, Eq. (7.196) would become
a singular integral, which can be evaluated in the sense of Cauchy principal
value.

Since the core of a dislocation loop has specific physical meanings, it would
be appropriate to treat the virtual work of self-stress field separately. Gavazza
and Barnett [1976] expressed the virtual work of the self-stress field of planar
curved dislocation loop in terms of a single integral expression,

ER
+[dU]core (7.199)

Weery = 72 { [E(t) - (E(t) + E”(t)) m(ﬁ)} K — J(L,p)} n - oxdl

whereE(t) = 30;;(t)bin;, € is related to the core size, is the curvature of
the dislocation lineJ(L, p) is a non-local interaction term, afd@/] ... is the
virtual work contribution from the core of the dislocation loop. Sifé€] ...
is related to the dislocation mobility, this term may be absorbed into the friction
force.

Let,

geelf = {E(t) - (E(t) +E (t)) m(%ﬂ k—J(L, p)} (7.200)
and
£ = e (7.201)

The total active forces acting on a dislocation loop are
fF = fPE 4 gt (7.202)

In many cases, it has to include the change of chemical potential inddsed
motic force Since the change in chemical potnetial per vacncy or interstitial
will cause the dislocation loop climbing, or causing the none-conservative dis-
location loop movement, th@smotic forces usually responsible for the dis-
location loop climb (see Hirth, Rhee, and Zbib [1996]).

When a dislocation loop starting to move, it has to overcome the friction
forces that resist its motion. The friction forces consist of (1) extrinsic resis-
tances due to alloying, impurity atoms, Peierls stress (this part of force coming
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from [dU].ore), €tC., and (2) Intrinsic friction forces that are due to the atom-
istic bond force in a surface separation (fracture) process. Empirically, one
can always assume that the friction forces are proportional to the dislocation
velocity, such that

5Wfriction _ f CipVidloz; = f C. V)dﬁ -0 (7.203)
C C

where J
X
V== 7.204
dt ( )

andC is called the resistivity matrix, which has three independent components
in an isotropic medium (two for glide motion and one for climb motion),

00
Cxl=] 0 Cy 0 (7.205)
C, 0 Cs

Then the principle of virtual reads

C

7.6.2  Finite element implementation

Truncating the dislocation loop int®y; segments, and mapping each seg-
ment into a one-dimensional parametric space,Ne.; [x;_1,x;] — u €
[0, 1]. Thereby, forx € Ny,

0 = ( o )du (7.207)
Consider the finite element discrettization,
Npr
2P (ut) = D Nign (u)qm () (7.208)
m=1

whereN;,, (u) is the finite element shape function. The discreteized velocity

field is
Npr

Vi =al, =) Nin(w)gma(t) . (7.209)
m=1

Denote the gradient of FEM shape functionig, (v) := Ny (u). The
line integration element will be

Npr 1/2
Al = (zpae)?du = (Z qpqugp(u)Bgs(u)) du (7.210)

p,s=1
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Figure 7.12. Simulations of Discrete Dislocation Dyanmics

We can evaluate the internal stresses acting on the dislocation loop by quadra-
ture integration, i.e.

1
o = 4/; 22D bowa [gR,mpp(éjmn%u + €imnju)

1_ Vekrmn(R,ijm - 5in,ppm)xk,u} (7211)

whereN,,, is the total number of dislocation loop¥ is the total number of

segments in each dislocation loop, apgl.. is the total number of quadrature
point in a segment, and,, is the quadrature weight.

Denote each segment of the dislocation looplas The discretized weak
formulation is

NS Qmuw NDF NDF
j=1 a=1 m=1 n=1

Npr

1/2
X ( Z QPQSBZpB£s> we =0. (7.212)
p,s=1
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Define the generalized force vector,

Qmam NDF

= fiTNim(U>< > Qp7q$B£pB@3)1/2wa (7.213)

a=1 p,s=1
and the resistivity matriX~,,, }, in which

Qmaz NDF

Vimn = Zl Nz’m(u)cik:Nkn(U)( Zl qp,qunggs)mwa (7.214)
a= p,s=

Then, we can put the dislocation loop weak form into a matrix form,

N

>-[ie - 1[5 ] [oa] =0 (7.215)

J=1

which leads to the global matrix formulation,

[¥] - [r [?HT 5q] ~o. (7.216)
where
[F] - Aj.V;l[fEXNDF (7.217)
[r] - Af;l[v]j”w” (7.218)
Sovling (7.216) yields,
CENRS =

Employing any desirable time stepping algorithm, one find the updated dis-
location loop configuration or position by

-1

Ql = (@] +[r] . [¥] A (7.220)

where0 < o < 1.
This is the state of the art discrete dislocation dynamics formulation.

7.7 The Peierls-Nabarro Model
7.7.1 Hilbert transform

The Hilbert transform is a particular case of the Cauchy integral transforms.
Let L be a closed smooth contour an¢t)) be an arbitrary Holder continuous
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function specified o, and vanishing at infinity. Cauchy integral transforms
are the following pair of mutually invertible integrals (e.g. Zhdanov [1984]),

R Y (9
P(C) = M'/LC—CodC (7.221)
1 [ Q)
¢ (o) ni) toa® (7.222)

One special case of great value for applications isktheal axis,/m (¢ (¢)) =
9(x), Re(¥(C)) = 0, Re(p(C)) = f(x), andIm(¢(¢)) = 0. Thatise(¢) =
f(x) +1i0 andy(¢) = 0 4 ig(x). Here f(x) andg(z) are real functions of
a real variable x satisfying the Holder condition for any finite x and vanishing
at infinity. This special case of Cauchy integral transforms is the so-daked
Hilbert transforms

o) = H@) = [ 100 (7.223)
f@) =~ =-1 [~ 2409 (7,229

Note the position betweenandt and position betweetiand(.

Hilbert transform table is available in many mathematics handbooks. In
general, one can find Hilbert transform via Cauchy’s residue theorem.

The following are a few examples:

H(M) - jr/_oo (W) — 5z —b) (7.225)

H(M) - i/i((ﬁ +ag)t(x —t)) = a(x;ik a2)(7.226)
H<Sin(bx)> - ;/Z W = —cos(bz) (7.227)

7.7.2 The Peierls-Nabarro dislocation model

In the early development of dislocation theory, scientists were concerned
with two important issues: (1) What is the size of a dislocation for a given
Burgers vector? (2)How much force is heeded to move a dislocation out of its
stable position?

The second question is the so-called dislocation mobility, which is central
to the understanding of the ductile material strength. The Peierls-Nabarro dis-
location model tries to answer this question.

Before we discuss Peierls-Nabarro model, we first examine the mechanical
fields of a straight edge dislocation (displacement fields are given up to a rigid
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Figure 7.13. The Peierls-Nabarro Model

body displacement) ,

— b 1Y Ty
br1—2v 9 5 22
T Torlia =) 7.22
o 27T{4(1—V)ln(x Ty 2(1 = v) (22 +¢?) (7.229)
pb y(32® +y°)
woT T 7.2
’ (L —1) (@ + 2P (7.230)
_ po oyl —y?)
T T 271(1 — v) (22 + y?)? (7.231)
2 _ .2
R (7.232)

27(1 - v) (a2 + )2

As evident from the above equations, the stress fields are singular at the ori-
gin. Therefore the analytical solution presented above is no longer accurate
near the core of the dislocation. To remove this singularity inside the dislo-
cation core, Peierls [1940] and Nabarro [1947] included the discrete atomic
nature of the material and proposed the following lattice correction model.

The Peierls-Nabarro model(PN model) for a straight edge dislocation is de-
scribed using two semi-infinite simple cubic crystals as shown in Fig. 5.4. The
formal glide plane i3y = 0. The two elastic half spaces are terminated on the
planesy > d/2 andy < —d/2. At the middle of glide plane, a non-Hookean
slab of widthd (atomic spacing) joins the two half spaces. The symmetrical
configuration indicated in Fig. 5.4 suggests that this is done by cutting the
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perfect crystal into two halves along tlhye= 0 plane, and inserting an addi-
tional layer of atoms in the upper half of the crystal space, which displaces the
upper half crystal moving rigidly a distan€esb in both positive and negative
x-direction, and we then re-weld the two half crystals.

Before the "re-welding", the initial dis-registry (misalignment)hdirection
of two vertical atom layers with respect to the upper and lower half crystal
spaces is

Hz) =X} - X, = m==+1,42,---+o00 (7.233)

m m

—, <0

After the re-welding, the misalignment, or the discontinuity, between the atom
layer in the upper part of crystal and the same atom layer (m) of the lower part
of the crystal becomes

Po(@) = Ty — @ = Xy, +ul (1) — (X, +u”(2))
g +ut(z)—u(z), >0
¢a(2) =
—g +ut(x) —u(x), <0
2ug(x) + 5 T> 0
2ug(x) — g, x <0

By antisymmetry, we assume that(z) = u™ (z) = —u™ (2).
At the remote boundary, dis-registry is enforced to be zero, i.e. there is no
discontinuity at the remote boundary

¢r(x) = 0, when x — 00 = 2u,(z) £ g =0, z — too (7.234)

Thereforeu, (£o0) = :Fé. This implies that the total displacement along the
interface should be

Uy (00) — Uy (—00) = /(:((Zf)x_x/dx’ = fg (7.235)

Based on Eshelby’s interpretation (Eshelby [1949]), one may think that
Peierls-Nabarro model deploys a continuous edge dislocation distribution along
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the cohesive interface with its local Burgers vector densitl @s) to replace

a single dislocation with a Burgers vectbr To make sure that these two
dislocation systems are equivalent, we enforce the following condition on net
Burgers vector equality,

° rdugy S
_2/00( dz )x:x,d”f —/ b'(z")dr =b (7.236)

—00

From the above relation, one may derive that the distribution density of Burgers

d
vector should bé'(z/) = —2 Yo (2).

The strains near the dislocation core are large, and therefore use of Hooke’s
law for the stresses is unappropriate. One the other hand, it is relevant to use
the periodicity of the lattice, which implies,, to be a periodic function of
¢(x). We therefore assume that,

02y (2,0) = csin(%bd’”) (7.237)
2wy () o
Wheng¢, (z) << 1,04y(z,0) ~ C————=. Under small deformation limit,

it is assumed that the cohesive law should comply to Hooke’s law as well (is
this a good assumption?), i.e.

Ouy(2,0) = 2p€zy = poe () _ Cquﬁx(;p)

7.238

. . b o
which determines the constafit= 2“— Note that the shear strain inside the

T
cohesive interface is (see Fig. 5.4)

2 (T
Yoy = 22 (7.239)
Thereby, one obtain that
_Hb dmug(x)y _ pb . rdrug(z)
Ozy(x,0) = g SlIl(:l:ﬂ' + — ) =5 sm( 2 ) (7.240)

One can calculate the shear stress inside the cohesive strip due the continu-
ously distributed dislocation via superposition. ;A& 0,

1 Y/ (t)dt
Oy (2, 0) 27(1 —v) /OO x—t
[
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One may also derive the above integral equation based Boussinesq solution of
linear elastic half space (e.g. Timoshenko and Goodier [1972]).

Apparently,o..,(x,0) is proportional to the Hilbert transform efu, /dz.
Thereby the inverse Hilbert transform gives

duyg _ (1—-v) /OO oy(t,0)dt (7.242)
dx 7 e X —t '
Integrating this yields,
u(z) = 1-v / Oy(t,0) In [t — z|dt (7.243)
TR

Using ((7.240)) and ((7.241)), one can obtain the well-known Peierls-Nabarro
integral equation for unknown displacement field(x),

o X r= 1 - . 4 €T
/ (duy /dx) y—dt _ b(l —v) iy dmu

po— 54 2 (7.244)

—00

which is a singular, nonlinear integral equation with unknown functipfx).
Luckily, the solution of the above integral equation can be found in closed

form 3,
b T
Ug(x) = ~5- tan~! =

(7.245)

Te
wherer. = d/2(1 — v), which is a parameter that characterizes the size of the
dislocation core. Whefz| < r., the dis-registryp,(z) > b/4. Atz = r,
UCE(TC) = _b/8 and¢x(rc) = b/4'

Substituting ((7.245)) into ((7.240)) and utilizing the trigonometry identity

tan"!(y) = sin~! (L)

V142

b x
zy(T,U) = 7.246
Oy (2,0) 2r(1 —v) a2 4 r2 ( )

On the other hand, by virtue of (7.245) the displacement gradient in x-direction

one can find that

is
du b 7

) T e 7.247

( dx )x:t 2 t2 + rrg ( )
and the Hilbert transform of the above expression is
du:r b'l"c 1 b €T

=M\ ~5-3..3)T 53, .2 7.248

H( da:) H( 277:02+r2) 27T562+7“2 ( )

3My guess is that the reason why they took sine function as the cohesive law was to match the exact solution
of this particular integral equation, which people had known before.
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where the following Hilbert transform formula is used,

1 1 =z
H( 2 2)2* 2 4 2
s TeX? + 18

Based on ((7.241)),

(7.249)

duy b
Umy(x70):_ 1% H( U, H T

(1-v) E) :27r(1—y)x2—|—7"g

which is the same as the expression obtained above.

7.7.3  Misfit Energy and the Peierls Force

As we mentioned before, one of the motives to discuss the Peierls-Nabarro
dislocation model is to find the critical stress needed in order to move a dislo-
cation from its stable position. This question can not be answered by analyzing
a \olterra dislocation.

To find the critical stress to move a dislocation, we first examine the stored
elastic energy due to an edge dislocation. The total elastic energy stored in-
duced by an edge dislocation may be divided into two parts: the energy stored
inside the elastic crystal and the energy stored inside the cohesive layer. Since
the two crystal half spaces maintain substantially perfect lattice structure, most
of shear deformation is confined within the cohesive layer. For this reason, we
call the energy stored inside the cohesive layer as the misfit energy.

The shear strain, in fact that it is the eigen shear strain because it is the
“shear strain” caused by the local jump, inside the cohesive zone is,

_ Pa(@) _ 2ue(x) 4 (b/2)

Yxy = d d , x>0 (7250)

The misfit energy for a pair of atomic planes is,

1 Yoy, ’
AW = —2/0 Oy (,0)d,,b - d

- / " aydugh - d (7.251)
—b/4

The factor of half is introduced in calculating the misfit energy because it is

getting shared between two planes. Note that wher) = —b/4 — 7, = 0.

Therefore,

AW (x) = 5:2 ::;4 Sin<4wbux)dum — ;j:ii COS<47rmb> 7:/4
B 8/jrl)23d (1 +cos (47;,% )) (7.252)
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Substitute, )
__ v (T
Up = 5 tan <7“c> (7.253)
to obtain the misfit energy for a pair of atomic planes as,
_ pb? -10%
AW = $r2d (1 + cos (2 tan (7“0)>> (7.254)

Let the distance of the center of the dislocation from the nearest position of
symmetry b& = ab, wherex is a variable. Then the position of all the atoms,
on the two faces of the slip plane are defined by

2m9 the upper half crystal
Ty = 2 (7.255)
(2m — 1)5 the lower half crystal

andm =0, +1,+2 +3,--- (see Fig. 7.14).
Then the total misfit energy is the summation,

W = i AW (2m) + AW (2m — 1)
= Z Lk i:.o (1 +cos(2tan*1(oz+0 5n)(£)))
N n=0,+2,+4 8m2d n=—00 ' Tc
+ Z Mb; 5 (1 + cos (2 tanfl(a + O.5n)(£)>)7.256)
n=+1,4+3 8md n=-—00 Te

which can be combined into a single expression, ie= (a + 0.5n)b and
n = 0,+1,£2,.... Therefore summing up over all the atomic planes we get
the total misfit energy as

W = Z f(n 2d Z (1+cos<2tan (a+0. 5n)(:’))) (7.257)

C
n=—oo

This may be transformed using the Poission’s summation formula in Har-
monic analysis:

400
Z f(n Z/ x) exp(—i2nxn)dz, (7.258)

n=-—o0o n=-—o00

wheref(z) is an even function, it reads

400
Z f(n Z / Jeos(2man)dz, (7.259)

n=—oo n=—oo
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Figure 7.14. The Nabarro counting scheme

where we have used the fact that the functfén) is even inn. We can rewrite
the above relation as,

too 400 & 400
Z f(n) = f(z)dz +2 Z/ f(z)cos(2man)dz,  (7.260)
n=-—00 —oo n=17—

Therefore we can rewrite the total misfit energy from the equation ((7.257))

as,

Nbg +o0
W = Se2d (1 + cos(2tan™! 2))dx

™ —0o0

+oo “+o00
ub? / 1 dz
+ (14 cos(2tan™" z))cos(2mn| — — 2« ) |dz
4772dn§:1 o ( ((1 —v)b ))

(7.261)

wherez = (a + 5)2 = 2(1 —v)(a + %)%, Thereforelz = (1 —v)}
anddr = %

T de- Using these transformations and that(2tan~! z) =
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2 1, weget,

1422
/~Lb2 /+oo 1
W = d
Ar?(1—v) J_oo 1422 :
400 +o00
ub? ( ( dz )) dz
R 2 —2 9 e
+2w2(1—u);/_o® O a =~ 1t 2

(7.262)

The first integral above can be calculated using the Cauchy residual theorem,
that is we use the result:

oo _ 1
/ L Tyl miiei ) =

whereRe(.) denotes the residual. Therefore the first term of the total misfit en-
ub?

ergy as;_ - The second term in equation ((7.262)) can be further reduced
to,
400 400
ub? 2mnzd dz
272(1 — v) ;COSMW”Q) /_OO COS((I - I/)b) 1+ 22

To evaluate this term we again use Cauchy residual theoremk sayLl’jﬁf)l ;
then the integral in the above equation is equal to,

+o00 eikz
/ 5dz
oo 1+ 2

which is equal tare—*. Therefore we obtain the total misfit energy as,

“+o0o
,sz [LbZ —4nren

= 4 7.263
w 4W(1_V>+27r2(1_y);7re b cos(4dmna) ( )

The term inn = 1 dominates the sum, therefore we have,

pb? b2 47re
= - 4 7.264
Wiw) 4dr(1 —v) * 27(1 —v) P ( b ) cosama ( )

The corresponding force acting on dislocation is given by,

_1dW(a)
b do

F= (7.265)

Note that the dislocation moves a distanceb.
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dW (a)/da reaches to maximum whein 47 = 1. From the relation that
ozy = F(b x 1)(unit thickness in z-direction), the critical shear stress to move
the dislocation by one lattice site is

o= (12_’2) exp(—47;7'0) (7.266)

wherel’ is called the Peierls force amdis called the Peierls stress, which are
required to move a dislocation over a Peierls barrier.

A more physically realistic restoring stress is obtained if we use relative
displacement (of the two half planes) instead of the lattice displacement in the
above discussion. In the following, a more recent treatment of the PN model is
outlined (J@s and Duesbery, 1997) which considers the relative displacement
instead of the independent lattice displacements in two half planes. We restrict
our attention to the case of a straight edge dislocation. The new model predicts
a Peierls stress which differs from the above mentioned expression by a factor
of two in both the exponential and the coefficient of the exponential. This
approach is also valid for the case of narrow dislocations.f By we define
the displacement of the upper half of the crystal with respect to the lower half.
If ¢ is a constant, therf(z — ¢) corresponds to a dislocation translated by
c. For a discrete lattice this can be understood like this: If the dislocation is
introduced at, then the atomic planes at a positie in the upper half of the
crystal will experience a displacement ffmb — ¢) along the Burgers vector.

The total misfit energy in this case can be written as:

b’
4d72d

(1 + cos(2 tanfl(mb — C))) (7.267)

Tc

W(c) =
Note the difference of factor of half in the expressioiéffrom the earlier dis-
cussion. This is because we are no longer treating the two half planes indepen-
dently, but we are using a relative displacement. Using further manipulations
and substituting’ = r./b andy = ¢/b we have,

2
W) = 50— B Z r2+ TR (7.268)

1—1/

W (y) is an even periodic function of peridd Using this information we can
express the energy as the sum,

+o0
W(y) = % + Z @y, COS 2TTNY (7.269)

n=1

Where we can calculate the Fourier coefficients in the usual manner. After
substituting the value of these Fourier coefficients, we get the expression for
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the total misfit energy as,

b pb® — 2mnT’
- =2l (g 9 7.270
Wiy (1= Tor(i—w) nz::l € cos=mny (7.270)

For the limit of wide dislocationsI{ > 1), only the first exponential term is
kept. Then in the limit of wide dislocations we have,

pub?

—27re 27TC
=— (142 — 7.271
W(e) 47r(1—u)( +2e 5 cos b ) ( )
From which we obtain, (using the relation= max{%%})
B 2.
o exp< ; ) (7.272)

Note the difference between the above stress and the one obtained in the equa-
tion ((7.266)).

Figure 7.15. Paul Dirac (left), Wolfgang Pauli (middle) and Rudolf Peierls (right) in discus-
sion at the international Conference on Nuclear Physics, Birmingham, 1948

7.7.4  Story of the Peierls-Nabarro Model

The following is an account on the discovery of Peierls-Nabarro model,
which was given by the late Professor, Egon Orowan, of Massachusetts In-
stitute of Technology, who was a well-known physicist and material scientist
at the time.
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"1937 | was invited to work at the University of Birmingham, in the Physics Department
which had just taken over by M. L. E. Oliphant (now Sir Mark Oliphant). | felt that it
would be urgent to know the width of the dislocation belt and the stress required to
move it. The simplest assumption about this was the one made by Taylor, that the
stress was zero; however, the extremely high yield stress of many hard materials such
as diamond (which could be remarkably free from imperfections and thus could not
contain too many dislocations) indicated that the most frequent cause of the hardness
of crystalline materials was the high shear stress required to move a dislocation. | found
that the width of the dislocation and the stress for moving it could be calculated, with
a crude approximation, simply enough by assuming that the shearing force between
the opposite shores of the slip plane in a dislocation was a sine function of the relative
shear displacement (the initial tangent of the sine, of course, was given by the elastic
modulus).

One the other hand, displacement and shear traction at the surface of a half-space were
connected by the equations of Boussinesq; equating the stresses and displacements of
the sine approximation with those of Boussinesq led to an integral equation which was
the solution of the problem It would have taken me days or weeks of study to solve

it; fortunately | was a daily guest in the hospitable house of the brilliamnt theoretical
physicist Rudolf Peierls. He solved the equation, if | remember well, within a few
hours, and he also drove me to a conference at Bristol University in 1939 where | gave

a paper and he gave another on the problem he had just solved.

The calculation of the width of the dislocaiton and of the Peierls-Nabarro stress required
for moving it was repeated and improved by Nabarro in 1947. The result was puzzling
at first: the width calculatied by Nabarro amounted to a few atomic spacings while
Peierls obtains an order of magnitude of thousands of spacings. After some research in
Birmingham and in Cambridge (where | was wat the time) | discovered the sheet with
Peierls’s calculations in my desk; Peierls checked it and found that a fac?ar whs
accidentally omitted in an exponent, which amounted to a factor of about 1000 in the
result.

Of course, the calculation with the sinusoidal approximation is useless in most interest-
ing cases of directinal bonds, in transition metals and the hard non-metallic crystals."

From The Sorby Centennial Symposium on the History of MetallMfyC,
Vol. 27, 1963, pages 368-369.

7.8  Dislocations in the epitaxial thin film

The thin film is the basic configuration structure for integrated circuits, com-
puter memories (RAM), and various sensors, filters, and other electronic de-
vices. Study the mechanical, chemical, and electrical properties of the thin
films has particular significance for nano-technologies.

The ancient Greek wordr:. (epiplaced or resting upon) and the word
Taé1( (taxis— arrangement) are the root of the modern wapdaxy which de-
scribes an extremely important phenomenon exhibited by thin films. Epitaxy
refers to a single-crystal film formation on top of a crystalline substrate and
both have the exactly the same crystal structure as the thin film. 90 % of thin
films used in semi-conductor and computer industry, communication industry,
and sensor and information industry are epitaxial thin films. To grow various
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Figure 7.16. An epitaxial thin film.

defect-free epitaxial thin films has been the main challenge in semi-conductor
industry in the past half century.

In this section, we shall introduce the two basic dislocation models in thin-
film mechanics.

7.8.1 Frenkel & Kontorova model and Frank & van der
Merwe model

The Frenkel & Kontorova dislocation model is a one-dimensional disloca-
tion model, which was proposed in 1937. This model was studied in detailed
by Frank and van der Merwe [1950ab], and they applied it to study thin film
mechanics or epitaxial thin film mechanics.

In Frenkel & Kontorova model, the thin film is modeled as one dimensional
monolayer with lattice spacingy, and the substrate is modeled as large slab
with lattice spacing:s, andas # ay and the lattice misfitig\ = a; — a, (see
Fig. 7.17).

The row of atoms in the thin film are under combined influence of harmonic
forces between the nearest neighbours in the monolayer and non-linear inter-
action forces from substrate. Since the substrate is assumed much larger in
dimension than the thin film, it is assumed to be rigid. The interaction between
the thin film and substrate, or the force exerted on the thin film by the sub-
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ar

ds

Figure 7.17. Frank-van der Merwe dislocation thin film model

strate is characterized by a sinusoidal potential with the ampligdﬁ’e(see
Fig. 7.17).

Make the position (the open circle in Fig. 7.17) of the m-th atoms in the
un-strained monolayer as

Xm=map, m=0,%£1,£2,--- (7.273)

After attach the thin film onto the substrate, the thin film will be stretched to
the position

. =mas = X + 0™, m=0,%£1,+2,-- . (7.274)

m

wherez7, is denoted as the reference position of the m-th atom with respect to
the aubstrate, and’* is the displacement of the atom due to the lattice misfit,

U’ = m(as —ay) .

During actual deformation, the spatial position the m-th atom is
Ty = Xon + w4 0l (7.275)

or
Uy, = Tyn, — Ty, = umis + up, (7.276)

whereu?, is the elastic deformation of the atom.
The relative displacement between the two atoms is now

U1 — Um = (Upy 1 — Us,) — (af — ag) . (7.277)
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The total potential energy of the system is

1 e e 27Tufn
= 3 %: {N(Uerl — Uy, — (ay — as))? + W[l — cos " ]} (7.278)
Let,
as g
Hence

= %Z {1a® (&1 — &m — £)? + W1 — cos(2nCn)]} (7.280)

The equilibrium equation is derived from the stationary condition

dF
@:0, n=0,+1,4£2,--- =
—p1a*(§ni1 — én + f) + pa® (& — &ao1 + f) + Wrrsin 276, €7(281)
i.e.
AZE = (Eni1 — 26+ En1) = % sin 27€,, (7.282)
0

wherely = /pa?/2W.
The dynamics version of Eq. (7.282) is the finite-difference sine-Gordon
equation,
2
2 my d°&y, T
If /o >> 1, one may use continuous approximation to replace the finite
difference equation with a differential equation,

d?¢, o 2 d¢

+ o a3
ax2T T gaxa®

~ dn?

A2¢ = +0(d%) +O(a}) (7.284)

Therefore, if we only consider static deformation, we have the following non-
linear ordinary differential equation

d2§ T .

Consider the following boundary conditions,

L3 =¢, and & =0. (7.286)

dn n=ngo n=no
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One can integrate (7.282),

déN2 1
(%) — = 27(2)(1 — cos27€) , (7.287)

which can be re-arranged as

dé\z  (1+ 02e? cos? &
(@) 7 (-zs) (7.288)
Change variable
¢ =m( — g and k= (14 (2¢2)"1/2 (7.289)

One may transfer into the standard form of differential equations that can be
solved by using elliptic functions and integrals,

d
(Tfj - j:(%ik) (1 — k?sin? ¢)1/2 (7.290)

Solutions of FKV model:
1. Consider boundary condition

e=0, and k= 1. (7.291)
In this case, Eq. (7.288) is simplified to
[

o= 7 sin w€ (7.292)
Assume at = 0, £(0) = 0.5, and then
n 3
7T/ dp:ﬂ'/ 4 (7.293)
4o Jo o sinm(
which yields the solution
™ &
= lntan( ; ) (7.294)
Or inversely,
2 _1 ™
§= " tan [exp(%)] (7.295)

This solution represents a single dislocation far away from the remote bound-
ary. We plot the positive solution in Fig. 7.18. One may find th&tat1/2,
¢ 1

— 7.2
dn 50 ( 96)
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Figure 7.18. A single dislocation solution of FKV model

Since a unit change gfmeans arelative displacement of one lattice spacing
it then implies that in a region of lengtly number of troughs is one more than
the number of atoms, i.e. there is extra plane of atoms in the substrate, which
forms a edge dislocation. We cd}l as the effective length of the dislocation
region.

2. General solution

The general static solution of sine-Gordon equation can be expressed by
elliptic function,

(EOL]@) = /j(l — K sin’¢) " 2dy = (g, k) (7.297)

where the upper limit is called the amplitude. The inverse relation of the
above elliptic function is

™
¢ = am(@) (7.298)
or 1 1
™
E=5+ ;am(—gok) (7.299)
and 1 1
as ™my _ 120212
= ﬁokdn<£ok) éok(l k= cos” &) (7.300)
At ¢ = £(0) = 1/2,
1
= (7.301)

i.e. fok is now the effective dislocation length.



182 INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS

kio

Figure 7.19. The general solution of static sine-Gordon equatiggg B 0).

Assume that (p) = 1.5. The general solution of FKV model is depicted on
Fig. 7.19. Obviously, the number is the atoms per dislocation,

200k E (K
0 (k)

(7.302)
T
whereE (k) is the following elliptic integral,
w/2
E(k) :/ (1 — k% sin® ¢)'2dy (7.303)
0

The general solution indicates that there are many dislocation occuring simu-
tanelously along the chain in periodic fashion. In Fig. 7.20, we show the
dislocation pattern created by the general solution.

It would be interesting to examin the stability of Frenkel-Kontorova system.
The potential energy of one dislocation

p—1 W p—1
I = WY (G~ &+ 5 Z(l ~ cos 2mn)
n=0

n=0
jo 9 P
= Wﬁ%/ (;Lé — ) dn+W/ sin? w&dn (7.304)
0 n 0
Consider
1
4 _ 1 2cos?me)2 (7.305)

dn 02k?
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Figure 7.20. Dislocation pattern fop = 3.
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Figure 7.21. Dislocation pattern fonj—i <0.

One can write the potential energy per dislocation as

II=we3 {456(5’? _ A _FZZK(M —2f +pf2} (7.306)

where 2
K(k) = / (1 — k?sin? )~ Y2dy
0

One may find that the potential energy consists of contribution from both lattice
misfit and dislocation misfit.
To examine the stability, let,
oIl

3 = W2 —2pf) =0. (7.307)

We find the critical lattice misfit,

1 ™

> = TRET (7.308)

fcr =
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Figure 7.22. Matthews & Blackeslee Model

Whenk =1,
1 2 W \1/2
== —(— 7.309
/ P (,ua2/2) ( )
Itis beleived that when lattice misfit > f.,., dislocations will spontaneous-
lly enter or depart from the monolayer chain.

™

7.8.2 Matthews & Blackesless’s equilibrium theory

In 1974, Matthews and Blackeslee proposed their equilibrium theory of dis-
location relaxation mechanism for thin film growth. It was an immediate suc-
cess, and it was soon received widespread attentions. Today, the Matthews
theory has become the foundamental theory for epitaxial thin film growth in
semi-conductor industry, and it is now viewed an early and integrated part of
nano-mechanics.

In the following, we outlined a simple version of the Matthews theory based
on Nix’s presentation.

Assume that the thin film is under homogeneous bi-axial palne stress load,

i.e. inthe film,e, = ¢, = eando, =0, = T ¢ The homogeneous misfit

strain is due to the lattice misfit, i.e.

=LY =BT (7.310)
ay as

The deformation of the substrate may be neglected. For a coherent thin film-
substrate system, the strain energy per unit thin film area is (see Fig. 7.22)

~ 2u(14v)

E = h = Méeh . (7.311)
(1-v)

When the lattice misfit increases, it is energetically favorable to have dislo-
cations present to relaxe the lattice misfit strain.
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Figure 7.23. Matthews & Blackeslee Model

Consider a simplist sceenario that there is periodically distributed edge dis-
locations distributed along the interface between the thin film and the substrate.
The homogeneous distributed lattice misfit strain will be reducefi-tob/.S
whereS is the spacing between two edges dislocations. Then the elastic energy
due to homogeneous deformation is

b2
By, = M(e - g) h (7.312)
Since there are two edge dislocations in an &eal, the strain energy due to
dislocation is )
b Bhy 2
Ej= ———In(5-) 3 7.31
4 (1 —v) n(b)S (7.313)
The total energy is the summation Bf, and £,
b\2 ub? Bhy 2
E=M(e— =) h+ ———In(— |5 7.314
(6 S) e n(b)S (7.314)

The two competing effects will yield an equilibrium point at the bottom of
energy well as shown in Fig. 7.24. We are seeking to find an equilibrium
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Figure 7.24. Matthews & Blackeslee Model

state that is defect-free, i.e. we are intereted in an equilibrium state at which

b/S = 0.
Consider the stationary condition,
oE b ub? Gh B
51~ —2Mh(e - g)b+ P ln<7> ’h:h”_ 0. (7.315)

We can find a critical thickness,.., of the thin film below which the thin film

will stay in a coherent state with the substrate that is the thin film is defect-free.
From (7.315), one can find that the critical thickness can be determined from

the following non-linear equation,

Rer ub
= 7.316
m(ﬂhcr) 4Am(1 — v)Me ( )
b

Exercise

ProBELM 7.1 Consider cuboidal region of inelastic strain (eigenstrain) due
to solute segregation forming cuboidal precipitates. The precipitate subdomain
(or inclusion) has the dimensidlu x 2a x 2a, and the unit cell (U) has the
dimensior2L x 2 : x2L. The eigenstrain is assumed to have a constant value
€ within each inclusion, and be zero outside the inclusion,

_— 5@'6, V x €
“ij = { 0; V xeU/Q (7:317)
where
U = {x‘—LgxigL, i:1,2,3} (7.318)

Q = {X‘—agxiga,izl,Q,B},aDd a<L (7.319)

Find the disturbed displacement field(x). (Hint:Mura pages: 20-21).
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Figure 7.25. Distribution of periodic precipitates
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Chapter 8

COMPARISON VARIATIONAL PRINCIPLES

8.1 Review of Variational Calculus
Consider a functional, which is a map,

Iyl : H([zg,z1]) — R (8.1)

wherel[y] is the following integral a map

1) = [ [ple)w? + ataly? + 20 ds 6.2)

0

with prescribed boundary conditions,

y(xo) = vo, y(x1) =wu (8.3)

Assume thap(x), ¢(z), andf (x) are given continuous functions, ig(x), ¢(x),
andf(z) € CYzg, 1], andp(z) > 0,¢q(x) > 0. Let,

y(x) = y(x) + an(x) (8.4)

as a function that is very close to functigsix).
We require thay(z) € V andn(z) € V, and

V= {u(@) |y € B ([0, y(w0) =30 and y(@) =ui|  (©5)
102 = {eta(x) ‘ n € H([xg, z1]), n(x0) =0 and n(z;) = 0} (8.6)

We usually cally as the trial function andn(x) as the test function.
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In order to find the functiony(z) that yields the extreme value éfy], we
consider the value af{y],

Iy(z) + an(z)] = /m1 p(@)ly (@) + an (@) + q(2)[y(x) + an(=))”

0

21 (2)ly(x) + an(a)]} do
= [ @ @2 + aon @) + 24 @)y(o)|do

o

+ 2 / [p<x>y’ (@) () + q(z)y()n(z) + f(x)n(x)} de

0

+a [ (o) @) + a(oyrt @) do 8.7)

0

Thereby,

Al = Ify(z) + an(z)] — I[y(z)] = adl + (;252[ (8.8)
where

of = 2/961[1?(96)1/’(36)77'(?6)+Q($)y($)77(l‘)+f($)77($)]d:v (8.9)

0

PI = 2 / " P @) + (o) (@) do (8.10)

0

We say that
I[y] is stationary aty = y(z) if 61 ‘ "~ 0. Since bothp(z), ¢(x) > 0
y=y(z

andé?I > 0, I[y] will reach a minimum ay = y(z).

The first order variation illustrated above is in the sense of Gateaux. The
definition of the Gateaux variation is in terms of the so-called Gateaux deriva-
tive

I .y d
sl = Deln = lim T o) = 1W) _ Iy + an) (8.11)
a—0 « da a=0

REMARK 8.1.1 One may compare this with the so-called&€het derivative,
DrIlyln, which is defined as a linear functional such that

I(y+n)—1(y) — Drl(y) -7
[nllv

=0, as [|n]ly — 0. (8.12)

Gateaus derivative coincides with Fre'chet derivativéf is linear inn and
uniformly continuous im, i.e. |01 (y,n)—01(yo,n)| — 0, asy — yo uniformly
Yy € B(yo)
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In general, the n-th order Gateaux variation is defined as

mn

S d—](erom) L, Vn>1 (8.13)

da™ a=0

such that
oz2 a3

Al =I(y+an) —I(y) = adgl + géé["ﬁ‘ i

In the rest of the book, we omit the subscrgtin variation operator. Let
a = 1. We have

a4
ST + Fséf +--- (8.14)

1
3!
One nice thing about the Gateaux variation is that it is defined based on a
scaler differentiation operation. In other words, the variation operation follows

the same rule as the differentiation operation in elementary calculus.
This can be seen by examining the first order variatiof|gf,

AT =1(y+n)—I(y)=6I+ %521 + =831 + %541 +---  (8.15)

61 =2 / * [pe @ @) + a@ @@ + f@n@)]d @.16)

0

Letn(z) = dy. The Gateaux variation becomes,

51 = 2 [ o)y @0y’ + ata)u@)dy + F )3y do

o

=5 { [ o @2 + o) w@)? + i) dx}

Zo

= 0l.

This is to say that one can find the first variation of a functiodg], by
simply differentiating (taking G-derivative) the unknown function according
to the same rule of differentiation in calculus. The only differencedigis
replaced byyy, which is the variation of the unknown function, or in general,

a test function satisfying homogeneous boundary conditionsyj.e. ).
Consider the first term in (8.16). Integration by parts yields,

Tl 1

(p(z)y yndz = — / (p(z)y') ndz

Z0

/% p(a)y n dw = [p(x)y iz, — /

o Zo

Therefore,

st =2 [ [l @) + alely(a) + (@) alelde =0 ©.07)

zo
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Since this equation must holds for anfr) € V, the integrand must vanish,
i.e. the solution of the following differential equation

’

—[p(2)y ()] +q(2)y(z)+f(z) =0, y(zo) =yo and y(z1) = y1 . (8.18)

is a minimizer of the functional[y]. Eq. (8.18) is called the Euler-Lagrange
equation.

Note that the solution of (8.18)*(z) may not be the only minimizer of
the functionall[y]. In fact,y* € C([zo,x1]), and hence Eq. (8.18) is called
strong form of the Euler-Lagrange equation. On the other hand, a necessary
minimizer only requires thag € H'([zg, r1]), since

I=2 /xl [p(:r)(y/ ())” + a(z)y(a)*n(x) + f(fv)y(x)} de  (8.19)

and for this purpose we call a function that makég stationary, but not nec-
essarily satisfy the Euler-Lagrange equation, i.e.,

s1=2 [ [p@)y/ @3y +al@ly(@y + f(2)oy]de (8.20)
as the weak solution, sin€g! ([zo, z1]) € H*([xo, z1]).

In general, consider a functional of the following form,

Iy] =/ 1F(w,y,y/)dw, y(zo) =yo and y(z1) =y . (8.21)

zo

Its first variation is

1 (9F oF _
6[—/ {5y+/6y}da¢
v L OY dy

Integration by parts yields

5T = /zl [aiay}dwaFay

o[, 7oyl

o LOY oy 0
1 roF 0 (0F
_ / {67/—%<8—y,)}5ydx (8.22)

One obtains the Euler-Lagrange equation,

_or 90 (aF) —0. (8.23)

B =y~ as\ay
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8.2  Extreme variational principles in linear elasticity
8.2.1  Minimum potential enery principle

Consider a linear elastic solid;. The total potential energy of the elastic
solid is

1
H(ui,um) = 2/‘/O'Z'j6ijdv—/vfiuidv—/r t?uZdS
t

1
= / Cl-jkguivjuk’ng—/ fiuidV— t?uZdS
2 )y v T

The solid is subjected to the following boundary conditions,

w = u) = xjegj, vx €'y (8.24)

t;, = n;jo;; = If? = njagj, Vx € I'y (825)
where the displacement boundary conditions are essential boundary conditions
for ensuing variational principles, because they are the constraints on primary
variablesu; and the space of the trial function. Consider trial functigre V,

Vim {50 |16 € V), and g = ;e vx €T} (826)

and test functionu; € ]O/ where,
- {mx) ‘ 1) € H'(V), and 7i(x) = 0, ¥x €Ty} (8.27)

which is equivalent tayu; € H!(V). Whenu;(x) € V, we sayu;(x) is
kinematically addmissible.

A necessary condition thaik(u;, u; j) reaches to an extreme is the stationary
condition of its first variation, i.e.

5H[ui,ui,j] :/ Cijkgui,jéuud‘/—/ fiCSUidV—/ t?nidS:O (8.28)
|4 14 Iy

which is often called virtual displacement principle in solid mechanics. By
the way, the stationary condition in mechanics terms is equilibrium condition.
Any y satisfies virtual displacement principle is an equilibrium solution.

On the other hand, Eq.(8.28) is called as the weak formulation of Navier
equations in computational mechanics. This can be easily seen via integration
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by parts,

ol = /aijduivjdV—/ fzéuZdV—/ t?éuZdS
\%4 1% T'g
= /((aijéu,-),j—aijvjdui>dV—/ fzéuZdV—/ t?éuz
\% %4 T'¢
= / O’Z'jnj(suids—/(O’Z‘j7j+fi)(5uidv—/ t?(SuidS
oV 1% I'e

= / (aijnj — t?)éu,ds — / (O’Z'j,j + fl)éu,dV +/ aijnjéuidS
T'¢ 14

u

which yields the Navier equation
Cijkeur,e5 + fi = 0, (8.29)
and the natural boundary conditions,
oinj = t? = U%nj, Vxely. (8.30)

Examine the perturbance of the potential enefg(u;, u; ;) around an
equilibrium configuration,

All = H(UZ + du;, Ui + 6um-) — H(Uz, ui,j)

1
= B / Cijkz(ui,j + 5ui7j)(uk7g + 5uk7g)dv . / fz(uz + 5ui)dv
1% 1%

—/ t9(u; + du;)dV

I'e
1

—/ Cijkgui,juk,ng—/ quZdV—/ t?uidV
2 )y v I

= /Cijkfui,jéuk,édv_/ fZ(SuZdV—/ t?éuldv
1% 1% Ty
1
+2[/Cijkg5ui7j5uk,gdv
1
= 5H+§52H (8.31)

For the equilibrium solutiodIl = 0, AIl = 62T > 0.

This means that for all the kinematically admissible vector fialds, u;e;,
u;(x) € V the equilibrium solution (real solution ? is the solution unique
? weak solution = strong solution) is the minimizer of total potential energy
H(ui, um).

THEOREM 8.1 (MINIMUM POTENTIAL ENERGY PRINCIPLE) Among all (in-
finitesimal) kinematically admissible displacement fields, that which is also
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statically admissible (real solution) render the potential endriggn absolute
minimum.

ThatisII(a,V-u) <II(u,V -u)Vu e V. Or

(@1, V- 1) = inf I(u, Vu) (8.32)

uey

If macros strain boundary condition is applied on entire boun@&fy
u=x-€, xecdV (8.33)

ThenT', = @ andIl(u,V - u) = VIW(V - u), where
1
W(Vu) = / Cijkgeijekgdv (834)
2v [y

The minimum potential energy principle reads as

W(e) = ing W (e) (8.35)
uc
For the real solutioni,
W) = 1/0 edV = L <o ><E>

2V )y —2° '

I S o_1lo. &, 0

= 2<0‘> € —26 :C:€
On the other hand,

Wi(e) = L g:edV=-<0><eée>
o2V )y 2 ‘

Sincee? € V, we can choose® = €°. Then we have

(o)

1 _
—eV:C: e <
2

[\D\H

which then leads to

C<) fuC™. (8.36)
a=0
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8.2.2  Minimum complementary potential energy principle
Consider the following complementray potential energy,

1
HC(JZ‘]’) = 2/ DijngZ’ijng — / u?aijnde (837)
14 u
which is a map,
n:S—R (8.38)
whereS is the trial function space

S = {O’ij 05 € Hl(V), Oijj = 0 and n;joi; = t?, Vx € Ft} (839)

and the test function space is

S= {Uij Oij € Hl(V), Oijj = 0 and n;joi; = 0, Vx € Ft} (840)

Note that in this variational statement, the essential boundary condition be-
comes
njoi; =19, vx €Ty (8.41)

whereas the natural boundary condition becomes
u; = u;, VX €Ty . (8.42)

To study extreme property, we examine complementary potential energy
perturbance,

AHC = HC(O'ij—l-do'ij)—Hc(O'ij)

1
= [2/Dijkg<aij+(5Uij)(akg+50kg)dv—/ ug(aij—i-daij)nde
1%

1
—|:/ Dijkgaija'kgdv—/ U?Uljd5:|
2 )y Ty

= /Dijkgaijéakng—/ U?CSO'@'jTLde
v

u

=611¢

1
+/ Dl-juéaijéakgdv
2 Jy

=§2I]¢

The necessary condition fdi“(o;;) attaining extreme value is the stat-
tionary condition,
ol =0.
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Hence
1
Al = 552110 >0 (8.43)

since D; ;. is positive definite. ThuslI®(o;;) reaches a minimum value at
oi; = 055, Whereg;; renders stationary conditialI®(;;) = 0. This fact is
the so-called minimum complementray potential energy principle.

THEOREM 8.2 (MINIMUM COMPLEMENTARY ENERGY PRINCIPLE) Among
all statically admissible stress fields, the actual stress field (whose correpond-
ing strain field satisfies compatibility condition) rens&r$ an absolute mini-
mum, i.e.

‘(o) <o), Voes (8.44)
or
1°(6) = inf (o) (8.45)

The stationary condition of complementary energy has well-known names,
e.g.virtual force principlein continuum mechanics, ¢he weak form of com-
patibility conditionin computational mechanics,

5Hc(&ij) == / Dijkga'ijédudv — u?&aijnde =0 (846)
\%4 Ty

The above equation can be rewriten as
1
/ gijédijdv - 2/ (u7;7j50'@-j + Uj7i50ij>dv
1% 1%
—|—/ uméaijdv —/ u?éaijnde =0
v T,

Integration by parts yields

1
/ (EZ] — §(ui7j + Ujﬂ')(SO'ij)dV +/ uiéaijnde
\% ov

—/ ui5aij7jdV—/ u?éaijnde:O
\% Ty
=0

1
= / (gij — 5( ij T Ujvi))(SO'ijdV +/ (ul — u?)(sO'Z]’I’LJdS =0.
\%4

u

which leads to the Euler-Lagrange equation,

_ - 1
€ij = Dijkedre = §(Ui,j + uji) (8.47)

= €ij et + €roij — €ikjo — €joik = 0 . (8.48)
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and the natural boundary condition

w =u?, VxeTy, (8.49)

Consider prescribed macro-stress boundary condition,= t°, vx € 9V,
T, = 0. In this casel',, = (. Therefore,

1
I1¢ = 2/ Dijkgaijdkgdv = WC(O')V (850)
\%

where )
W, = QV/VDz‘jkeUz‘jkadV (8.51)

is the complementary energy density.
The minimum complementary potential energy principle then gives

We(6) = inf We(o) (8.52)

Recall,

<o:e>—<o0><E€ >:% 8V(u—x- < V®u >) (n-(a— <o >))dS

The real complementary energy density becomes

1 1
Weo) = §<&:é>:§<&>:<é>
1 _ 1 _
= §O'OZDZO'0:§<O~'>:D:<6'> (8.53)

Note that under prescribed remote stress boundary condition,
<o>=0" VoeSs.

Chooser = 0¥ € S,

1 . 1
We(o) = v VO'.EdV—O’ .W/‘/edV

1 n

0 a a

= D — gD:

o QV/Vao o%dV
I 5 =0 o

= 50’ .QE_OVD o

1 n
= 200:;]faDa o
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Therefore,
0":D:0’<c’: ) foD*: 0" (8.54)
a=0

SinceD : C = 1% and bothD andC are positive definite, we then have
n -1 _
(Z faCa‘l) <C (8.55)
a=0

which is called the Reuss bound. It is a lower bound for elastic moduli.
Assume that

c* = 3K°EW 4 2,°E®
1 1

Cafl — E(l) 7E(2)
3K« + 2ue

One can derive that

(f: fa€?) = 3 S fuKaB 423 ot B
a=0

a=0 a=0

3 - Col - LE(I) + LE(Z)
(o re) S h e
a=0 Ka a=0 Hao

Combining Reuss bound with the Voigt bound, we have

(zn: facafl) <C< (Zn: faca)
a=0 a=0

and consequently,

1 B n
- < K< Z fuKa
3 Ja s
a=0 Ka
1 n
e < A< ) fala
& a=0
a=0 Ha

One can see that the Voigt bound is in fact an arithmetic average and the Reuss
bound can be viewed as a geometric average or the harmonic average.
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8.3  Hashin-Shtrikman variational principles

In order to narrow the gap between the Voigt bound and the Reuss bound,
we need new mathematical tools. One of powerful such tools is the celebrated
Hashin-Shtrikman (HS) variational principle. The essence of the HS varia-
tional principles is that they are the variational principles specifically designed
for composites, or inhomogeneous solids. To measure the differences between
homogeneous solids and inhomogeneous solids, a comparison homogenous
solid is used to identify the inhomogeneous fields.

Let’s first consider a boundary value problem of the original composite
(RVE),

o5 = 0,
oij = Cijre(X)ere,
1
Ule) = §Cijkeez‘j6ke, and W(e) =< U(e) >v

u; = Ui, VX €Ty, (Ft:(b, FU:GV).

Consider a second BVP in a comparison solid,

0 _
o5 = 0,
0 0 0
Uz(j ) = Ci(jlgé(x)el(cﬁ) ;
1
U(O)(G(O)) = inf,zgez(?)e,(f}, and Wo(e(o)) =< U(O)(E(O)) >
uZ(O) i, Vx €Ty, (Ty=0, T'y,=209V).

To relate the two BVPs, we introduce the following decomposition in strain
field and stress field,

w = o 4+uf (8.56)
€j = ei?) + efj (8.57)
and
oij = DPij+ Cf;),zgekz
= pij+ Ci(jlgé(ez('?l)ce + ) (8.58)

whereu{ is the disturbance displacement field anglis called polarization
stress.
A better definition of stress polarization is

pij = 0ij — Colere = (Cijue — Cl)ene (8.59)
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which indicates that stress polarization is due to inhomogeneouness of the
composite.
Furthermore, since

u; = u;, Vx € 9V and ugo) =1u;, Vxe€ oV

it leads to homogeneous boundary conditions for displacement disturbance
field
ul =0, ¥Yx €0V (8.60)

In passing, we note that because = 0, Vx € 9V it can be readily to show
that the average work done by the disturbance field over any self-equilibrium
stress field will be zero, that is

/Va,-jegjdv = /Vaijufl’jdv
= / u?njaide—i—/ u?aij,jdV:O. (861)
oV |4

On the other hand, since
0) _ 0,

oijj =0, 055

one has . 0
d
Cijj =055 T Pijj + (Cijkfekf) = 0

We can see that the stress field can be divided into the homogeneous (or com-
parison) stress fieldr,f;)), and the inhomogeneous stress field,

Oij = O'% +ti;, where t;; = pi; + C?jkgﬁgg (8.62)

Both homogeneous stress fiedt?j, and inhomogeneous stress figld satisfy
equilibrium equations, i.e.

ok =0, tij,;=0. (8.63)
In literature, the inhomogeneous equilibrium equation

tijg = (Cff;igeiz) TP =0 (8.64)
is often called “the subsidiary condition.”

THEOREM 8.3 (HASHIN-SHTRIKMAN) Letud € U andp;; € S where
u = {uz

w; € HY(V),u; = 0,Vx € av} (8.65)

oij € LQ(V)} (8.66)
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Consider the following functional,

I:SxU— R,
where
1 0) (0
H(pijyegj) = 9 /V(Ci(jlzzéez(j) ( ) chkgpmpkl + Dij€ ij +2pl] z(])>dv
ACijre = Cijre — O3l
where Dij = ACZ]MEM (867)
ed = ¢ (0)
ij = G5 —

Z]

We have the following variational statements:

1. The functionall is stationary, i.e.0IT = 0, if the inhomogeneous equi-
librium equation (subsidiary condition) is satisfied,

(Cteete) +piys =0; (8.68)
2.
8211 > 0, if AC <0, II — Minimum (8.69)
8’1 < 0, if AC >0, II — Mazimum (8.70)
Proof:
Al = (pij + pij, egj + 56%) — I (psj, e?j)

1

—_ 2 / ( AAC: ]k[plj(spkz —|—p1](56” + (5ng ij + 2(5}%] EJ))dV
1%

1
+o / (—Aq.;;gapijépu + 6pij56gg)dv ST+~ 471
2 Jy 2!

We first show that the first statement is true.

1 96 d
omr = <_§) / <2Acgkepkf5pm ¢ij OPij — €ij0Pij _pijéeij)dv
1 d
- (_5) / <2chk€pk€5pw 2 (eij — e3y) Opis — €505 _pij(seldj)dv
N————
_©
1 d d
- <_§) /v (ACTpre — €ij) Opij + €550pij — pij&”)dv

=0

= (—;)/V(egjépij—pij&gj)dv (8.71)
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If the subsidiary condition is satisfied, i.e.
( i(g(')lgfegf> ; +pij; =0, or t;;; =0. (8.72)
which leads to
0tij = opij + C};)]ge(%%f, and 0t;;; =0 . (8.73)
Substituting (8.72) and (8.73) into (8.71) yields
1 0 0
o = (=) /V<e;ij(5tij — Ciloety)) = deti(tyy = CG el Jav
1

0 0
- (_5) /v (Egjétij B t“&gj) B wa;Ze(Seke + 8¢ Cz(ﬂzéeké dv

=0, because CO) has major symmetry

= (—;)/‘/<u2j5tij—tij5u§{j)d‘/

Considering the facts

/5t”u dV = / 5tijnju§id5—/5tijjjudeEO
ov Vv

/ tijoufdV - = / tijn;oulds — / tijoufdV =0,
Vv ’ oV \%

we just proved thatll = 0, if ¢;; ; = 0 holds.

Now we examin the extreme conditions. Substitutipg = 6tij—0£f,2556gé
into the second order variation,

51 = (;)/‘/(—Acgiedpij(spkz+5pz‘j5€§lj>dv

- (_%) /\/( AC%JM‘SPU Opre + 0(313566” ke &Z] 6”> v

Agan, the last term

/ StijelsdV = 0.
|4

Therefore, we have
1
611 = (—3) / (ACTkdmis0mhe + Cljpdetsety ) av (8.74)

Obviously if AC > 0, AIl = §%II < 0, therefore,II achives a maximum
value.
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On the other hand, IAC < 0, the judgement is not straightforward.
Consider a positive integral,

-1
I:= /V Cy 0pijopredV > 0 (8.75)
Substitutédp;; = dt;; — Cff,zgéeﬁg into (8.75). It can be readily shown that

-1
I = / (G50 otigotae — 20t:;5¢, +C5) oelaely ) av
v =0

-1
= /V<Cz(;)]2€ (5tij(5tkg+ci(;?]3£5egj5ezg)dv
A direct consequency is
—1
/V C)y OpiopredV > /V C)oed el dv (8.76)

which leads the following inequality,

1 _ 0
o = <_§> /V <ACij11€5pij5pM + cz.(j,zgae%e@) v

(4) [ (05t lt om

v

Consider

AC 1 cO™ = ACTT+COT (- C®): (- c®)!
— AC +CO . cACT! - ACT!
cO . c.AC.

One can write that

1 _
5211 > <—2)/Vp:C(O) L0 ACT: pdv (8.77)

Itis clear now that ifAC~! < 0, 62IT > 0 and henceél has a global minimum.
To sum up, we have the following extreme conditions,

6%l < 0, if AC >0, II — maximum ;
6211 > 0, if AC <0, II — minimum .
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Since bothy;; anda are self-equlibrium stress field,

/Uwe AV = /O‘Z]u dV =0
|4 |4

/ag?)e;gdv = /ag?)u?jdv—o
1% v ’

because =0, ¥x € OV .
Therefore the total potential energy of a kinematically admissible figld,
V, can be written as

1 1 (0) d
(e) 2/‘/U]€JV 2/V<O'JEZJ a]eJ)V
=0
1 0
Consider
0 0 O
Uijez(j) = ( ()‘H% +Cz(jlg€6k€> W
0 0 0 0
= z(] E]) +pl] ( )+ C(]k):EEkKEEJ) + +pl] ( ) pijﬁ,gj)
\ﬂ_z
=0

= 0(30125616 61(]) + ijﬁeekzef?) + +-2pije

0) (0
= 07,(]12661(%) Eg) + C(jlzﬁez(])eké +2pije
————

0

d
ij — pij(eij — €55)
d
EJ) Dij€ij T Pij€i;
=0
Therefore under prescribed remote strain boundary condition,

1
e = / aijedV = W(e)V
2 \%
1 0 (0
= 2 / (Oz(jlzﬁ Ej)ﬁl(cg) chképmpké"’p”é” —|—2p” E_j))dv

= WOV + / < AC b pijpre + pijels + 2pijes; )>dv
2 )y
= WOENY + RV

whereR, := % fv( Cjkepszkf +pw i+ 2pije; el )>dV.

Based on Hashin-Shtrikman principle AiC > 0 IT has a global minimum,
W () + R.; whereas ifAC < 0, IT has a global maximuny () (e(©)) +
R,;. Therefore, the Hashin-Shtrikman principle provides the following bound,

Re(D,&%) < W(e) —WO(e) < R (p, &%) (8.78)
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8.4  Review of Functional Analysis and Convex Analysis

DEFINITION 8.4 (VECTOR SPACE (LINEAR SPACE)) LetF be afield, whose
elements are referred to as scalars. A vector space over F is a nonempty set
V, whose elements are referred to as vectors, together with two operations.
The first operation, called addition and denoted by +, assignes to each pair
(u,v) € V x V of vectors in V a vectou + v in V. The second opera-
tion, called multiplication and denoted by juxtaposition, assigns to each pair
(r,u) € F x V avectorrv € V. Furthermore, the following properties must

be satisfied,

1 Associativity of addition
u+(v+w)=(u+v)+w, Yu,v,weV
2 Commutivity of addition
u+v=v+4u Vu vevV

3 Existence of a zero vectdr,c V such that

O+u=u+0=u, YueV

4 Existence of additive inverse: i¥u € V,3 —u € V, such that
u+(—u)=(—u)+u=0

5 Properties of scalar multiplicationvr, s € F andu,v € V,

rla+v) = ru+rv
(r+su = ra+rv
rsu = r(su)
lu = u

REMARK 8.4.1 1 The first four properties in the definitions of vector space
can be summarized that V is an abelian group under addition;

2 Any expression of the form
T1V] +1rovy + -+ 1rpvy

wherer; € FFandv; € VVi=1,2,---,nis called a linear combination
of the vectors/y, vo, - - - , v, and

vy +rova+ -+ rpvp €V
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3 The addition operation

VxV—-V:i(uv)—ut+veV

4 and the scalar multiplication operation,
FxV —->V:(au —aueV
are closed.

5 When the operations
f:(u,v) mut+veV

g:(a,u) > aueV
are continuous, the vector space is called topological vector space.
ExaMPLE 8.5 LetF = R. The set of all ordered n-tuples, i.e.
u = (uj,ug, - ,uy), u; €R

with addition and scalar miltiplication defined component-wise,

(a1, -+ ,an) + (b1, ,bn) = (a1 + b1, -+, an + bn)
and

alay, - ,an) = (aa, - ,aay)

is a vector space, and it is denoted B§. Note that in general vector space

(a mathematical concept) is still a primitive set. It may have some algebraic
structures, but it does not have topologival structures, or geometric structures,
such as distance between two elements.

EXAMPLE 8.6 Let F = R. The set of all continuous functiot’(R), i.e.
Vf e CYR)
f:XCR—=YCR

and
dy (f(x), f(y)) < & Vdx(z,y) <4, V6§ >0.

is a vector space under the operations of addition and scalar multiplication,
ie.
(f +9)(x) = f(z) +g(x), f,9€C(R)
and
af(r) =af(z), Va e R, feC'R)



Comparison Variational Principles 207

DEFINITION 8.7 (BILINEAR FORM) Let X be a vector space and* is its
dual space. A mapping g & x X™* into R is called a bilinear functional or
a bilinear form if

1 For fixedy, g(x,y) is a linear functional inx, i.e.

g(ax + By, z) = ag(x,z) + Bg(x,2z), Vx,y € X, zc X~

2 Forfixedx, g(x,y) is a linear functional iny, i.e.
g(x,ay + fz) = ag(x,y) + Bg(x,z), Vx€ X, y,zc X~
A bilinear form is denoted as
9(x,y) =< x,y >

DEFINITION 8.8 (INNER PRODUCT) ChooseX* = X. The bilinear form
of X x X is called inner product, denoting -,- > as(-, -), such that

(): X xX >R
with properties:
1 (x,x)>0,Vx € X and(x,x) = 0iff x = 0;
2 Symmetryx,y) = (y, x);

3 Linearity
(ax+ By, z) = a(x,2) + B(y, z),
and

(x,y + fz) = a(x,y) + B(x,2) Vx,y,z€ X and af € R.

EXAMPLE 8.9 SpaceE". LetX = R". Forx = (z1,z9,---,z,) and
y = (y1,%2, - ,yn) € R", we define an inner product

n
(Xa Y) = Z TilYi
=1

This particular inner product space is denotedds = {R", (-, -)}. It gener-
ates a norm,
1/2

Il = (D miai) = v
=1
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This norm is called Euclidean norm dR". The space is therefore a normed
space as well — called n-dimensional Euclidean spate~= {R", || - ||s, }-
One can show that
(@) %[, =0, Vx € Ep
Ix|le, =0, <= x=0;

(@) [lox]le, = laf[[x[le, VXEn, o €R
(ii7) Ix+¥lle, < |Ixlle, + |lylle, < triangle inequality;
(7i7) I ¥) e, < |Ixllellylle, < Cauchy — Schwartz inequality;

Based on thé&;-norm, one can measure the distance between two vectors in
ETL1
px,y) = |x = ylle;
One can also show that
(i) pxy)=ply,x);
(1)  p(x,y) >0, and p(x,y) =0, iff x=y;
(@ii)  p(x,y) < p(x,2) +p(z,y), Vx,y,2 € By,

The distance functiop(x,y) is called a metric, and the associated vector
space is called metric space.

normed space Banach space

inner product space Hilbert space

Figure 8.1. Banach space and Hilbert space

REMARK 8.4.2 1 A normed space or a metric space is not necessarily an
inner product space, but an inner product vector space is a normed space,
becauce inner product can generate a norm, not vice versa.

2 A complete normed vector space is called Banach space and a complete
inner product space is called Hilber space.
Note that the term completeness means that. A metric space, V, is called
complete if every Cauchy sequer{gk} of V has a limitf € V. For a metric
space, a Cauchy sequence is one such|that- v || — 0, asj, k — oo.
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EXAMPLE 8.10 (L? Space) Consider areal value functiofi(x), z € [a, b].
Define an inner product,

b
(f.9) = / f(2)g(x)de

We call the set that contains afl(x) such that

b
/ f2(x)dx < +o00

as space.?([a, b)), whereL? norm is defined as

b
1l 2amy = VD =y / F2(x)dx (8.79)

Therefore,L?(]a, b]) is an inner product vector space, and of course, normed
space (metric space).

ExXAMPLE 8.11 (LEBESGUE SPACE (LP(12))) LetQ) be an open setiR™.
For 1 < p < oo, one can define &,-norm for a measurable functiofy

17llzr @) = (/Q Fa)Par) "

and aLebesgue space is defined as

(€)= {f | 1lr@) < oo}
It has the following properties,

(4) I fller) =0, Ifllzr@) =0, = f =0 almost everywhere;
(i) efllir@) < lelllfllir), VfeLP(Q), ceR
)

(i74 If + 9llr) < N fllee) + llgllr@) Minkowski’s inequality

1 1
For 1 <p,q < oo, suchthat —+ - =1,
Y2

if f € LP(Q)and gL%(Q), then for finite Q, f,g € L' (Q), and
Ifaller@ < Nfllzr@yllglla), « Holder's inequality

(1v

In particular, p = ¢ = 2, thenf - g € L'(Q2) because

/Qlf(w)g(ﬂv)ldl‘ < [fllez@llgll2 )



210 INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS

Note that in general?(f2) is not an inner product space, except=
LP(Q) is, nevertheless, a complete normed space, therefore, a Banach space
and L?(Q) is a Hilber space.

EXAMPLE 8.12 (SOBOLEV SPACE) Define Soblev norm

1wy = (Z 10 £l 0y)

Note that the Sobolev norm is not generated by an inner product in general.
A Sobolev space is defined as

Q) = {f | I lwpe < oo}
For p = 2, Sobolev spaces become inner product spaces. In particular,

1 Forp=2k=0,WQ) = L3N),

(.9) 120 = /Q F(x)g(x)aV

2 Forp=2k=1,W}(Q) = HY(Q),

([, D) = /Q [f(X)Q(X) + Vf(x)- Vg(x)} dv

Hf”Hl(Q—\// )2+ Vf(x) - Vf(x)}dv

3 Forp=2k=2W2Q) =H*Q),

and

(R = [ [F00060+9 () Vglx)+ V@V (x) : V()| dv

and

||f||H2Q—\// )2+ Vf(x)- Vf(x)+V®Vf(x);V®Vf(x)}dv
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)

0U+ (1-O)V €K /‘
aU+(1-0¥v ¢ K’
1 08¢€[0,1]

Figure 8.2. Convex set and non-convex set if R

8.4.1 Concept of convexity

DEeFINITION 8.13 Let U be a linear vector space ovdR. A subset (sub-
space)C C U is said to be convex, if it contains the line segment between any
two of its elements, i.e.

bu+ (1—-0)vek, Vu,ve Kk
whered € [0, 1].

ExaMPLE 8.14 LetU = R x R, andK € U. We sayK is convex, when
u = (r1,22), u2 = (y1,y2) € K, thenfu; + (1 —0)ug € K, 6 € [0,1].
We sayKC is not convex, for any;, uy € K, if Jup € 6u; + (1 — 6)uy but
uy ¢ KC. A graphic illustration is demonstrated in Fig. (8.2).

DEFINITION 8.15 (CONVEX AND CONCAVE FUNCTIONALS) 1 Afunctional
P :U — Ris said to be convex a if

P(fu;+(1—0)ug) < 0P(uy)+(1-0)P(uz), Yui,us € U, V0 € [0,1]
whenever the right-hand side is defined.

2 P is said to be strictly convex if the strict form of the inequality holds for
anyu; # ug;

3 P is said to be concave i P is convex.
EXAMPLE 8.16 Letl = RandP(z) = (z — a)?.

ExaMPLE 8.17 Consider a 1D elastic string]l = [0,/]. Leti/ = £ and
U* = S where

du
E L), e = —
{e|ee L¥(I),e .
do
LP(D). == =
S{O”O’E <)’dx 0}
1<a,fB< oo, andl—i—l:l.
a
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AP

Pg= 6 P( U1 +(1-6) P(up

Figure 8.3. An example of convex function.

ue)

U U% o)

Figure 8.4. Strain energy density and complementray strain energy
Define
€
U:FE—R, U(e):/ o(€)de
0
g
U:E*=S—R, Uo) = / e(a)de
0

Both strain energy density and complementary strain energy density are con-
vex, and they are plotted in Fig. (8.4).
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8.4.2 (Gteaux variation and convex functional

The Gateaus variation of a functional in a linear space is the generalized
directional derivative of a real-value function in vector calculus.

DEFINITION 8.18 (GATEAUX VARIATION) 1 LetP :U — R be areal-
valued functional and{/, C U a subspace. For a given € U,, if the
limit,

P(u+ Au) — P(u
oU(a,u) := lim (8 + Au) (@)
A—0+ A
exists as\ — 0* (i.e. A — 0,\ > 0), thendP(u;u) € R is called the
Gateaus variation of? at u in the direction ofu.

, Yu e U,

2 If the Gateau variation is a linear operator i such that
dP(u,u) =<u,DP(u) >, Yuel,

we say thatP is Gateaux differentiable ati. The linear operatoD P(u) :
U, — U*, which generally depends an is called the Gteaux derivative
of P atu.

3 The functionalP : &/ — R is said to be Gteaux differentiable oty if it
is Gateaux differentiable at eaah € U4,.

Note that
SP(Ru) = &P+ )
W= =0
5P
— = DP(u
T (w)

Question:why are convex functionals so speciallhe following theorem
answers this question:

THEOREM 8.19 If P : U, C U — R is Gateaux differentiable, then, the
following statements are equivalent to each other

(S1) P : U, CU — Ris convex;
(52) P(v) — P(u) ><v—u,DP(u) >, Yv,u € U
(S3) <v—u,DP(v)—DP(u)>>0, Vv,uecly

REMARK 8.4.3 The statement (S3) shows that€aux derivative of a con-
vex function is a monotone operatoridfinto /*. By the mean value theorem,

<v—u,DP(v) — DP(u) >=<v —u,D*P(0) - (v—u) >>0

wherea = v + 0(v —u), 6 € [0, 1].
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Hencea, a sufficient condition for P being convexbis that
D?P(u) >0, Yu el

Recall the total potential energy for a linear elastic solid is

I(u,Vu) = / Ul(e)dV — / tYu;dS
\% It

SM(u,Vu) = ou —Sey;dV — | t26u;dS
86” J I: ¢
) 02U
0“Il(u,Vu) = | Bei e ———F—0€;;0€pdV = kagéezjéekgdv >0.
g VEKL

This is to say that if elastic tensor is positive definite, the elastic potential
energy is convex. Similar statement can be made for complementary potential
energy, if the compliance tensor is positive definite.

8.4.3  Primal variational problems

We consider the following primal variational problems:
Let P : U, C U — R be a given functional.

1 The infimum (orinf) primal variational problems is to find a global mini-
mizeru € U,, such that

(me) . P(1) = inf P(u), Yu €U,

2 The supremum (asup) primal problem is to find a global maximizeér €
U,. such that

(Psup> : P(u) =sup P(u), Yu € U,

3 The stationar (osta) primal variational problem is to find a stationary point
u € U,; such that

(psm) . P(@1) = sta P(u), Yu €U,

REMARK 8.4.4 1 A stationary point is also called critical point. The criti-
cal point condition,

SP(i,u) =0, Yu€l,

leads to the Euler-Lagrange equation.
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2 The problen{P;,¢) is called realisable if there exists a vectare U, such
that the infimum of is achieved afi and is not+oco. Thenu is called the
minimizer of(P;,s) and we writeP () = mgl P(u).

ucty

Similarly, a vectora € U, is called the maximizer dfPs,,) if the super-
mum is achieved ai and is not+oo. We writeP(7) = maxyey, (u).

ExXAMPLE 8.20 The real-value functionP(x) = exp(z) is convex ot/ =
R and
inf P(z) =0, supP(x)=+o0
el
Howeverm on the closed intervdl,, = [a,b] with —co < a < b < 400, the
twoin f— andsup— problmes are realisable and

xienbi P(z) = a?elllﬁ P(z) = P(a) = €,
sup P(x) = min P(z)=P(b)=¢".
ZEGZ/[K Z‘EZ/{K,

8.5 Legendre Transformation and Duality
In continuum mechanics, for a given stored-energy deris{iy) such that

) . ou . . . !
the strain-stress relatiol = — is invertible, then one can define so-called
€
complementary energy density Gf (o) by

U(o) =0 :€(o) —Ule(o)) (8.80)
Note that here
U=U(e): E—R (8.81)
Uc=U%): S—R (8.82)
<€o>=0:€: ExXE - R (8.83)

where the spacé may be viewed as*.

In mathematics, this is the well-known Legendre transformation. Generally
speaking, the classical Legendre transformation can be viewed as a conversion
of one continuous real-valued function into another one. If the transforma-
tion is reversible, then we say that each function is the dual of the other. The
reversible Legendre transformation is also called the Legendre conjugate trans-
formation, or simply the Legendre transformation.

Let E = R" = E*. The element = {¢;} € E ando = {0;} € E*, (i =
1,2,--- ,n) are vectors in R. The bilinear form

<€0>=€-0= Zeiai (8.84)

=1
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Figure 8.5. Duality between the pole and polar

is then the inner product on'R
LetU : £ — R be areal-valued function. Its graph,

{(,X) e R"™ | X = U(e)}

is a manifold (or hypersurface) in'R*.
Let any particular poinfo, Y') € R"*! be called the pole. Then the linear
function
X(e)=€-0-Y (8.85)

is called the polar, which is a hyperplane i R.

Thus, given a pole at a finite point, the polar is well-defined by (8.85), Con-
versely, given a polar of finite slope, a finite pole can be read off from Eq.
(8.85). This correspondence is called the duality between points and planes.

The duality comes to live when the graphi of a paraboloid is blended into
the picture.

THEOREM 8.21 (DUALITY BETWEEN THE POLE AND POLAR) (T1)
If the pole is outside the paraboloid, the points of contact of tangents drawn from the
pole to the paraboloid lie on the polar.

(T2) If the pole is inside of the paraboloid, the polar lies outside it.

Proof:
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We only prove the theroem in Rwhich has the full flavor of a rigorous
proof.
We first show (T1). The tangential vector from the pole to the paraboloid is

t=(0—-¢Y(0)—X)
the normal vector of grapty’ = U — %62 =0is
oG 0G
= (%7 50) = (=D

We want show that the contact point is in the poldf (e) = e — Y ().
Consider the conditioh- n = 0.

tn = G-6Y—X)(—61)
= —eo+eE+Y - X
= —e«0+2X+Y - X=—-c0+X+Y =0

We just showed thak’ = e — Y.
We now show (T2). Suppose the pole is inside the paraboloid. We want to
show that the polar is outside the paraboloid region.
Assume that part of the polar is inside or no the paraboloid, i.e.
1
X Z 562

Since the pole is also inside the paraboloid, i.e.

Therefore,
X+Y(@) > (#+8>
(62 + 62)

1
0o > *(5’2—2564—62) 25(5—6)2>0

ge >

— NN

\]

which leads to contradiction. Hence, polar must be outside the paraboloid, if
the pole is inside the paraboloid. &

DEFINITION 8.22 (REGULAR POINT AND REGULAR DOMAIN) LetU : E —
R be a piecewis€'? function.
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(D1) A regular point of the functiot/ (¢) is a pointe € E where the deter-

2
minant of the Hessian matri?U = { U } satisfies,
861-85]-
o*U
det { —— #0 +
e {aeiaej #0, or oo}

(D2) A regular domain, denoted h¥, is a continuous subset of regular
points.

Now we letU*¢ : R — R be a given continuous function such that the
graph,
Gye ={(0,Y)eR" | Y =U0o),0 € R"}

of U¢ is a continuous surface in'R*.

When the pole(o, Y'), moves on the graph éf¢, each point or@zy is cor-
responding to a polar hyperplane. The collective of these polars hyperplanes
will envelop another continuous surface, the graphXof= U(e€), described
asU : R" — R, which is the conjugate Legendre pairiéf(c). This is the
geometric interpretation of Legendre transformation. In other words, the cor-
respondence between the functidng) andU¢(o) is called Legendre trans-
formation.

Now we state the important Legendre Dulaity theorem.

THEOREM 8.23 (LEGENDRE DUALITY THEOREM) LetU(e) € C?*(E).

If £, C E'is an open, finite subset of the regular domairtodnd £ C R”

is the range of the mappin®U : E, — E*. Then there exists a unique’
functionU* on E*, which is dual toU on E, in the sense that the Legendre
duality relates

Ule)+U(o) =0 €< o=0U(e),= € = 0U o)
hold. Moreover, fol(e, o) € E, x E; satisfying above relationship,

0*U  9*Uc¢
aéiaék 80’k80'j

:5ij'

The proof of this theorem is basically application of implicit function theo-
rem. Itis omitted here. The readers who are interested in the proof may consult
Gao [2000].

Now we move to the essentail technical ingradient of convex analysis.

THEOREM 8.24 (DUALITY BETWEEN THE REGULAR MANIFOLDS) LetU
andU° be Legendre dual functions over the duality dom&iand E* respec-
tively.
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X=12¢€-€

U ()
/g4
U0
-
P )
different polars

Figure 8.6. Geometric interpretation of Legendre transformation

(S1) IfU is convex orF, U¢ is convex orE* and

Uf(e) = max{o -e - Ue)}

(S2) IfU is concave orF, U¢ is concave orE* and

Uc = renéuEl{ae —Ul(e)}

Proof;
For simplicity, we only prove it for case C R, which contains the enssen-
tial substance of a general, rigorous proof.

Sinces = ou by Taylor expansion,

O¢’
oU o*U _
o= Fe s +W <>|<> (e —€) (8.86)
where
o*U <*) U
862 - 862 e=é+0Ae

and0 <4 < 1.
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Eq. (8.86) can be rewritten as

_ 0*U _
(O' — 0') = +¥ (*) (6 — 6) (887)
ou¢
By the same token, becausecof o one can have
g
_ o*U _
(e—€) =+ 9e2 (*) (0 —a) (8.88)

where

rue () - i
Oo? Qo2
and0 < § < 1. Therefore,

e=c+0Ac

0*U ~
(c—d)le—¢€) = 522 (*) (e — €)?
0?U°
- = (+)(e - )2 (8.89)
- Q*U . i . 0%U*¢ .
Eq. (8.89) indicates that % (*) is positive deflnlte,W <*) is also

. . 0%U° : .
positive; whereas |f9— is negative deflnlte,a—2 (*) is also negative
(o

definite, or both belng |ndef|n|te

To prove the Legendre inequality, we consider a special 1D exafifde =
%ker, ko > 0.

For a given poink on horizontal axis, the associated stress ke is the
slope of the polar, the straight limé = & — Y, which is tangent to the graphy
of U ate (see Fig. (8.7).

Therefore, pointe, U (€) is in both polarX = e —Y and onlU = 1/2kge?,
which is to say thai (¢) = U(€) and

Y =ge—U(e) =:Uo)
For any givere € E,., we define a continuous function,
y(e) = ge — Ule)

we want to show that” = U¢(a) > y(e).
Since the polaX (¢) is always below the parabol@/ (¢) > X (¢),

Ue)—X >0 = U(e)—(6e—=Y)>0
= Y >age—Ule)
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AU _
)

£
U (g) =112k €2
X(€)=06¢e-Y
[Y:UC(B)

Figure 8.7. Legendre transformation

N

™
Q

e
|
5o
al

. : : 9> ,
SinceU (¢) is convex,y(e) is then concave becau% < 0. Itthen takes its
€

maximum value at becausg/ (¢) = 0. That is

Y =U¢0c) =max {ce — Ul(e)} (8.90)

GGET

One drop the bar oa, because domain @f is the same as.
Similarly, for concave function, one can show that

U%(0) = min {oe - U(e)}

&

REMARK 8.5.1 In the infinite-dimensional space E, Eq. (8.90) is called
Legendre-Fenchel transformation, and it reads as

U*(o) =sup{o-e—U(e)}
€CE
where the superscript replaces the superscriptmeaning as the dual func-
tion.
Accordingly, ifU is concave, its Legendre-Fenchel conjugate is defined as

U'(o) = inf {o-e-U(e)}
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The reason we add the name Fenchel is because Whemlefined as
U:E— R| J{+0o0}
the transformation

U*(o) =sup{o-e—U(e)}
€EcE

is called the Fenchel transformation.

8.6 Legendre-Fenchel transformation in linear elasticity

In a classical paper (Hill [1965]), Hill illustrated the Legendre-Fenchel trans-
formation in linear elastic system and extend the use of classical minimum
potential energy principle and minimum complementary energy principle to
micromechanics.

Consider the prescribed displacement boundary condition (prescribed macro
strain condition),

wW=x-€, vxedV

Under such condition, we have shown previously that
e =<e>=<ée>, Yec&

wheref is the space of compatible strain.
Therefore, the potential energy and complementary energy take the form

1
I = 2/Dijk50'ij0'kgdv—/ xkegiaijnde
Q ov

1
= 2/Dijk50'ij0'kgdv—/ |:5kj52i0'ij+$k52i0'ij,j av
Q v T

1
= 2/D¢jkmz‘j0k£dv—/ €?jaijdv
Q 1%

Based on minimum complementary energy principle, for any statically admis-
sible stress fieldyo € S,

1 L. -
HC(O') Z Q/Dijkégijaké_/ u?a,-jnde
v v
1 - . -
= 2/ Dz‘jkgdijdkg—/ G?jO'ijdV
1% v
1 -~
= —2/ Cijke€ijeredV
c
wherea ande is the real solution. In the last line the equality under prescribed

macros strain,
/e?j&ijdV:/ Qj&ijdv
1% 14
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is used.
Therefore,

1 L. 1
/ CijkzeijéudVZ/Uz’jE%dV—/ DijieoijoredV
2Jy 1% 2 Jy

which is essentially

W(E) = sup {:<o>-Wo)} (8.91)
{oeS}

where
1
W(G) = W/‘/Cijkgqjﬁkgdv
1
Wee) = W/‘/Cijkwij%zd‘/
One may further tighten the bound

WE = sip {:i<o>-Ws)} (8.92)
{<Oo>:.0€cS}

REMARK 8.6.1 1. Note that Eg. (8.91) looks like Legendre-Fenchel trans-
formation. However, there is a subtle difference.
If W is a convex functional of € £, the Legendre-Fenchel transformation
assures that
W¢ o) = sup {o:e—Wi(e)}
{€e&}

If the spaceS = £** is reflexive (all theLP(V') spaces are reflexive, see
Rudin [1991]), the inverse Legendre-Fenchel transformation exists,

W(e) = (W)(e) = W (e) = sup {e:o —We(o)}
{oeS}
2. Choose
co>=3 1 (C“:eo)dV:ifaC:eo.
a=0

One can show that

éeo C:e > € {(;:faCa>
S ne) (L her) - (S e |
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o) e ool

a=0

which is referred to as the Sachs bound.

8.7  Talbot-Willis variational principles

In a series papers (Talbot and Willis [1985],[1987]), Talbot and Willis gen-
eralized Hashin-Shtrikman variational principles to well-behaviored nonlinear
media.

Consider a composite with nonlinear strain potential energy den&(gy,

V-o = 0,
o = an,
1
€ = 5(V®u+(V®u)T)

u = x-g VxedV (I =0)

Consider a homogeneous composite,

V.o = o, (8.93)
o' = 09U, (8.94)
€ = %(V®u0+(V®u°)T) (8.95)
W = x-€ VxedV (I, =0) (8.96)

Compare the differences in potential energy denaity,) = U(e) — U°(e).
We define

Uy(e) = U(e) —U%e), 02U >0 (8.97)
Ur(e) = U(e) —U%e), iU <0 (8.98)
Assume the following kinematic decomposition,
u = u®4u@ (8.99)
e = €9 4¢ (8.100)

Assume that the stress and strain fields in the comparison solid are uniquly
determined by the boundary condition. The total potential energy difference is
a functional ofe?, i.e.

,(e!) = W(e?) - Wy(e?) = é/vup(ed)dv (8.101)

(el — W(ed)—Wo(ed):% /V W(ehdy  (8.102)
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where
W d _ 1 U d 14
(E) - 2V (E )d
1
%% d U d Vv
o) = 2V/V o(e)d

Obviously,IL,(€) is convex andI”(e) is concave.
Define stress polarization
ou

= 9.d
aeij

Subsequently, we can form the following Legendre-Fenchel transformation,

I, = sup {<p:ed>—Hp(ed)} (8.104)
elcE

Px 3 el S TTP( 4

= ;éfE{<p.e > _IP(e )} (8.105)
where )

d d
<p:€ >:/p:€ dv
Vv

and

E = {eij
V = {uZ
b

In fact, in plain terms, Egs. (8.104) and (8.105) are just

1 o
€5 € LQ(V),Eij = §(ui7j + Ujﬂ;), and u; € V}

w; € L2(V), W (u;;), Wo(ui j) < 00, u; = asje?j7 Vx € 8V}

wi € LA(V), W (ui), Wo(uig) < 00, ui =0, ¥x € OV }

I (p) = (W — Wo)*(p) = {‘Es;q;} {< p:ed>—(W-— Wo)(ﬁd)} (8.106)

when 0°U > 0, and (W — W?) is convex,

7" (p) = (W — Wy)*(p) = inf {< p:el>—(W— Wo)(ed)} (8.107)
{€leE}
when 9*U < 0, and (W — W?) is concave.

(1.) Assumed?/ > 0. From Eq. (8.106)

(p) 2 (< pre’ > —W(eh) + Wo(e))
= W(ed) >{<p: et > —i—Wo(Gd)} - H;(p)
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Take an infimum through the both sides of the inequality,

inf W(e?) > inf {<p:el>+Wy(e?)} - 115 (p) (8.108)
{€leE} €lcE

(2.) Assumed?l < 0. From Eq. (8.107)
17*(p) < << p:ed > —W(ed) + Wo(ed))
= W(eh) <{<p:e’>+Wy(e")} —TI;(p)
Take an infimum through the both sides of the above inequality

inf W(eh) < inf {<p:el>+Wy(e?)} —I1P*(p) (8.109)

{€deE} {€lcE}
The prime variational principle is

(The primal problem) P : inf W (e?)
{€4eE}

Combining Egs. (8.108) and (8.109), we have the original form of Talbot-
Willis variational princinple

inf {<p:el>+Wy(ed )} —1L(p)

{€deE}
< inf W(e?) <
{edeE}
inf {<p:e?>+Wy(e?)} — TP (p) (8.110)

{€4eE}

which is the generalization of Hashin-Shtrikman principle.
If both the original composite and the comparison solid are linear elastic
materials, we easily calculate,

H;(p) (01“ Hp*(p)) = / z]pzj Acz]kﬂezj€k£>dv

1
= / (eij — €5;)Pij — 2pij5ij)dv

1
= V/ Eszl‘] QElJpZ])dV
1
= V/ Z]kfpijpkf_Qegjpij>dV
Denote
I(e',p) = inf {<p:e’>+Wo(e)} ~T(p)  (8.111)
€Ecc
I(el,p) = inf {<p:e!>+Wo(e?)} —TP*(p) (8.112)

€icE
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We can find that
l - V / Dije zy jkfekf( & )
chkfpljpké + 61]p23> av

= % V<pw+cgk:l€k€>6 AV

=0

1
+2V/ C?ju(fgé + Eiz)egjdv
1 14 0
+V (2 szZJ Acljkfpijpké + eijpij)dv
v

1
0 0 d
= 55 | Cijkecreci;dV

2V k
=0
1 (/1 1, 1.
+V V<2CO]M€1]€M t3 szij - §Acijkgpijpk€ + E?jpij)dv
Hence
- 1,
I, (orl) = / jk[€z]€kf +5 D) szij chkzpszkﬁ =+ Qﬂ%g)dv
= Wy(€) + Ry (or Ry)

where

_ 1
Ry, (orR;) = QV/ ( Aczjkgpijpké + pijel; + 2Pz‘j6%>dv
We then recover the Hashin-Shtrikman variational principle

Rﬂ(p,ed) < inf W(ed) — Wo(eo) < R, (p, ed)
- €icE

8.8 Exercises
ProBELM 8.1 Consider a functional

P:H'([a,b]) = R

u) = /ab\/l + [u(z)]?dx .

with essential boundary conditiar(a) = @, andu(b) = .

where
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Find the first variation, second variation, andat@aux derivative. Derive
associated the Euler-Lagrange equation.

PROBELM 8.2 LetI', = (), 0V =T, and f; = 0. Assume that the RVE has
the prescribed traction boundary condition,

n-g=t'(x), vxecoav (8.113)
wherea > 0 is a constant tensor.
Show that
Wee)=  sup {6’ e) — W (< € >)} (8.114)
{<e>‘ee€}

wheref = {eij €ij.kl T €klij — €ik,jl — €jlik = 0, and €ij € L2(V)},

~ 1 . [, _
WC<O') = 2V/ DijklUijO'k:ldVZ2/ EZ‘jUkldV (8.115)
\%4 \%4
~ 1
Wi<e>) = — inf /C’i- €ii€pdV (8.116
( ) 2V (L[, edv=<e>, ece} Jv IR N ( )

Note thato;; ande;; are the real solutions.

PROBELM 8.3 Letl', = @ anddf2 = I';. Consider the following the boundary-
value problem,

Oijj = 0, vVxe (8.117)
njoi; = 1), ¥xe€Tly, and T, =10 (8.118)
1
€j = §<Ui,j+uj,z') (8.119)
oU, 1
€j = oy’ Ue(o) := iDz’jkeUz‘jUk@ (8.120)

Consider a comparison elastic solid with compliance ten@@m and

ol =0, vxeQ (8.121)
njoy) = 1), ¥xeTy, and Ty=0 (8.122)
1
) = S (u) +ull) (8.123)
(0)
0 U, 0) L ) (0) (0
e = 80?9), U2(c) = §D§jgza§j)a,§}. (8.124)
ij
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Let

i = D)o+ a (8.126)

wherea;.ij is called disturbance stress, angl; is called polarization strain
(eigenstrain).

They are connected by the following subsidary conditidnghe weak form
of subsidiary condition (complementary virtual work principle),

/ €ijohdQ =0 (8.127)
Q
or 2. the strong form of subsidiary condition

/ L (0) d / . / / / / o
€ =Dk +dij, Cleg) = €ijpe + €pij — €inge — €ioge =0, VX €Q

(8.128)
Consider the following variational problem
(The primal problem :) P : inf T.(c%) (8.129)
oleS(Q)
or
(The primal problem :) P : inf  W,(c?) (8.130)
oies(Q)
where

1
WC(O'd) = m /Q Dz‘jkéo'ijo'kédQ = /QDUM(UZ(;J) + O'%)(U,(g%) + Ugg)dQ,

(8.131)
.(o?) = QW,.(o?) and

s:={o ’ njoi; =0, Vx €T, and oy € CO()} (8.132)

Derive Hashin-Shtrikman variational principle.

Hints:

Z.Hasinand S. Shtrikman [1962], “On some variational principles in anisotropic
and nonhomogebeous elasticity,” Journal of Mechanics and Physics of Solids,
10, pp. 335-342.

D. R. S. Talbot and J. R. Willis [1985], “Variational principles for inhomo-
geneous hon-linear media,” IMA Journal of Applied Mathemati;,39-54.
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Chapter 9

BOUNDS ON EFFECTIVE PROPERTIES

9.1 Hashin-Shtrikman bounds

Consider prescribed macro strain boundary condition for both the composite
and the comparison solid,

€, Vx eV (Ft:(b)
e, VxedV (Ty=0)

e
I

X-
uw = .

=1

by the averaging theoremn=< € >.
Under such condition, Hashin-Shtrikman variational principles are

I < inf W< I (9.1)
~~~ €lcE ~~
AC>0 AC<0

whereAC = C — C© and

_ 1
0 1 d 0
I (or I) = Wo(e%) — v ), [ACijMpijpu — Dij€ij — 2pij€ij]dv (9.2)

Assume that there are n-phase in the composite (including the matrix). In
each phase (inclusion), the elastic tensor as well as stress polarization tensor is
constant, i.e.

Cx) = Y C'H(Q,) (9.3)
r=1

p(x) = Y p'H(,) (9.4)
r=1
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whereH (-) is the Heaviside function, arfd, is the domain of each phase,

1, Vxe,
H(Qr) =
0, Vx¢&Q,

We now calculate each termin (9.1).

1
inf W(el) = 1 a'edV—}<a>'<6>
€lcE o2V ) 2 '
1 1 .
= §<e>:C <e>—§é C:e (9.5)
2
Wo(e”) = / 0dV—1<cr >:< el >
2V
1
= 5<.s>(30<e >= e C’:e (9.6)
3
1 JRC |
— TCACT ipdV = ) = "Gt pldV
QV/VP p Q;V/szrp Slp
1 — o,
= §Zprr:ACT1:p (9.7)
r=1
4
1/p'eodV:<1/pdV)'?—::<p>'E:zn:fp ;€ (9.8)
v P v/ : : 2 P :
5
1 d 1 = r.Ppr. T
2V/Vp.csdV——QZ:f}p.P.(p—<p>> (9.9)
where
P / T (x' — x)dV
Qr
and

1
Loke == 1 (Gﬁje(xl—x)‘|’Gl?},ie(xl—x)+G?ij(X,—X)+G;§,ik(xl—x))
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How to integrate
1

2V
Consider the subsidiary condltlon,

P eldv =7 (9.10)

Cz‘(fizze“z,fj +pijj =0 (9.11)

We solveug in terms ofp;; by using Green'’s function method. Conisder the
Green’s function of the comparison solid in an infinite medium, i.e.

Cff;lﬁkm 0j T Oim0 (X — x)=0, Vx,xX € R?

Multiplying G, (x” — x) with (9.11) and integrating it over V, one has

/V [Cffﬁeuzz +pij] jG?ﬁl(x’ —x)dVy =0
Lett;; = C, (Olzguk ,- Integration by parts yields,

G2 (' — %) O, +Pz‘j] njds

ov
o0 0
/ o ,G (x' — x) [Ci(jlzgu%,g +p¢j] dVv
0 0
= / G, Ntij + pijln;dS — - |:8.ZL‘; G (x' — x)} [Cl.(ﬂzeugng as

=0

+ [ il GOOHC<0> Jav - —GOO( )i (x')dV
8$ ox' zgklukn[ — X)Pij\X
= [, e =0l pngds = [ G —xpy (Y

(0
/ CZ]IiZka ]E x' — X) (X,)dv
—8im0(x' —x)

because of major symmetry 6®, one can interchange indicés— i and

7 — L.
Therefore,
wh(x) = [ G =)l ) g (s = [ G =)y <)V

(9.12)
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Sinceu? = 0, V x € 9V, t;; oscillate around zero. Then its average

< C(ﬂzéu,C ¢, >ov along the boundary should be very small. We assume that
0
< Ci(jzzz“g,e >ov= 0

Now the only term remaining is

G (x' — X)pij(x')ds
ov

To essence of the additional manipulation is to modify the volume integral

in (9.12) in order to drop out the surface integral in (9.12). To do accomplish
this goal, we consider identity,

<pij >;=0 = /V < pij > G%(X, — X)dV =0

Integration by parts yields,

/ < pij > G (x' —x)dV = / < pij > n;Go, (x' — x)dS
v
/ G (X —X) < py > dV =0 (9.13)

Thus substracting (9.13) from (9.12) will be affect the value of (9.12),

!/

up(x) = GOO( — x)[ti(x ) + (pij(x )= < pij >)In;dS
/ sz] (plj( ) < Pij >)dV (914)

Now p;;— < p;; > also oscillates around zero, since its mean is zero, i.e.
< pij— < pij >>= 0. We can then neglect the boundary term, and finally we
have

/ G2 (% — %) (pig (x')— < pij >)dVy (9.15)

The gradient of the disturbance displacement field is

(%) = /V G2 (% — %) (piy (x ) < pij >)dVy

x) (pij(x’)— < pij >)de/ (9.16)
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Sincep;; is symmetric, we can also write that

1 . ,
G;lnf(X> = sz N1 + Gif,jm + G]m it G]E im ( - X)
4

(pij(x )— < pij >) dv.

= _/v méz‘j(x - X) (pij(x )— < pij >)de/

= —/ re(x —x): (p(xl)— <p >>de/ (9.17)
1%
where
o 1 o o o o
i (Y — X) = 1 [Gim,jf + Gt jm + Gimie + ij,im} (y —x) (9.18)

Consider a bounded and simply-connected redibg, V. We define a new
tensorP,

PY(x) := / I'(y —x)dVy, ¥xeQ (9.19)
9)
and in components form,

Pi?u(x) = /QF;-’fM(y —x)dVy
1 s - . ~
(9.20)

One may verify that whef is an ellipsoidalP® is constant. In fact, if one
recalls the general definition of Eshelby tensor o 2,

Sihe = / Gijke(y —x)dVy (9.21)
= —— / Cmnk‘f zm nj + G]ofn nzj| (y X)dVy
- 2 / (G35 + G + Gy + Gfang | (¥ = ) ConntedVy

= / Loemn (Y — %) CrankedVy

ijmn



Bounds on Effective Properties 235

Now we come back to evaluate (9.10). Let stress polarizatier) is piece-
wise constant, i.e.

px) = > pH(O)
r=1

n
<p> = Y fpr
r=1

Therefore,

1 1 =
v Vp:eddV = 37 V(;;»H(Qﬁ):

(—/ I —x): [p(xl)— <p >Dde/de
VI
Considerx € ;. ps— < p > Is constant insid€,. Thus,
/ I(x —x): (pr— <p >>dVX/
V/

= (/Qs I‘oo(x/ —x)dV,, + /V’QS I‘oo(x/ — x)de/> : (pr— <p >)de/

Assume that the RVE is a gigantic spherical ball andalare spherical inclu-
sions. By Mori-Tanaka lemma,

/ r(x — x)dV,, =0
V' —Qs
In fact, forx € Q4
/ I®(x —x)dV, = / > (x — x)dVy
1% Qs
because the integral over a spherical ball does not dependent on the size of
inlcusion (recallP = S : D).
Hence,

n n

% Vp:eddV = —;/ZZ{/Q (er(Q,«(x))

r=1 s=1 r
[ vy (o) av )
ro [ (potni)

r=1

: / r(x —x)dV :<p >)de}

S
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Consider
1 r=s
H(QT(X))H(QS(X)) = { (923)
and let
P = [ T —x)dV.
/ T 0,

We then have

1 J 1<
— : = —— <Pr : P" : p,
Y Vp e“dV 2V;/7lde o)
1 n
— dVypr : P" :
+2VTZ:;/T Vxp <p>
l — .
= _§Zfrpr5p :(pr_<p>)
r=1

1 n
= 73 Z Jrpi Pijre (P};z— < Pke >)
r=1
where< pyy >=>""_, frph,
REMARK 9.1.1 Recall that by using Radon transform one can write,
1 1!
6(x):—/ 5" (Enan)dS
82 Jig= T

and consequently,

1 e
G360 =3 [ K@)

ij {72

and for isotropic materials,

ey Lo AEREGE
Therefor,
1 1"
e = 9. 9 K nln
Gul) = 5z [ K5 @& Eura)ds
By definition,
oo 1 o0 o0 o0 o0
Ioe(x—y) = ~1 [ ke T Gitje + Girie + ij,z‘k} (x—y)

1

= g 1 ©68 (Galon ) )i
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because indices& j andk & £ are symmetricKigl(g) is symmetric).

To this end, we are in a position to establish Hashin-Shtrikman bounds. Be-
fore proceeding to derive Hashin-Shtrikman bound, we first evaRadénsor,
which can be written as

P=S:DO

For spherical inclusion,
s = s\VEW 4 s{VE?

where

1400 2(4 — 5v(0))
e L)
3(1— 0Oy 727 1501 — )

and for isotropic comparison solid,

S1 =

1 1
(0) — (1) (2)
DV = 3 (O)E +

Therefore,

(0) (0)

- 51 gy 5

Po= 3K<0>E MSTe0)
_ 1 + I/(O) (1) (4 — 51/(0)) (2)

OKO(1—,0) " T 15601 = ,0)

1 1 2(4 — 500
1 ) @ g @ 2B OV )
2G(0)(1_V(0)){ F17 @1 4 =———1(9.24)

. KO —2G0)
Considen/() = 3 G . One can also have
23K + GO)

1 W KO +2G0)

P =350 100" T 500EK0 1 4¢0)

For simplicity, we only illustrate Hashin-Shtrikman bound for a two-phase
composite. Consider a two-phase well order composite, which implies that
Ky > K7 andGy > Gy.

Step 1.Let

K():Kl, K:KQ, and G():Gl, G:G2
Obviously that
AC=C-CO =3(Ky, — K)EY +2(Gy — G))E? >0
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Choose a special stress polarization distribution,

pgjl-) =0, and pz(?) = pdij .

and remote macro strain distribution
€ij = E5ij

We now calculate each termsin

1
1_
; d — o (es ) (e
nf W(eh) = SCiu (e0) (o)
1 2 _
= 2 [3KE(312€ + QGEI(J]Q} (6)2(5ij(5kg
= §K€2
Note thatEf;,izéijékg =3 andEi(jz,Zeéijdkg =0
2
1 N
Wo(e®) = §c§f;€(65ij)(eékg)
1
= 2 |:3K1E(Jllzz + 2G2E( ) (5)252'j(5kg
= gKU?Q
3
1
V/ p:€VdV = fip1 : €+ fops : € = 3fopE
1%
4 Because)( ) =0 andpg) = pdij,
1 1 _ 1.
oy ), PACT pdV = ZfrpT AC!:p,
1 f2 f
(e L
(3(K2 - K) 2(Gy — G) >p 37kt
fap?

2(Ky — K1)
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5 Because< pis >= fopdrr,

2 2
1 1 ) 1 )
v /Vpijﬁéijdv = -3 Z fr PlikepiiPie + 3 Z frPligePij < Pre >
r=1 r=1
_@( 3p* ) 1 3fp
2 \3K; + 4G, 23K + 4G,
1 3ffp® 1 fifp?
- 4
23K + 4G, 2K1—|—§G1

Therefore, wheAC > 0,

_9 1 fifop?
2 2(K2—K1) 2K1+%G1
To find min,, I, we check the stationary condition,
or _ _fap fifop
dp (Ko — K1)  Ki+3Gh

3€
= Dsta = 1 fl (926)

+
Ky - Ky K+ %Gl

9 _
I(p) = - K & — + 3 fope < §K€2 (9.25)

0

4+ 3¢fo =0

Substituting (9.26) into (9.25) yields a lower bound on bulk modulus

f2
1 f1
+ 1
Ky — K1 Ky +3G,

K> K+ (9.27)

Step 2: Let
KO :KQ,K:Kl, and GQZGQ,G:Gl

and choose " o
p;; :pé'ja p;m = 0.

One can find an upper bound,
= 9 f1p? 1 f1fop?

I(p) = —Kq& — — =
W) = 55 ~ Sk, — &) 2Ky + 4Gy

+ 3f1pe > gké (9.28)

To find the maximum value aof(p), we examine the stationary condition,

oI 3€
S =0, = Dpsta =
%

(9.29)
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Effective Bulk Modulus(Matrix=Phase1) Effective Bulk Modulus(Matrix=Phase2)

0 L L L L 0 L L L i
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
f

fy 1

Figure 9.1. Variational Bounds for Bulk Modulus: (a) Medium one, and (b) Medium two.

Effective Shear Modulus(Matrix=Phase1) Effective Shear Modulus(Matrix=Phase2)
25 25
RB RB
— vB — VB
MT MT
HSL HSL
20 HSU 20 HSU

0 L L L L 0 L L L i
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
f

fy 1

Figure 9.2. Variational Bounds for Shear Modulus: (a) Medium one, and (b) Medium two.

Substituting (9.29) into (9.28), one will find that

f2
LE
Ki— Ky  Ky+ 3G
By combining (9.27) and (9.30), we will have the Hashin-Shtrikman bound on
bulk modulus,

K <Ky+ (9-30)

f2 bil
1 J1 1 P
+ 1 + 1
KQ_Kl Kl‘f‘gGl KI_KQ K2+§G2
It is readily to show that the following Hashin-Shtrikman bounds are held for
shear modulus,

K+ <K < Ky+

(9.31)

J2 - bil
G <G<(@G
L 1 6(K1 + 2G1)f1 - = Gt 1 n 6(K2 + 2G2)f2
Gy — G4 5(3K1 + 4G1)G1 G1— Gy 5(3K2 + 4G2)G2

(9.32)
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Figure 9.3. A compsite with n-phases

9.2 Microstructure Characterization
9.2.1 Preliminary

In this section, a few important concepts about statistical evaluate of a ran-
dom heterogeneous material shall be discussed, or formally defined. First, we
assume that any sample of a random heterogenous material is a realization of
a specific random or stochatic process. Mathematically speaking, a realization
is an eventg, that belongs to a sample spaée,Second, arnsemblés the
collection of all the possible realizations of a random medium generalized by
a specific stochastic process.

Consider a sample spaSeover which a probability density functiop(«),
is defined,« € S§. Then any particular property;, of a composite (such as
mass density, volume fraction density) is a functionagfand itsensemble
average can defined as

< f>—/sf(a)p(oz)da (9.33)

Of particular interest is the indicator function, Suppose that there is a n-
phase ramdom medium (composit®),c R?. The total volume ot is par-
tition into n-disjoint random sets or phases. The phasecupies the sé¥;,
and, in general, the phaseoccupies the/,.,r = 1,2,--- ., n. The measure of
setV, is denoted as volume fractiofi, = meas(V,). Obviously, the sefV, }
is a subdivision, i.e.

Vi(a) =V,

Viny;, = 0, ifi#j
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The indicator function for the phase,is defined as

1, ifxeV.(a)
1M (x, ) = (9.34)

0, otherwise

The indicator function is a partition of unity,

ZI(T)(X,(X) =1.
r=1

In many mathmatical literature, the indicator function is also called as chara-
teristic function.

The expectation or probability of finding phase R ar a chosen pxirnt
then denoted as

ST (x) =< 10 (x) >= /S 1™ (x, a)p(a)da = P {N) (x) = 1} (9.35)

In the literature, the functior‘ﬂf”), is referred to as the one-point probability
function for phase, r, since it gives the probability to find phaaépositionx.
Itis also referred to as the one-point correlation function for the phase indicator
function, ("),

In general, the expectation, or probablity, to find the phasat differentn
points simulatenously is referred to as the n-point probability function, which
is defined as

S,(ZT)(X1,X2, Xy =< I(T)(xl)l(’")(xQ) ) "I(T)(Xn) > (9.36)

Here the subscript, indicates that this is a n-point probability function, and
the superscript,r), denotes that this is a n-point correlation function for phase
T.

One can further generalize the above concept of correlation function to the
probability of finding any subset of poinis of the n points in phaséand
another subset of poinis; of the n points in phasgas

S (x1, %9, -+, %p) =< TP (x1) -+ TP (%, )T (%, 1) - - - TV (%) >
(9.37)
For instance, a two-point correlation function that represents the probability
to find the phase;, in x; and the phase, in xs is defined as

S (x1,%9) =< T0) (x1) 1) (x5) > (9.38)

Consider a n-phase composite. Its mass density can be expressed as

p(x) = pI"(x) (9.39)
r=1
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Figure 9.4. Examples of statistically inhomogeneous mdeia

Then the expectation of the density function is
<p9> = [ Y pd0xalpla)ia
S r=1
= Y 08 x)
r=1

The expectation of the product pfx;) andp(xz2) is

< plxi)p(xz) > = /S (32 1) x1,0)) (3 12, ) ) )
r=1

s=1

= Z Z prpsSgS) (le X2)

r=1s=1

9.2.2 Symmetry and Ergodicity

If a n-point probability function,S,(f) depends on the absolute positions,
X1,X2, - ,Xp, eXplicitely, i.e.

57(7,T) = S?SZ) (Xh X2, 7Xn> = / I(l) (Xla a)I(Z) (X27 a) e I(Z) (Xna Oé)p(Oé)dOt,
S
we say that the medium is strictly statistically inhomogeneous. Examples of
statistically inhomogeneous media are shown in Fig. (9.5)
We say that a system is statically homogeneous, or when a stochastic spatial

distribution is homogeneous, Hff) (x1,X2,- - ,Xy,) IS invariant under trans-
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lation, i.e.Y y € RY,

Sg)(xl,x% e Xy) = 57(:)()(1 +y, X2 +Yy,  ,Xn+Y)
= S (x12, %13, ,X1n) (&= y = —x1) (9.40)
wherex;;, = x;, — x;. Obviously, in this casé/ = R? andxy, xa, -+ ,x, €
R,

When a system is statistically homogeneous, or when a stochastic spatial
distribution is homogeneous, one can relate ensemble (time) average to the
volume (spatial) average. This is because that material properties in every
regions of the space are similar, and hence any realization of a statistical en-
semble must contain the all statistical information or details as the rest of other
realizations do, provided that the spatial realization space is large enough to
render a stable statistical interpretation.

This suggests an ergodic hypotheiBhe result of averaging over all re-
alizations of the ensemble is equivalent to averaging over the volume of one
realization in an infinite-volume limit.

Under the ergodic assumption, the complete probabilistic information can
be obtained from a single realization of an infinite domain. By letting

a=y, pla)= and da = dV,

1
V)
the ergodic hypothsis enables us to replace ensemble averaging with volume
averaging in the limit that the volume tends to infinity, i.e.

A 1 ; ; ‘
SO = lim — / IO I (y +x19) - 1D (y +x10)dy
\%

V—oo
We refer to such systems as ergodic media.

REMARK 9.2.1 Ergodicity is a mathematics term, meaning “ space filling”.
Ergodic theory has its origins from the work of Boltzmann in statistical physics.
Ergodic theory in statistical mechanics refers to where time- and space-distribution
averages are equal. Steinhaus (1983, pp. 237-239) gives a practical analogy

to ergodic theory as to keeping one’s feet dry ("in most cases," "stormy weather
excepted") when walking along a shoreline without having to constantly turn
one’s head to anticipate incoming waves. The mathematical origins of ergodic
theory are due to von Neumann, Birkhoff, and Koopman

In practice, instead of using the infinite spatial space, if a domain is much
larger than a basic spatial mechanical element, we usually take it as the spatial
sampling space that is the so-callegresentative volume eleméRVE).

One can see that for statistically homogeneous media, the n-point proba-
bility function do not depend on their absolute positions, but on their relative
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RVE
RVE

@) (b)

Figure 9.5. Examples of homogeneous isotropic (a) and homogeneous anisotropic media.

displacement. Therefore, there is no preferred origin in the system. In Eq.
(9.40),x = x; is chosen as the origin of the coordinate.

For one-point probability function (or one-point correlation function), we
then have

r 1 1 1
S\ = V/Vﬂ”(x,y)dvy = V/VH(VT)dVy = V/v AV, = f, (9.41)

which is the volume fraction of the phaser.

If the n-point probability function of a medium is both translation and rota-
tion invariant, the medium is called isotropic homogeneous. It means that the
n-point correlation function only depend on the distance among the particles.
For instance,

S5 (x1,x0) = S (w1o)
S:'ET)(X17X2:X3) = 55”(?612@13)

wherezxy; = ||x; — x|

9.2.3 Applications
ExampPLE 9.1 Consider Voigt bound and Reuss bound,

(Zn: o) <c< (Zn: #,c")
r=1 r=1

Both these two bounds only require information of volume fraction of each
phase. Since volume fraction,
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is, by definition, the one-point probability function (or correlation function),
both Voigt bound and Reuss bound are called as one-point bound.

ExXAMPLE 9.2 To evaluate Hashin-Shtrikman bound, we may let

— Zn:pr]( )
r=1

wherep,. is a constant second order tensor.
Then

<p>= ZpT<I Zpr ):Zfrpr
r=1

r=1

Therefore,

k3 . L S o ) -
V/Vp.eddV—QV/V(;prI (x))

(7 /V, r~x —x): {p(x/— <p >])de/de

= [ ([, e
: [Enj Pl (x+x") - Enj fips| )V, avi

s=1
= _Zzn:pr.(/ )dV//)
r=1 s=1
{‘1/ /V (I(r)(x)l(s)(x+xll)—I(T)fs>Pstx}

n n

= XY ([, reeavy)

r=1 s=1
(557 Gex+x7) = fofs )

Assume that the composite possesses no long-range interaction. The mathe-
matical implication is that

S (x,x) = 87 (x)51) (x), when [x—x|| >> 1

because the probability of two independent events occur simulatenously should
equal to the product of the probability of two single events.
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One the other hand, whefx — x'|| < R, or R,. There can be only one
phase exists within the region, hence

Sérs) (X,X/) _ SY)CSrs
To sum up

fr(srs ||X_Xl|| <R,

frfs  lx=x| >R,
Again, we end with the relationship,

1 1 n n
W p: eddv = —5 ZZPIJR’;M (frdrs — foS>pZZ
v r=1 s=1
1 — n
= 5> JpiiFie (D= Gromie — fopie)
r=1 s=1

1 n
= =5 2 FobPline (Phe— < pre >)
r=1

which was derived previously by using the argument of Mori-Tanaka theorem.
As shown above, the evaluation of Hashin-Shtrikman bounds is intimately
related with the evaluation of two-point probability function, or two-point cor-

relation function,S{™). It is this reason that Hashin-Shtrikman bounds are
called two-point bounds.

9.2.4 Ergodic principle

The intuistive concept of Ergodicity was popularized by Hugo Steinhaus.
Steinhaus wrote in his well-known bodkathematical Snapshats
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“When strolling along a sandy beach in shores most people choose the wet
strip left by retreating waves, which is hard and smooth enough to make the
walk more comfortable than the dry part of the beach. On the other hand, to
avoid their shoes and socks being soaked they must constantky watch the play
the surf licking the strip. This steady twisting of the neck becomes disagreeable
after a few minutes. There is, however, a remedy. Instead of looking sidewise
one keeps looking straight ahead; in every instant he sees the instantaneous
water edge and he directs his steps tangentially; he walks along a line touching
the edge in a single point without cutting contact lies far enough away to render
the variations small and easily accounted for: neither looking to the left, nor
sudden jumping to the right is necessary.

The background for the behavior | recommend here (after having tried it)
is the ‘ergodic principle’: the distribution of water tongues licking the shore
in a fixed point observed during a long time is the same as the distributions
shown in a fixed moment by a long portion of the water edge — the principle
involved is the identity of time-distribution and space-distribution. To apply
it here the walker has to limit his observation to the part of the shore he will
cover in the next minute — in most cases such tactics keep him on the safe side
without leading him out of the wet strip of the beach.- - -”

| thought that some explanation may be needed to correctly understand
Steinhaus’ analogy:

What Steinhaus was trying to say is that consider an infinite set of good
weather day, if a person comes to a beach every afternoon at 2:00 clock he may
find that at a particular spot (fixed spatial location) the sea water line on the
beach is a stochastic event and all the measurement on water line on each day
consist of a statistic ensemble. We assume that there is a statistical average
value for the sea water line on that spot, which is the average in time. The
ergodic principle suggests that if a system is both homogeneous in space and
in time, one can then find that average without measuring water line at 2:00
pm on infinite days. Instead, he can just walk along a path that is tangential
to the water (shore) line on the beach, which is also assumed to “infinite”. By
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doing so, the average position along his path on the beach may be equal to the
statistical average of the time ensembile.

Note that we do not consider the the surge or recede of sea water line due to
the effect of tide. Hence, the person who is in charge the measurement has to
come to the beach every afternoon at the same time (e.g. 2:00 pm), provided
that the weather is always good.

9.3 Exercises
PrOBELM 9.1 Show that for a spherical inlusiof) C V,

P = /I‘oo(y—x)dVy
Q
1 ~ o
= — Tr dsS 9.42
i o T (9.42)

PrOBELM 9.2 Consider a well-order two phase composifé,(> K; and
Gy > G1). Derive the Hashin-Shtrikman bounds for shear modulus,

f2 A fi
G <G<G
Lt 1 G(Kl —|—2G1>f1 - = G2t 1 6(K2+2G2>f2
Gy — G4 5(3K1 + 4G1)G1 G1— Gy 5(3K2 + 4G2)G2

(9.43)
Assume thak’y = 8GP, & G; = 5GP, and Ky = 20.0GP, & G5 = 18GP,.
Plot the Voigt bound, Ruess bound, Mori-Tanaka, and Hashin-Shtrikman bounds
for both bulk modulus and shear modulus for comparison.

Hints:

Hashin, Z. and Shtrikman, S. [1961], “Note on a variational approach to
the theory of composite elastic materials,” The Frabklin Institute Laboratories,
pp. 336-341.

Hashin, Z. and Shtrikman, S. [1962a], “On some variational principles
in anisotropic and non-homogeneous elasticity,” Journal of Mechanics and
Physics of Solids, Vol. 10, pp. 335-342.

Hashin, Z. and Shtrikman, S. [1962b], “A variational approach to the the-
ory of the elastic behavior of polycrystals,” Journal of Mechanics and Physics
of Solids, Vol. 10, pp. 343-352.

ExampLE 9.3 Consider a two-phase fiber reinforced composite as shown in
Figure (9.6) . Use two-dimensional Hashin-Shtrikman bounds to find the in-
plane (or transverse) bulk modulus and shear modulus.

Hints:

Hashin, Z. [1965] “On elastic behaviour of fibre reinforced materials of
arbitrary transverse phase geometry,” Journal of Mechanics and Physics of
Solids, Vol. 13, pp. 119-113.
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Figure 9.6. Cylindrical fibre-reinforced composite

Torquato, S. [2002] Random Heterogeneous Materials, Springer, New York,
pp. 328-337.

Christensen, R. M. [1979],

Mechanics of Composite Materials, Chapter IlI;
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Chapter 10

PERIODIC MICROSTRUCTURE

In engineering applications, often times, we encounter situations where ma-
terials have periodic structure. Such examples are various composites with pe-
riodic structure, reticulated structures (see Fig. (10.1), DNA, masonary struc-
tures, so forth. In fact, at very fine scale, most metals may be regarded as
composites with periodic structure because of their lattice structures. There
are mainly two types of methodologies in analysis: (1) equivalent eigenstrain

Figure 10.1. An example of periodic reticulated structure
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approach, and (2) asymptotic homogenization. We first start with equivalent
eigenstrain approach.

10.1  Unit cell and Fourier series
Conisder a rectangular unit cell defined as

V= {x| -0 <25 <0y j=1,23) (10.1)

wheregq; is the half length of the unit cell in j-th direction.
For materials with periodic structures, material properties should be periodic
functions, i.e.
C(x+d)=C(x)
3
whered = Z2mjajej,j = 1,2,3. Herem; are arbitrary integers. The
j=1
vector,d, is not the minimum periodicity, unless; = 1.
Under certain conditions, it is possible that displacement field may be peri-
odic as well, i.e.
u(x +d) = u(x)

An immediate consequence is that strain field is periodic,
e(x+d) = €(x)

Nevertheless, periodic strain field does not necessarily produce periodic dis-
placement field. For instance, a constant strain field is periodic,

e(x+d)=e(x)=¢€, VdeR?

but it does not generate a periodic displacement field, inat¢ag = x - €,
andu(x + d) # u(x).

A convenient mathematical tool to treat periodic functions is Fourier series.
Define a vector,

¢ =¢ej, and gj:%, ng= 0,41, 42,
J

and a countable set,

n;m

A:{g:fjej‘fj;j,nj:O,:tl,:tQ,"-,--~,} (10.2)

For any real functionf(x) € C'(Y), f(x) can be expanded into Fourier
series,

fx) =" FIfI(€) exp(i€ - x), i=v-1, (10.3)

e
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where the Fourier coefficient is

\Y\ / x) exp(—ix - £)dV;

where|Y| is the volume of the unit cell. For a rectangular unit celf| =
8ajasas.
Recall the definition of Fourier series in an 1D interyalg, a,

fla) = i f[f](&)exp(i%x), n=0,+1,+2, -

n=—oo

1

Fif) = 5 f( 2) exp(—i~-a)de

and the orthonormal condition

1 a
% exp(iz&y,) exp(—iz,)dx = dpmp
a —a

nm mim
where¢,, = — and¢§,, = —
a

a
Accordingly, 3D orthonormal condition is

Dl/‘ /Y exp(ix - &) exp(—ix - {)dVx =

—
O =
e
ol
Y

where§, ¢ € A, i.e.

n;m ngm
£=¢ej = —ej and ¢ = (rep = —ey .
7 af

10.1.1  Fourier transform of displacement field and strain
field

Suppose that displacement field is periodic. We may exoand displacement
field into Fourier series

Z]—" &) exp(ix - &) (10.4)
Een
where
Flul( |Y\/ x) exp(—ix - §)dV;

or in component form

FLul(©) = [ wityexp(-ix-€gav
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REMARK 10.1.1 In literature, the following expression is often used,
u(x) =) Flu](€)exp(ix - §)
Een'
where
v {gzgjej 6= j =122, }

aj

Note that the difference between index/seand A is thatn; # 0, or § # 0.
When¢ = 0,
1
Flu](0) = — / u(a)dVi
Y] Jy

which is the average displacement field.
On the other hand, if the composite undergoes a rigid body translation,
u(x) = u’, which is not periodic, one may find that

Fu)(0) = u°

Obviouslyu = v° ¢ L'(R) noru = u° € L?(R). Convergence issue may
rise in mathematical manipulation. Anyway, rigid body translation is a trivial
physical motion, we neglect its contribution in Fourier transform by restricting
I

Now, we consider the Fourier transform of displacement gradient,

Veux) =Y F[Veul)exp(ix-§) (10.5)
TN
and .
FIVe®u)§) = ¥ /Y V ® u(x) exp(—ix - €)dVx

On the other hand, from (10.4), one may find that

Veukx) = » Vexp(ix-&) o Flu](€) (10.6)
Een
= 1> £® Flu)(§) exp(ix - §) (10.7)
Een

Comparing (10.5) with (10.7), we have

FIV@u|(§) =if @ Ful(§) .
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Moreover, we may write Fourier series transform of strain field as
i

€(0) = 5 > (6 Flul(§) + Flul()  €) explix-€)  (10.8)

Een

From (10.8), we can deduce that

Flel(€) = 5 (€@ Ful(€) + Ful(€) 0 €)

Fle|(0) = & /Y e(x)dV;

which implies that the average of a periodic strain field is a null field.

Hence

10.1.2  Fourier series transform of stress field

Consider a periodic elastic stiffness ten€0(x + d) = C(x), which may
be expanded into Fourier series,

Z FIC](&) exp(ix - &) (10.9)
Een

|Y\ / x) exp(—ix - £)dV4

The corresponding stress field may then be written as

o(x) = C(x):e€(x)

{Z}_[C]( exp(ix - 5} {Z}_ ) exp(ix - C)}

Eea Cea

where

Letn =&+ ¢oré =n—¢. We have

= (Z FICI(n—¢): f[e](o) exp(ix - 1)

neA \Cea
and it is straightforward that
= FICl(n—¢): Fl(¢)
Cen

If C = CYis a constant fourth order tensor,

FICIn-¢)=C° n=¢, and F[Cl(n—¢) =0, n#¢,
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There is only term left,

Flo](n) = FIC)(0) : Fe](¢) = C°: Flel(n) when n=¢.

Therefore,
ox) = Z C°: Fle](n) exp(ix - n)
neA
= 5> C%: (ne Flul(m) + Flul(m) & n) explix- )
2 hen

Last, we evaluate Fourier expansion,

Vo= FIV-ol€)expix &)

Een
Via integration by parts,
FIV-ol(€) = ;, |- eexpi=ix- e)ivi.
= \Y] / x) exp(— in)) —o- (Vexp(—ix-f))}dv

_ {/ n- o(x) exp(—ix - £)dS

+2§/ x) exp( ix-ﬁ)de}
= 15/ x) exp(—ix - £)dV,

because
/ n-o(x)exp(—ix-£)dS =0
ay

by periodicity. In particular, wheg = 0,

/Ejyn‘a(x)dS:O

which stems from the fact that unit cell is in equilibrium.

10.2  Eigenstrain homogenization

Let CM andDM be elastic stiffness and compliance tensors in the matrix,
C2, D be the effective stiffness and compliance tensors in the second phase,
which is assumed to be distributed periodically in the composite. We are look-
ing for finding effective stiffness and compliance tens@sndD.
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Consider prescribed macro-strain boundary condition,
e=x-€, VxaV
The total strain may be written as

€ij e +eéd VxeV

R
The stress fields in the matrix and in the second phase are
0?]4 = Cljké( "+5d'); VXGMZY/Q
gy = Cirlel; + ), vxeq

They satisfy the equilibrium equations,

oM., = =0, YxeM (10.10)

3,3
o, = 0, VxeQ (10.11)

and continuity condition at interface,

ut =ud, Vx e a0

(3 K3

Consider a eigenstrain field,

eik'(x) - 61] (X)H(Q)

)

Eshelby’s equivalent inclusion principle reads as
o5r = Cih(enoele) = Clip(ehe + ey — €re) (10.12)
Substituting (10.12) into (10.11) yields

Ciine(ehe + ke = €53 = 0. = Cliguit; = Ciliucin (10.13)
Let,
€re(x Z Flene)(§) exp(i€ - x) = Z € exp(i€ - x) (10.14)
e e
where

. 1 . : 1 x :
€y = ? /Y €p exp(—1£ . X)de = ? /Q (%) exp(—1£ . X)dv
and

ui(x) = Flug] (€) exp(ix - x) exp(i& - x) = Y ;(€) exp(i€ - x) (10.15)

Een'
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where

U -1 ui(x) exp(—i€ - x
() = 7 | w0 exp(—ig )i

Note that uniform eigenstrain is excluded because it induces a divergent
displacement field, i.e.

™

Z(x):e;f}oacj — 00 as X — 00

Substituting (10.14) and (10.15) into (10.13), we have
—C el = 107 é; (10.16)
DenoteK;. (&) = CM,&¢; and K, (€) = Nin(€)/D(8).

Nir(§) v«

Flu)(§) := () = —i DE) M € b (10.17)

Recall,

) = 5 > (6FTus](©) + Flud(€)¢ ) explie - x)

Een'
One can write
4 = X 5 "Z;’;S)c%m + &6 Jj;;g)c%m)em expli€ - x)
Een'
= > Gijmn(€)én, exp(i€ - x)
Een'

= ]Y1| Z gijmn(ﬁ)/ e (X)) exp(—i€ - x,)de/ exp(i€ - x)
e Y

where a new fourth order tensgf;,,,,, is defined as

() = 5 (63(€) + 6N (©) e 1018)
For isotropic materials,
gijee(§) = 2152 [fj((%z&k + 0ik€e) + &( 0508 + 53'1@5@)}
1 &&ikée LV §i&j 5 (10.19)

11—y &4 1—v &2 ke
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Consider the dilute homoegenization scheme,
C:(+e)y=CM: (" + €l —€Y).

We have
e +el=(CM_CcHt:.CM:¢

and subsequently,
€ =AY : e (x) — €l(x)
This leads to the following integral equation,
AQ e (X)

ijmn€mn

+ Z gijmn@)m /Q e () expli(x — x) - €)dV, = 0(10.20)
eA

. . 1
This equation is difficult to solve. Calculate the aver?ﬁf/ (10.20)dVx
Q
in the inclusion. One has

o AT Y s (7 [ expie-)avs)

|Y|/ ) exp( iﬁ‘x/)de/)

Define a scalar function,
1 .
g0(§) = / exp(i€ - x)dVy (10.21)
12| Jo

The eigenstrain integral equation may be written as
o — z]mnimn + Z gzgmn go
Een'

(|11/| /Q (X)) exp(—i6 X )V, ) =0 (10.22)

For prescribed macros stress boundary condition, one may be able to show
that

€ij — z]mn €mn T Z gz]mn
Een'

(|}1/|/Qe:nn(x/)exp(—i{'x/)dvxl> —0.  (10.23)
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whereé;; = D} of,..

The simplest approach to solve (10.22) is to repletex) by its volume
average, i.e¢*(x) ~ €*. Therefore,

= AT = Y a(O0le) (g [ e xavy) e

e

= A% - > fol)gp(-€)sl) €
e

= A%:e - > fG(E)g(§): €
e

whereG(§) = go(§)go(—§).
Define Eshelby tensor for periodic inhomogeneities,

S =Y FG(&)gijmn(€) (10.24)

Een'

We recover the relationship between remote strain and eigenstrain ( average
eigenstrain be more precise),

0 _ Q . —%
€ij = (Az]mn - Szymn) €mn

To this end, the homogenization of a composite with periodic microstructure
can follow the same route as the homogenization of a composite with randomly
distributed inhomogeneities, if one can find the corresponding Eshelby tensor.
The key to evaluate Eshelby tensor is to find functiGrg).

ExaMPLE 10.1 CalculateG(§) for a one-dimensional periodic unit cell as
shown in Fig. (10.2).
One can show that
1 [ .
0 = 5, | expliga)ds
11

= %E exp(i&x)

= 2;@ [(cos(fa) +isin(§a)> — (cos(fa) — isin(ia)ﬂ

1 .
= sin(&a)

It is obvious that

a

—a



Periodic Microstructure 261

A nanowire with periodic structure

Unit Cell

Figure 10.2. An 1D model for a nanowire with periodic structure

@ Unit Cell
=

N NI &
2L
2L 2L 2L
&= €
2L 5

Figure 10.3. Periodic distribution of spherical percipitates.

Hence
G(6) = g sin*(€)

ExampLE 10.2 In this example, we consider a spherical percipitate distri-
bution in a cubic lattice as shown in Fig. (10.3). The unit cell in this case is a
2L x 2L x 2L cubic region. There is a spherical ball with radius= « inside
the unit cell.

Recall

J
/ eXp(—iE . x)dQ — (277)3/2a3 3/32(77)
Q e 73
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where
n = alfl=a\/&++&
B nim 2 noT 2 n37r>2
- “\/(L> +<L> +<L
T™a Ta
= Ty 4= —nl
Considering,

2\v2 . 2 1 .
Jy2(n) = (;n) (n™ " sinn — cosn) = \/;73/2(811177 —1cos )

one may write

3
T3

(sinn — ncosn)
n

|Q1|/Qexp(—i£-x)d(2

and

GI€) = Ja7gps [sntalél) = ale costalel)]

One may find that for bcc precipitate cluster,
3. .
go(—&) = E(smn —ncosn) (1 + exp(—i€ - c))

and for fcc precipitate cluster,

(=€) = 5 (sinn—cosn) (1+exp(—ig-er)rexp(—ig-eo)-+exp( i€ cs))

as shown in Fig. (10.4)

10.3 Introduction to Asymptotic Homogenization

The asymptotic method of homogenization is a systematic tool to find effec-
tive material properties or effective coefficients of a homogenized differential
equation.

The main technique of asymptotic homogenization is the use of multiple-
scale expansion. Often times, it involves with singular purturbation technique.
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Figure 10.4. Cluster of peripitates in various unit cells: (a) b.c.c. cluster, and (b) f.c.c cluster .

10.3.1  One-dimensional model problem
Consider an 1D model,

i(Edi‘) —0, 0<a<L (10.25)
dr \ dx
This equation can be viewed as either the deformation of 1D elastic bar, or 1D
steady-state heat diffusion, etc.

Assume that the medium has periodic micro-structure that is varying at mi-
croscale,/, which is the characteristic length of a unit cell. Therefore, the
coefficient, I, is a periodic function of spatial variable. We also assume that
at the interface of two different media in the unit cell the following continuity
conditions hold,

du
[u] = 0, [de] ~0.

This 1D model problem has a very simple differential equation. An exact
solution is possible. In general, for multiple dimension problems or nonlinear
problems, analytical solutions may not be possible.

An important characteristics of this problem is the existence of two vastly
different length scales: the microscdlevhich characterizes the dimension of
the unit cell, and the macroscalg which characterizes the global variations
of external force or boundary data.

Suppose that one is more interested in the average variation over a region
which is much greater than the typical period and less interested in the detailed
variation over a local region. One may ask oneself that

Can one bypass the details to find an equation governing the variations on the global
scaleL ?
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, 14 :
We define a small paramter= —. Obviously,e << 1. To separate the

effect of two scales, we introduce two coordinates: a fast coordinate and a slow
coordinate, which are defined as

y and x = ey (10.26)

You may suggest that the slow coordinate is slowed by small parame€@r,
vice versa,

x and y= z (10.27)
€

. . 1
You may suggest that the fast coordinate is speed up by a large paramter

€
Then, the field variablee may be expressed in a two-scale representation:
u = u(z,y) By using chain rule, we may write

d 0 0
— = — +e— 10.28
dy 0y + 68:5 ( )
or vice versa,
d o 10
— =+ = 10.2
der  Ox * €y (10-29)
One can then rewrite Eq. (10.25) as
d du
—(E(y)— ) = L 10.30
dy( (y)dy) 0, 0<y< ( )

It is clear that the coefficent has to be a periodic fundtion of fast coordinate,
i.e. E = E(y).
Consider the following muti-scale expansion,

u(z,y) = uo(x, y) + eur(z,y) + Cug(,y) + -+ (10.31)
whereu;(x, y) represents activity at i-th scale.

Applying (10.28) to (10.30) leads to the following partial differential equa-
tion,

(3+€£B)[E(y)<8“y°+e[%?+%?}+62[8(;2+831;2}
...... ) =0
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A complete equilibrium implies that equilibrium holds in each scale,

or ou
e o _E(y)aiyo} =0;
0 ou ou 0%u
i g lF (Gt )+ EWgag, =0
o7 ou ou 0%u oulu
2 o Ouy | Oug 0 1\ _ .
< oy E(y)( Oz * dy )} +E(y)( Ox? + 8x8y> 0

We first solve the zero-th order equation,

6 auo
— | E(y)—) = 10.32
5, (Ew)5) =0 (10.32)
which only involves with the lowest scale field variablg(z, v).

Integrate (10.32) once,

3’&0
Elyy—=A4
(y) dy 1(2)
whereA, (z) is a integration constant.
Integrating second time, we have

uo(x,y) = A1(zx) /y dy + Ay (z)

v E()

Sinceug(z, y) is periodic,

o) = oo+ = As@) = ) [ 2L
w E)

which implies thatd, (z) = 0.

This suggests that the leading-order displacement field only depends on the
macro-scale variable,

ug = Aa(z) = up(x) (10.33)
Now let's examine the first order differential equation,
0 Oug  Oug 0?ug
—|E — 1+ E =0 10.34
ay[ (y)<8x + ayﬂ+ W) 500y (10:34)

Based on (10.33), the last term in (10.34) vanishes.
To solve (10.34), we introduce the following partial separation of variable,
Oug

Ul(ﬂi‘, y) = Q(Ji’, y)% + ul(x)
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whereQ(z, y) is an unknown function.
Substitute the above expression into (10.34),

0 8’LL() 6@ 8UO .
A\ E0 (57 + 5 5} =
duy O O\

Te by {E@)(Hay)} —0.

This leads to the so-called inhomogeneous canonical cell problem for unknown
function,Q(z, y),

s e+ )} =0 wetnm+o (10.35)
[Q] =0, and [E(y) (1 + gfj)} =0, Vz at interface. (10.36)

Integrate (10.35) once,

EG)(1+52) = Di(o)
0Q . Di()
or i 14+ E()

whereD; (x) is an integration constant.
Integrate second times,

Q) = —y+Dl<x>/y%

whereDs(x) is another integration constant.
SinceQ(z,y) is y-periodic,

Q(x,y0) = Qz,y0 + )

+ Do(z) (10.37)

It leads to
yo+L dj
o+ Dae) =~ + 0+ Da(e) [ L4 Dale)  (10:38)
w E®)
Eqg. (10.38) is called the solvability condition for inhomogeneous problem for
Q oru;.
We then find that

1

Di@) = T g
¢ /y E(5)

(10.39)
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and hence v g
Y
/ E(7)
_ Yo
Q(z,y) = -y + W + Dy(x) (10.40)
tJy, E@)
Therefore,
I
E(g) 6u0 _
_ Yo
ui(r,y) = _y+1/?ﬂ)Mj+D2($) %—i—ul(anlOAl)
tJy, E@)
oun _ Ou 1 Oug
By - ow 2. /w i ) 5 (10.42)
y " TN~
tJy, E@)

Next, we consider the differential equation at the second scale,

2. 9 [E(y)(% + %)} + E(y)(82“° + 6“2“1) —0. (10.43)

Ay Ox Oy oxr?2  0x0y
Consider
82U1 . _8211/0 4 1 82’LL0
0xdy 92 . <1/yo+€ dij ) 0z2
Y- -
Eqg. (10.43) becomes
(9 8u1 8U2 1 82u0
— B i E = 10.44
8y[ (y)(ax + Ay )}—1_ (1/y0+€ dj ) 0x? 0 (10.44)
funct;gn of y 14 30 E(ﬂ)
function of x
Hence,
1 9%ug _ 0
GL am) ™
)y E®)
or
9 ! Ouo \ _ (10.45)
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E2

0.5(1 —f1 ) 0.5(1 — £l )

f——

Figure 10.5. One-dimensional unit cell

This is the homoegenized differential equation that governs the macroscale
variation of the mean displacement field.
Compare the mean-field differential equation to the original differential equa-

tion,
d

dy(E(y)jZ) ~0

We conclude that the effective coefficient for the homogenized differential
equation is

1 1\
Be = (1 /yo-i-f djj ) - <E> (10.46)
t )y E©)
which is the harmonic mean @ (y), or the estimate from Reuss bound.
Consider the unit cell shown in Fig. (10.5). One may find that

1—f¢
1/y0+£ dt _ 2/2 ﬂ—i_l f@ﬁ
g Yo E(t) g 0 E]_ E 0 EQ
_ el f (=Bt fE
14 E1 E2 E1E2
and ) B
E, = = L2 10.47
L e (1047
)y, E(t)
The homogenized differential equation is,
d duo
—(E.—) =0. 10.4
daz( dm) 0 (10.48)
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To sum up, asymptotic homogenization consists of the following steps:
Summary of Asymptotic Homogenization

1 The objective of the homogenization is to find the average coefficients of
the homogenized differential equation and find its solution;

2 ldentify the micro- and macroscales;

3 Introduce multiple-scale variables and expansions, and deduce cell boundary-
value problems (BVPSs) at successive orders. The leading-order cell prob-
lem is homogeneous, i.eg = up(x);

4 Use linearity (or separation of variables) to express the next-order solu-
tion in terms of the leading-order solution and deduce an inhomogeneous
canonical cell BVP;

5 Require the solvability of the inhomogeneous cell problem;

6 Find the differential equation that governs the macro-scale variation of the
mean displacement or the evolution of the leading-order solution which
includes the constitutive coeffocoients of the differential equation.

10.3.2 A multiple dimension example
Consider a 3D example,

Av = f, VxeQ (10.49)
ue = 0, Vxe€oN (10.50)

where 5 5
e_ 9 ( (TN O
A o ‘<a”(6)a$]‘)
wherex = (1, z2, r3).
Define the fast coordinate,
T
V=

P 1 .
as if y is speed-up by the large paramter We then can express the field
€
variable as a function of two independent scalgéz) = u(x, y).

From chain rule, we have

0 0 0 Oy o 10

ox; - ox; + Oy; Ox; 0wy + ani

We can then expand the differential operatéft, as
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fine scale:

intermediate scale:

coare scale:

Figure 10.6. lllustration of multiscale phenomena

= (ot o) [ (ot o)
= —? [88351 (aija(zj)} — ¢! [aia”(y)aayj + (;)yiaij(y)ai
—c° [aiiaij(y);%}
= € 2A14+ ¢ 1Ay + €45 (10.51)
where

n = [ )
te = ~[gratiz + goeuwe]
Az = — :;Uiaij(y)aii]

Now we consider multiple scale expansion,
ue(x) = UO('Ia y) + Eul(‘T?y) + 62“2($a y) + e (1052)

which decomposes or separates the activities at different scales.
Substituting both (10.52) and (10.51) into (10.49), we have

(e’QAl +e Ay + 60A3> (Uo +eup + €ug + - ) =f

e 2 Ajug + et (A1U1 + Azuo) + 2 (Ajuy + Aguy + Aszug)
b= (10.53)
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The total state equilibrium is equivalent to equilibrium states in each every
scale. Thatis

€2 A =0; (10.54)
et Aqu + Asug = 0; (10.55)
60 : Aqug + Aouq + Asug = f (1056)

If one can solve differential equations at each scale, one can find out both local
detailed information as well as global information.

As far as homogenization concern, we are looking for a homogenized dif-
ferential equation that carries the overall information of fine scale.

Before we proceed further, we prove the following lemma.

LEMmMA 10.3 If the differential equation,
Aiu=F, VyeY

has a uniqué& -periodic solution, the following equation holds

1
cFs— L / Fly)dv, =0 (10.57)
Y1 Jy
wherey = (y1,y2,3).
Proof:
By the assumption, one can assume that lcdind F' are Y-periodic, and
F(y) = Z}' &) exp(ily) (10.58)
€EA
u(z,y) = Z}' ) exp(ily) (10.59)
€EA
Hence
0 3}
A = —(—a(y)—
e <ay1“’(y)ayj)“
da; .
= =Y (G2 + i) Flul(©) explicy)
i o

Based ord,u = F, one has

_ 215]( dij -|- zfl) u] exp(ily) = Z]: §) exp(i€y)

e

= ﬂﬂ@:—@(ltmg
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Therefore,
1
FlF =0 = }"[F](O)—/ Fdv, =0.
Y[ Jy

[
To this end, we start to solve differential equations at each scale. At scale
€2, we have

0 0
A1u0 = _Ei’g/l-(aij(y)(?yj)uo =0
We claim that
ug = up(x) .

That is the leading-order expansion is only the function of slow scale variable.
Sinceuy is Y-peridoic, we have

wo = 37 Fluo)(€) exp(icy)

£eA

Consequently,
aai
0

Arg =0 = = 37i6; (5 +i6)) Ful(©) explicy) =0.

SN v

Then for¢ #£ 0, it is necessary
Flul(€) =0. (10.60)

Assume that

Eg. (10.60) becomes
1 _ .
F©) = 57 [ (00w + (o)) exp(=icn)av,
1 .
= m/y(c(:v)Q(y)) exp(—iy)dV, =0 (10.61)

because/ ug(z) exp(—ify)dV, = 0 when¢ # 0.

Y
The only possibility that (10.61) holds is th@{y) = 1 or Q(y) = 0. In
either caseyy = up(x). We proved our claim.
Next, we consider the differential equation at scalé:

Aqug + Asug =0.
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One can show that

o= =2 o0) g+ () e = =

Ox; dy; Oy O0x; 0y; Ox;
Hence St
a;5 OUgQ
Ajuy = 2 — 10.62
1= By B (10.62)
This suggets the following separation of variable,
Oug
ur(z,y) = Urly) 5 +w (@) (10.63)
Tk,
and subsequently,
. auo
Aruy = (AlUk(y))aTck
B 0 OU} Ouyg
= 87% (Cbzg (?/)) aiy]@imk (10.64)

Combining (10.62) and (10.64), we find the canonical equation for a unit cell
problem,

3aik 0 aUk o
et (aw (y)) By = 0. (10.65)

with the possible boundary conditions at interface of different phases,
OUy,
[Uk] =0, and [(aik + a”(%@-)nl} =0 (10.66)

We now consider the differential equationeéiscale,
Ajug + Agug + Asug = f
which can be rewritten as
Ayug = f — <A2u1 + Aguo) (10.67)
The condition that equation (10.67) has a unique periodic solution is that
< f— (Agug + Asug) >=0

That is
1
i /Y <A2u1 + A3u0>dy —f (10.68)
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Consider
up = UO(SU)
U = Uj%—i-’l_u(w)
Y
One can show that
82u0
A —  _ay 10.69
3UQ Qg 817@8% ( )
0 0 0 0 Jug _
A = —|—(ay — 4+ —(a;; . e
21 [axi (a0 ay; " ow; (4550 axj} (Uk(y)axk +)
oUx 02ug ) d%ug
_a”é?iyjé?a:i@xk B 873/2 (a” (y)Uk(y)> 0:@8:5;6
0 0u
——(aii(y)) =— 10.7
3, (#0) 55 (10.70)

Change the dummy indicegs< k in the first term of (10.70). We can write
that

an> Puy 0 8%uq )

Asuy + Agug = _(aij + aik@Tck dx;0x; Oy, (a,-j(y)Uk(y) O0x;0xy,
) 7 ? J

0 ouy
_3711' (am (y)axj)
Via divergence theorem,
1 1 oU: 82u0
_ A A - = y ; J
v /Y( au1 + Asug)dy Vi /Y<a] +a k8$k>dvyaxia$j

- [(aij(y)Uk(y)uo,jk(a?)}m - [aij(y)ﬂl,j}ni

By periodicity, the boundary terms will vanish. We then have

1 8Uj 82u0 _
_m /Y(aU + @ik c%ck)dvy(‘):clf)m] N f

Denote the effective coefficients as

1 oU;
Ai5 = m /Y(Cllj + alkaix']C)d‘/ty (1071)
and homogenized differential operator
0 0
A = - — (a;,;— 10.72
81‘1’ (CL J 01‘]) ( )
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f ]

X2

I2
X1

I

Figure 10.7. An unilateral composite with periodic straucture.

we finally derived the homoegenized boundary-value problem,

Allyy = 0, V2 eQ (10.73)
up = 0, Vx e N (10.74)

ExaMmPLE 10.4 Consider a 2D steady-state heat transfer problem (see Fig.
(10.7)), 5 5
I Te

2 (x (7) ) —0, D 10.75

8:ca< P\ Oxg 0, V& ( )
whereT“(x) is temperature field andl, s are heat conduction coefficients. We
assume that the regiop = {(ml,@) ) 0<z1 </, and 0 <y < EQ} is
thermally insulated in horizontal boundaries, i.e.
oTe
Oxg

g2 = Aog =0, Voo =0, and 20 = /o (10.76)

Along the vertical boundaries of the region D, the heat flows are prescribed,

€

@1 = Mg = Fqp, Vx1 =0, and x1 = 1 (20.77)

Oxg
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Consider multiple expansion,
T(x) = To(x) + €T (x,y1) + -+
and the following separation of variable,

9Ty(x)
0xq

Ti(z,y1) = Ua(y1) , a=1,2

Note that first we assume that the mean temperature at this scale is zero, i.e.
Ti(z) = 0; and U, (y1) are Y-periodic functions that are the following 1D
canonical cell problem,

_ddyl(A ) ‘”10‘, Yy ey (10.78)
[Ua} =0, and [)\ CfiU } 0, Vyi at interface. (10.79)

Integrate (10.78),

dU,
dunlo) P2 ) - €
dUa(yl) _ _)\loc(yl) Coc
dy A(yr)  An(y)

whereC,, are constants (note that they are not functions of x ! ).
Integrate second time,

Y1 Y1
Ualy) = — | Mal©NF(€)dE + Ca /0 A (€)de + Do

0

Note that we choosB,, = 0, because the average temperature at seafeis
assumed to be zero.

The solvability condition of the canonical cell problem requitégy:) as
a Y-periodic function, i.e.

Ua(o) = U, (E)

This condition allows us to determine the constarits

/ Aa(©ON(©)de
Co = 20— (10.80)
Jo M1 (6)dg
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In specific,

o = ( / Z )‘111(f)d§>

/ T ©)de
Ui(y1) = -+ (10.81)
JRHGE
Y1
i) = = [ el (e
l
M)A (6)dE Ly,
+/ ([ xila)  aosd

0
¢
/ A (£)de
0
Define the effective heat conduction coefficients,

- 1 oU;
J |Y|/Y(a]+ak8xk> Y

It is easy to find that

¢ oU
/0 Mi(€) + An(€), HE) )de
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and
¢
A2 = z/ >\12(§)+>\11(f)g[;12(5))d§
=€/‘m2 )~ Mal€) + Ca)de
//\12(5))\11<f)d§ B
= = A21
g/ )‘11
and
Ay = g/ )\22 +)\21(5)(8;y]12(f))d§ (10.83)

l

I
\

Aoa(€) — )‘%2)‘1_11(5)+CQ)\12>\1_11(5)>CZ§ (10.84)

= g/)\m dﬁ—/)\lz EAT (&)de
(/0 )\12(5))‘I11(f)d§>

]
L[ o

and the homogenized partial differential equation becomes

[ =

+ (10.85)

- 82Tg 0%y - 0Ty
A 2) A =0.
11735 022 T+ 2A12 911025 + A22 822

10.4  Variational Characterization
Recall the homogenization of conduction problem,

Afue = f, Ve e
ue = 0, Vo e N
Assume that

ou0 (g
W) = Uil 225

One can derive the following governing equations for the canonical cell prob-
lem,

(10.86)

0

U,
e <ak] Ty (M) —0, yeY (10.87)
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with the proper interface and periodic conditions.
Subsequently, one can derive the effective coefficients for homogenized dif-
ferential equation,

) 1 U, 1 U,
i = TN ij T e = i\ 0 + 10.
s ’Y’/Y(aﬁagaw)dy ‘Y/Yag(%—i- 8y@>dy (10.88)

Based on (10.87), one may find that

~ 1 [ (s + a2 ) Uity =0

Integration by parts yields

1 oU; oU;\ OU;
IV ay(“’”*““a*ye)w e + 57 [ (o + a2 gt
oU;
_ m/ak,Z o+ )aykdy—o (10.89)
Adding (10.89) to (10.88), one may find that
1 oU; oU;
a; = ]Y]/ 5£j‘|‘7j az‘é(y)*Fakz(y)aT/k)dy
oU; oU;
- 7 / are(y zk+ yk)(% aye)dy (10.90)

Eq. (10.90) links the effective coefficients of the homogenized equation with
the variational characters of unit cell problem, which plays a significant role in
Tartar’s variational principle.
Consider constant vectd,= &;e;, or a flux vector of macro-scale variable.
We can form the following quadratic form,

ai;&ik; = |}1,|/ Eifjaké(y)< ik + gUk) (523 + zU)dy

_ aU & oU;¢;
=y / ape(y §k + )({g + O )dy (10.91)
Eqg. (10.91) suggests that there exists a functional,
_1 5 L OUREkN (| OU&
J(U) = /Y aij(y) (fz o )(gj + )dy (10.92)
such that
;&€ = Uelg}lln(y) J (U) (10.93)



280 INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS

where the function spach#(Y) lis defined agi'(Y") space of Y-periodic
functions, i.e.

H#(Y) = {u ‘ uis'Y — periodic, and u € Hl(Y)}

that is
/ (u® + |Vul?)dy < +oo
Y

To show this, we first show that the Euler-Lagrange equatiof(&f) is the
governing equation of canonical cell problem.

Assume that;; is symmetric and real. It subsequently implies thgtis
positive definite. Therefore,

1 (00U (. OUG - OUREL\ 06Ue&
6 = |Y|/Ya”(y)< y; (£]+ 0y )+<€l+ y; > 0y )dy
Uk,
Yi

= 57 [ s (6+ TEE)svigas
~ 51 | o (e (6 + ZE%) Uiy = 0

By periodic conditions

2 U,
¥ /ay aij(y) (§i + 826 )5Ue€ed5 =0,

it then leads to

37 =1 | o (s (s + 52 oty = 0

and hence 5 oU
~ (aij(y) (5ik + T;))wg ~0.

ConsiderU,, = 0 € H#}#(Y). One can find an upper bound for effective
coefficient,a;;, i.e.

1
0 < a6 < (W/Yaij(y)dy)&fj (10.94)
or ,
% < /Y ais(y)dy (10.95)

1In music, the sigr¥ is used to indicate that a note is to be raised by a half tone. Similar meaning implies
here as well, i.e. a “half level higheI ! space.
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This is the arithmetic mean or the so-called Voigt bound.
To find the lower bound, we have to enlarge the spH(%gY). Consider

function(; € Li(Y) and the mean value d@f is zero, i.e.

/Y Gly)dy =0.

aij§§; > min - J(C) (10.96)
CeLi(Y) and
fy C(y)dy:O

It is obvious that

where
1
S /Y aii (& + GW)(E + G ))dy
203 /Y Gi(y)dy —0) (10.97)

whereC}, are Lagrange multipliers.
To find the minimizer inLi(Y), we calculate the first variation of the func-

tional, J.(¢),
2 1
0Je = ,Y,/Yaz'j(y)(&+C¢)5dey—260jm/ng(y)dy
1
20y | scitay
2 1
= ,Y,/Y(az‘j(y)(&+ci)—Cj>6cjdy—250jm/ng(y)dyzo

which yields Euler-Lagrangian equation and the constrain condition,

aij(§+¢G) = G (10.98)
/Y Gly)dy = 0. (10.99)

Solving (10.98), we have
&+ G = a;'C; (10.100)

Average the above expression over the unit cell and considering the constraint
condition (10.99),
& =<agz'(y)>Cj (10.101)

which solvesC'; in terms of¢;, i.e.

Cj=<ay;'(y) > & (10.102)
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The minimizer inLi(Y) under the constraint is then

. 1
min () = 0 [ a6+ G + Gy
CELQ#(Y)and Y| Jy
fy C(y)dy:O
1
= /Cj(fi+Ci)dy:Cj§j
Y1y
= <a;i1 >;/1 flfj
_ (L Y
= (’Y’/Yaz’j (y)dy> {zf]
From the above estimate, we find a lower bound for effective coefficignt,
i.e.

ajj > (D/l’/Yai_jl(y)dy>_1 : (10.103)

which is the so-called Reuss bound.

10.5 Multiscale Finite Element Method
10.5.1 Asymptotic homogenization of linear elasticity

Consider a composite material with periodic structure and its elastic stiff-
ness tensor satisfies the relation,

Cijkf(%)&jfu = Cijre(y)&ii€ke > &i&ij

wherea > 0.
Consider the following boundary value problem,

0o
L+ fi = 0, VoeQ (10.104)
éh:j
Ufj = ijkéugk,zchjkgeig (10.105)
1/0u  Oug
e = 35 10.1
it 2<8$g+8:ck> (10.106)
o = 1, Voely (10.107)
ui = U, VreTy (10.108)

Consider multiple scale expansion,

(1)

ul(x) = ugo) (x,y) + eu; @)

(.T,y)—FEQUi (x7y)+7 Yy =

L RS]
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Hence
Upy = gui (8 8 )(u2+eu,1€+62ui+~-
g xe  €0Ye
= efleyw( (0)) + € (eXkZ 11(0) + €Ykg(u(1))) +
+e! (exre(uV) + eype(u?)) + -
and
ij(%y) zgkz(y)ukz

(1)

= Uké(y)[ UYM +e (usz +UYk o)+ e(uX,M

T N

In each scale, the constitutive relations are

et o) = Cuny)uy)
1 0 1
e Jz(j) = Uu(y)(ug& Vs ug/l)c 0);
1 (1) (1) (2)

€ : 0 = ijkﬁ(y)(uXk,Z+qu7f);

283

(10.109)

2
+ul) )

(10.110)

To derive equilibrium equation at different scales, one may write

(10.111)

(10.112)

(10.113)

(10.114)

do; o 10
7’U = E =
Ox;j (8@- te € Oy )U“ +fi=
_ 9 1 c'? -1_(0) , o (1), 1 (2 L
= (Oac'j+683/j)<€ 0, Feo Feo; +---)+f1—0
Consequently,
(0)
2 Oaij _o:
ayj
(0) (1)
R
8$j 8yj ,
9o 9e?
0 ij ij o
€ 9z, + oy, + fi =0;
AR A
et L L —0; s=2,3,
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and the boundary conditions are

(e_lag]) + eoailj + elafj + e )nj t?, Ve ey (10.115)
<ul(-0) + elugl) + 62u§2) +-- ) = 0,Vxel', (10.116)
The boundary conditions in different scale are

—1. (0)

e o,n; =0
0. D, _ 0.
oy B vrer, (10.117)
1 2)
€ o' ng = 0;
and
eV 1(»0) = Uy;;
1. M _ q.
o =0 yrer, (10.118)
62 . (2) =0:
: ; :

We first examine the leading order equilibrium equation and boundary con-
dition,

This yields

7l =4 (@)
On the other hand

3u,(€0)

o0 = Cijre(y)

i Yy
To commodate both conditions, we have to set
o =0. (10.119)
and
ul? = 0 (2) (10.120)

To solve the second order boundary-value problem, the follwing separation
of variable is adopted

EC)
u @ 9) = 3 (0) G @) + 7 @) (10121)
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where the unknown vector functiog?*(y)e;, is often referred to as thehar-
acteristic displacement fieldVe further assume that

0
€] _ key, \ Ouy
0 (2, y) = 635 (y)a—w(x) (10.122)
Consider " 0
ou; X Ouy
= 10.123
oy dy; Oy ( )
and
US) = Clje <“§?Lz + ugiz) = Cijke (6%4 + u(yl,lg> : (10.124)
We find that o
Q) _ mn Xk (0)
Tij = Vight (Tke + Tyg)uxmv” (10.125)

1
whereTj;" = - (5km5m + 5kn5em), becaus%?”u%n = 0

Accordingly,
8)(2””)
Oy
Then the equilibrium equation on second scalé ) provides the governing
equation for the canonical cell problem,

~mn mn
Oi5 = ijkf( ke T

9.} 267" 9y aemn
1] — O, = 1] m — O’ = L — 0 . 10126
8yj ayj Oy 83/]‘ ( )

More explicitely, the governing equation for canonical cell problem is

9 o™
0y;

(Cz‘jkz [T;?Z" + s D =0, YyeY

(10.127)

The related interface continuity conditions and periodic conditions are omited
here.
Consider the equilibrium equation at third scal®) (We have

o oV
L= —(fi 1) =F Y
0y <f+ 8:@) » VY€

The Fredholm alternative condition requires that

i)
— | Fi(y)dy=0.
vl Sy B
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This can be shown from the fact that

(2)
1 80’ij 1 e
— dy = 0,7'njdS =0.
Y| Jy 9y; Y Joy
Thereby,
9 )
|Y|/fz Jr(9 <oy >y=0.
where
(0) (0)
(1) o ~ke ouy ™ Ouy

and the homegenized elastic stiffness tensor is determined by the solution of
the canonical cell problem,

PNy
The homogenlzed BVP is,
<oy >j+fi = 0, Veel (10.130)
<oy>n; = t, Veely (10.131)
W\ = @, Vozerl, (10.132)

10.5.2 Finite element formulation

Choosev; € H#(Y). Multipling v; with the leading order equilibrium
equation (10.111) and integrating it over Y, we have

909

Y_0idQy, =0, Yv; e Hy(Y
/yay] ) L(Y)

Integration by parts yields,

/ ) pvidS — / ol gvz
Yj

(0)
— (0) avl dV., = / auk avl dQ _
/ z] ay Vy CZ]ke 8]/ y; =0.

Letv;(x,y) = ugo) (z,y). We have

au,g ) 9ul”)
i —dQy = 10.133
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SinceC;ji¢(y) is positive definite,

Gu(-o)

o) _ (0
=0 , = u;, " =u; (x

and consequentlzyg.)) = 0, as we have derived before.

Multiply Eq. (10.127) with a test functiony € H;E(Y), and integrate them
over Y. Integration by parts yields,

mn

8an 8)("”‘ ov;

_ / [Cune (T + T )] njuids, - / Coe(T, + ok ) 5y Vs
(9)( ov;

= / Cl]kf k:[ 8;g ) ayj d‘/y =0.

Consider the following parametric vector,
P = yménkek = P’;nnek (10.134)
One can show that

1,0P™ OP™
Tmn _ 4 k — pmn
( oYy * Oy ) (k.6)

Therefore, the weak formulation for the canonical cell problem can be written
as

1 mn mn
[Y] /y Cijie(y) (P (k) T X(k,o)”(i,j)dVy =0. (10.135)

Define the bilinear form
1
ay(u,v) = ‘Y‘/Ycijké(y)u(i,j)v(k,é)dvy (10.136)

The finite element formulation of canonical cell problem is:
Find x™" € HJ,(Y'), such that

ay (P™ +x"™",v) =0, ¥ veHy(Y) (10.137)

Onceyx;";' being determined, the effective elastic stiffness tensor can then
be calculated based on definition

Clhe = 37 ] Comnl) (P + XL )V (10.138)
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Consider the fact that

o o 1
T = P(S],t) =3 (5si5tj + 5sj5ti)

It is readily to show that

ij 1
CiluTd = Cgkéi <5sz‘5tj + 553'5&) ==C/hy (10.139)
and
Cly = o / Cotmn (Pt + Xt ) TV,
Y1y ’ ’

1 Kt ke N\ pid
= m /Y Ostmn (Pm,n + Xm,n)P(;t)dVy

= ay (PR 4 XM, Pij>d1@ (10.140)

_ 0}
Iy

Finally, we define another function space,

Vo = {v(m),x €N } v(z) € [HY(Q)]%, d = dim{Q}, and , v(z)

The weak formulation for the following macro-level BVP,

0< Jl(jl) >y

+fi =0, (10.141)
8:1:j
where <US)> — Cgkeugz)g) (10.142)
O (om0
and amj[cijkﬁ“(k,a] tfi = 0, Vzeq (10.143)

<o)>n; = 1 VYzel, (10.144)
WV = @, Yael,  (10.145)

is:
Findu(©®(z) € Vg such that
/Q CHuly v dVe = /Q froidVy + /F t9v:dS, ¥veVq. (10.146)
t

wherev = v;e;.

Summary of Multiscale Finite Element Method
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1 Solve the canonical cell problem on Y first, i.e. figll’(y) € H#(Y) by
solving
ay (Pke +x*, V) =0, YW e H;E(Y)

2 Calculate macro-scale elastic stiffness tensor

D 1
Cgke =ay (P”—l—x”,PkZ) and ay(u,v) := v /Y Cijke(y)ui jvi ¢dV,

3 Solve the macro displacement field?) (x) € Vq,

al (u® v) = <f,V>Q—|—<tO,V> where aff (u,v) 1= /chkzui,jvk,fdvy

ry

wherev is any function inVq;
4 Calculate the fine (local) scale stress distribution,

gg)(x, y) = Cijre(y) (Tkl T X(k.0) (y)> Oy,

10.6 G-, H-, andr- convergence

Various notions of convergence are introduced in relation to asymptotic ho-
mogenization theory, such dsconvergence of De Giorgi [1975][1984], the
G-convergence of Spagnolo [1968][1976], and the H-convergence of Tartar
[1978]. These abstract mathematical notions provide powerful tools to analy-
sis various numerical simulations of homogenization.

The question we would like to answer is: what is the limit in a homogeniza-
tion process when micro-scale approaches to zero (Fig. (10.8) ? does upscale
homogenizations will eventually converge to that limit ?

To answer this questions, we have to first define what do we mean by con-
vergence, or convergence in what sense.

10.6.1  Strong convergence and weak convergence

We first discuss the notion of strong convergence and weak convergence of
functions in Banach spaces.

LetQ be an open setin R Forl < p < +o0, the Lebesgue spadé (1) of
all measurable functionsin €2 is a Banach space endowed with the following

norm,
1/p
fulley = ([ fuPdz) ", v1<p< oo
Q

Whenp = oo, we define the so-called essential supremum

|ul| oo (@) = ess sup |u(z)| := inf { sup |u(:r)|}
ze ZeQ = A
m(Z)=0
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Figure 10.8. Notion of convergence in homogenization

Note that the physical meaning éf°(Q2) space is that its occupant func-
tions satisfying the conditiofu(x)| < co almost everywhere if.

We use the short-handed notatien— 0 to denote a limit process of a
sequence = {1, €a, - €p, - }, ande,, — 0 asn — oc.

The strong convergence of a function sequenge= {uc,, tey, -+ s U, - |,
is measured by the distance in the particular normed space, i.e. a sequence,
is said to converge strongly ib?(2) to a limit ug, if

lim [Jue — uol| o) = 0.
The strong convergence is denoted by an arrow, namely,
ue — ug, in LP(Q) strongly

Onthe other hand, the weak convergence is measured by a so-called weighted
residual distance, which is associated with a weighting function, or test func-
tion in the dual space of the original norm space.

For the weak convergence in Lebesgue spat€?), the test function is in
its dual spaceLP, () with

1 1

-+ =1.

p p
Therefore, the formal statement of weak convergend@if2), 1 < p < +o0
is as follows: a sequenag is said to converge weakly ih?(2) to a limit ug,

if for any test functionp ¢ v (), it satisfies

lim ue(:p)qb(x)dx:/u(x)gi)(x)dx

e—0 Jo Q

The weak convergence is denoted by a harpoon, namely

ue — ug in LP(2) weakly .
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The main interest of the weak convergence is that it is sequentially rela-
tive compact on bounded set. This means that for all the bounded sequence,

HUEHLP(Q) < C, there exists a subsequer(c&) - and a limitug such that
€ >

<u€) ,_converges weakly tag in LP(Q2), 1 < p < oo, which is not true for
stroneg>coonvergence.

Intuitively speaking, the strong convergence is more or less the usual point-
wise convergence, while the weak convergence is a notion of convergence “in
average” (up to a fluctuation of zero-mean).

If Q2 is finite, we may choose test function

ba) = & € I¥ ()

thenu,(z) — ug(z) requires that

1
lim [ w. =

1
= (x)dx = = d
oy Q/Qu(x)a: Q/ng(x)a:

Thatislim._.g < ue >q=< ug >q.
We state (without proof) the connection between strong convergence and
pointwise convergence. This statement is false for weakly convergence.

THEOREM 10.5 1 LetQ) be abounded open setRf. Letu, be a sequence
converging strongly to a limitg in LP(€2), 1 < p < +o0, i.e.

ue(x) — up(x)

Then there exists a subsequeneg, C u., and a functiom(z) € LP(Q2)
such that,

E1/i310 uy (x) = uo(x), almost everywhere in ()

|ue(z)] < h(x), almost everywhere in 2

2 Assume that the sequencgz) is bounded inL?(Q) (1 < p < o0), and

liH(l) ue(x) = up(z), almost everywhere in §2
€—

Then
ue(x) — up(z) in LYN) (1 < g < p) strongly .

To feel the differences between strong convergence and weak convergence,
we consider the following example.
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EXAMPLE 10.6 Letuc(z) = sin(f), p = 2, andQ = (1,0). Choose test
€
functiong(z) = 1. We have

1 1 .
/Oue(x)qb(x)dx = /Osin(€)div 1
() [ i)

Ase — 0, u. — 0, weakly inL?(Q), i.e. the weak limit of the sequencgx)
iS zero.
On the other hand, it seems that() has no strong limit in.?(Q2). This is

because
[wellL2) = \//OIUE(:E)dx = \//OlsiDQ(::>da:
- [ e (Z))
<l

Suppose:. — f(x) and f(z) € L*(Q). Therefore,

1

lii% <sin§ - f(l‘))de = /1 Sin2<§>d$ - 2/1 sin(%)f(ﬁ)dx
10 1 X 0 0
[ P =g+ [ Pt

becausef (z) € (L?) ().
Moreover, the fact that
1
1
lim sin? (E> dr = =
e—0 0 € 2
also indicates that the product of two weakly convergence sequences does not
converge to the product of their weak limits. Otherwise,
1
lim sin? (
0

e—0

E)dac =0

€
because botbin(f) — 0in L2([0,1)).

It is worth noting that the product of two strong convergence sequence does
converge to the product of the two limits strongly, but it may be in a different
Lebesgue space in general.
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For instance, if bothi. — wug in L?(Q2) strongly andv. — vg in L?(Q)
strongly, then

[ueve — uovollp2() = l[(ue — uo)(ve — vo) + (ue — uo)vo + (ve — vo)uollr2(q)
1/2 1/2
< (lue —wollzz) " (Ilve = vollz2(e))

1/
1ol (1lue = woll2qe )

1/
ol ey (lIve = voll o))

Hence
UeVe — UQVQ 1IN LQ(Q) strongly .
Unfortunately, the same is not true for the weakly convergent sequences. In
our previous example,

Ue(x) = sin<§> — 0 in L*(Q) weakly
€
but foru.(z) = v (z) = Siﬂ(%)

1
Ue(x)ve(x) — 5 Pin LP(Q) 1 <p< +o0.

Moreover, in practice, ifie — ug in LP(Q2), andJ(u) is a nonlinear func-
tional, say quadratic functional,: L?(2) — R.
It is usually
J(ue) A J(up) in any sense !

10.6.2 G- Convergence
Consider our model homogenization BVP,

Lue = f, x€Q, where L= -V A(f) -V
€
Ue = u, Vx € o
o0

where the heat conduction (or diffusion) coefficieiaf(y) are Y-periodic func-
tions.
Suppose that solution of the above BVP can be found as

uele) = (1) .

Obviously,u. € HY(Q) andf € H1(Q).
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Recall the definition of Green’s function. We have
—1
ulo) = (L)1 = [ Gla )Wy
Q

Suppose that there exists a weak limjtz) in H'() such that
e (z) — up(x) in H(Q) weakly

and the weak limit,y(x) has the representation,

w(@) = [ Gotw =)y = (Lo) ' 1

Therefore, the weak convergencewfz), i.e. u. — ug(x), implies that
/ / (Ge(x —y) — Go(x — y))f(y)dydx =0, e—0 (10.147)
Q. Jo,

Change the order of integration, (10.147) yields

/ f(y) </ (Ge(x —y) — Go(z — y))d:r) =0,ase— 0. (10.148)
Qy Qu
Equation (10.148) suggests that the weak convergence of Green’s function,
i.e. Ge — Gy, which implies a special type of convergence of the differential
operator sequenck = —V - A€ - V. We call the convergence of differential
operator sequenck. as the G-convergence,

¢ & 1, (10.149)
in the sense of
Gex f = Go= f, in HY(Q) weakly .

Note that the symbol denotes the standard convolution.
In fact, the convergence of the differential operator sequdifce, — V- A¢-
V, may be viewed as the convergence of matrix sequefGefo its G-limit

0
Aij, or

T\ G
The following definition of G-convergence is provided by Allaire.
Let M be the linear space of symmetric real matrices of order d. For any
two positive constants > 0 andg > 0, we define a subspace 6f5 made of
coercive matrices with coercive inverse, namely,

Z,ﬂ = {{MU} S MZ, such that 0452 < MZ]&’L&]
and €% < M;'6¢;, V¢ € RY)
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Let © be a bounded open set inffRnd define the spade™ (; Mg, 5) of
admissible symmetric coefficient matrices.
We have the following definition of G-convergence,

DEFINITION 10.7 A sequence of symmetric matrice¥, € L>°(Q, M?, ﬂ)

is said to be G-convergence to an homogenized, or G-limit, matfixc
Le(Q, M, 5), if, forany f € H~1(Q)., the sequence solutian (z) of the
following model problem

—V - -AVu, = f, z€Q
Ue = U, Yz € 0N

converges weakly il } () to the solution of the homogenized BVP,

—V-A%Vuy = f, 2€Q
ug = u, Vr € 0N

This definition makes sense because the following compactness theorem,

THEOREM 10.8 For any sequencél® € L>(2; M, ) of symmetric matri-

ces, there exits a subsequenml, C A4 and a limit A% € L>°(Q; M, )
such thatd , G-converges tot".

In the following examples, we want to show the differences between strong
convergence, weak convergence, and G-convergence.

ExampLE 10.9 In this example, suppose that we have two objects with the
same macroscopic dimensions but different checkerborad microscopic struc-
ture.

The diffusitity matrix coefficients are assumed to be

Aij = aéij

We denote the diffusitivity in the white region@&sand the diffusitivity in the
black region asi,, andas > a;.

We denote the first micro-structure & and the second micro-structure as
S5.
Obviously, the first sequenct (Sy) and the second sequendé(Ss) have
the same G-limit, i.e.

a’(S7) = a"(S3) -
As one can see that there is no pointwise convergence possibility, because for
a fixed spatial point,

|a0(8f) — aO(SS)] =ag—a; >0.
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Figure 10.9. The difference between strong convergence and G-convergence

Nevertheless, in this example, indeed, the weak convergence limit of the two
layouts are the same

< A(S]) >a=< A5(S5) >a

there are two micro-structure layouts with the same weak convergence limits,
but different G-limits.

In this example, we assume that in each unit cell, the black and white areas
are the same, therefore the volume fraction of the two phases are the same.

In the layout A, all the “good” material are connected, therefore it is a bet-
ter arrangement for heat conduction, whereas in the layout B, all the “good”
materials are isolated, disconnected, or insulated, it should be very hard for
heat to diffuse from one point to another point.

Based on this argument, the two layouts should have different G-limit, and

ag(Sf) > 0,0(85) .

On the other hand,
< a(Sy) >=< a(S85) >
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Unit cell of layont A Unit cell of layont B

Figure 10.10. The difference between weak convergence and G-convergence

fw—>1 fw = fb=0.5

Y
L L

Unit cell of layout A Unit cell of layout B

Figure 10.11. The difference between weak convergence and G-convergence
as indicated above.

ExamMpPLE 10.11 Inthe third example, we would like to show a case in which
two microstructure layouts have the same G-limit but different weak conver-
gence limits.

In this example, we fix the second layout of the previous example. Therefore,
we know that the G-limit of the second layout will be bounded by Vogit upper
bound and Reuss lower bound, i.e.

2
Reuss bound = —172 <d <8§

ai + az (a1 +a2)

1
2

—
AN
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We know change the first layout by increase the volume fraction of insolated
white phasef; such thatf; € [0.5,) and fi — 1. Therefore, the G-limit of
the first layout will be bounded by

1
ﬁ+1—f1
al a9

< a’(S5) < frar + (1 — fr)az (10.150)

Initially when f; = 0.5 we have,

2@1@2
ay + ag

<a <S§> <a’ <Sf> < %(m + az)

If a1 << as.
The Reuss bound for the second layout is almo8t;. From Eq. (10.150),
one can see that a§ — 1, the Reuss bound (lower bound) of the first layout

will become
1

A T-A
al a9

—ai, as f1—1.

This suggests that at certain volume fractiom, < f, = f, < 1.0, the
G-limits of the two layouts will be the same, i.e.

QO(S5) = a%(S5)

At that moment, sincg,, > 0.5 # f,, the weak convergence limits of the
two layouts will not be the same, i.e.

< a®(85) >= fuar + (1 — fu)ag #< a®(SS) >= 0.5(a1 + a) .

10.6.3 H- Convergence

H-convergence is a generalization of G-convergence, in which, the differ-
ential operatord®, or its coefficient matrix, does not require to be symmetric
anymore.

DEFINITION 10.12 (DEFINITION OF H-CONVERGENCE) A sequence of ma-
trices A€ in L>°(Q, M, g) is said to converge in the sense of homogeniza-
tion, or simply H-convergence, to an homogenized limit, or H-limit, matrix
AC € L>°(Q, M, g) if, for any right hand sidef € H~1(12), the sequence.

of solution of

-V A Vu, = f(z), Ve e (10.151)
U = u, Vo € 00 (10.152)
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satisfies
ue(x) — up(z) weakly in H'(Q) (10.153)
A€ Vu, — a* - Vg weakly in [L%Q)} Y (10154)
whereuy is the solution of the homogenized equation,

~V-A" Vuy = f(z), Ve (10.155)
up = u, Vx e ofd (10.156)

10.6.4 T'- Convergence

For a large class of elliptical BVPs, each BVP under consideration has
one-to-one correspondence to a variational principle. The well-known Lax-
Milgram theorem guarantees the equivalence between the two.

Therefore, the convergence of differential operators may imply a possible
convergence of the corresponding functional in the related function spaces.

DEFINITION 10.13 (DEFINITION OF I'-CONVERGENCE) LetX be afunc-
tional space endowed with a nofifn|| 4. Lete be a sequence of positive indexes
which goes to zero. Ldf. be a sequence of functional defined¥rwith val-
ues inR. The sequence; is said tol'-convergence to a limit functiond if,

for any functionr € X,

1 all sequences. converging to x satisfy
E < lim inf F,
0(33) - GE}(})(E]QX e(ﬂfe)
and
2 there exists at least one sequengc&onverging tar, such that
Fy(x) = lin% Fe(x.)
ExAaMPLE 10.14 (AN ExaMPLE OF I'~-CONVERGENCE) Consider the fol-

lowing diffusion problem, with diffusion coefficient matriX¢ is symmetric
and Y-periodic,

—v'A(f)we — f VzeQ (10.157)
€
ulz) = 0, VaedQ (10.158)

The BVP (1) and (2) is equivalent to the following variational problem:
Find u. € H} () such that

uignlgé J(u) = uiénlgé (% /Q Vu - A(%) -Vudz — /qudx)
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Therefore. th@'-convergence aof (u) (with respect to the strong topology
of L2(2)) is equivalent to the homogenization of the PDE (1)-(2).

10.7 Exercises

ProBELM 10.1 Show that for isotropic materials the fourth-order tensor,

i) = ez (6000t + 8ake) + EBa+ G

1 &L&&Ee LV &5
1—v & 1—v &2

ProBELM 10.2 Consider cuboidal region of inelastic strain (eigenstrain)
due to solute segregation forming cuboidal precipitates. The precipitate sub-
domain (or inclusion) has the dimensidax 2a x 2a, and the unit cell (U) has

the dimensior2L x 2L x 2L. The eigenstrain is assumed to have a constant
valuee within each inclusion, and be zero outside the inclusion,

54 . (10.159)

el = { 8J5 zi g 2/9 (10.160)

where
U = {x ’ L<w <L, i= 1,2,3} (10.161)
- {x ‘ —a<a;<a, i= 1,2,3} and a< L (10.162)

Find :

(a) the disturbed displacement field (x) (Hint: Mura’s book pages: 20-
21).
(b) G(&) = g0(&§)go(—£).

ProBELM 10.3 Consider the followin boundary-value problem in a medium
with periodic structure,

9%u,
By = D Yeeq (10.163)
ue = 0, Vaed0 (10.164)
Qe _ o vper (10.165)

on

wherel is the interface between the matrix and inhomogeneous phase.
Show that the homogenized differential equation is

=f Vr e
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Figure 10.12. Distribution of periodic precipitates
with effective coefficients;. defined as

1 oUy,
w=— | (6 +25%)a
ik Y| /Y< ¥ 8%’) Y

and the associated canonical cell problem is

02Uy,

= 0, WweY 10.166
0yi0y; e ( )
%ni = ng, VyeS (10.167)

Yi

10.8 Toshia Mura

This is the biography sketch of Professor Toshio Mura, the sole author of
our second text book, " Micromechanics of Defects in Solids". The biography
sketch was written more than 10 years ago by Professor Mori (who also made
some contributions in micromechanics as well, the Mori-Tanaka theory, for
instance, bears his name). Before | copy the biography sketch, | would say few
things about professor Mura myself. For the past four and five years, | have
the opportunity to study and work with Professor Mura, and | have stayed with
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Figure 10.13. Toshio Mura

him in the same office for almost four years (I was a postdoctal fellow then and
he was an emeritus professor).

Almost every week, he took me to lunch (because he insisted to pay ev-
erytimes, so we can not go out everyday), and | learned a lot of things from
Professor Mura, and had many good conversations as well as good memories.
Last year, Professor Mura received the Japanese Imperial model—the highest
honor bestow by Janpanes emperor and Royal family to scientists and other
citizens—for his contribution in micromechanics. | remembered back in 1997,
in his retirement party, professor Jan Achenbach said that Professor Mura is
one of the “seven samurai” (an international renowed Japanese moive, samurai
in Japanese means warrior, previously in Northwstern there were seven fa-
mous Mechanics professors: Achenbach, Belytschko, Dundurs, Keer, Mura,
Nemat-Nasser, and Bazant). Professor Mura is a theoretician, and has a very
“romantic” outlook of the world, (romantic is opposed to the “down-to-earth”
mentality of experimentalist) he believes that you are at your most creative
stage, when you are in your dream.

Biography sketch of Toshio Mura.

“ Toshio Mura, second son of Shinzo and Chie Fuijii, was born in Ono, a
small port village of Kanazawa, the capital of Ishikawa Prefecture, Japan, on
December 7, 1925. Among the locals, the Fujiis are well known as brewers
having a long history in the area. Kanazawa is an old city on the coast of the
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Sea of Japan, where traditional culture is proudly maintained and apprecaited.

In 944, during the most difficult time of the war, Mura went to the Impe-
rial University of Tokyo to read Aeronautical Engineering. After the war, his
department was dissolved and changed to the Department of Applied Mathe-
matics at the University of Tokyo. ....

The title of his Ph.D. dissertation was “Study on Thermal Stresses”. His
work in the dissertation turned out to be one of the earliest papers on the dy-
namic wave of thermal stresses.

As a graduate student, Mura also began his teaching career as a mathemat-
ics professor at Meiji University, where he met and worked with his lifelong
friend, Nobuo Kinoshita. Their joint paper, “On the boundary value problem of
elasticity,” which was published during his tenure at Mriji University (1956),
agitated some Russian mathematicians in the field of integral equations. Had
this work been extended, it would have led to the powerful computational tech-
nigue now known as the boundary element method. .....

At the graduate school, Mura was introduced to his future wife, Sawa, by her
sister, Sumi, who had worked in the Department of Aeronautical Engineering.
During the courtship, Mura often visited the Ozaki’s and Sumi fondly recalls
that he praised Sawa’s cooking. They married in 1953 and their first daughter,
Miyako, was born in 1955.

In 1958, Mura went to Northwestern University’s Department of Materi-
als Science, Evanston, lllinois, to work with John O. Brittain. While at this
department, Mura conceived the idea of the Periodic Distribution of Disloca-
tions, which was documented in a paper and published later in the Proceddings
of the Royal Society of London as a communication by A. H. Cottrell and R.
E. Peierls (1964). In this paper, for the first time, the Fourier method was used
to obtain the elastic field of dislocations. As seen in his later publications, the
Fourier method became Mura’s favorite tool to analyze elastic fields.

In 1961 Mura jointed the department of civil engineering at Northwestern
University as an assistant professor. The pleasant but stimulating atmosphere,
brewed by his colleagues, John Dundurs and Leon Keer, also encouraged him.
Dundurs and Mura obtained the elastic fields of dislocations parallel to a cylin-
drical inhomegeneity (1964). Keer and Mura analyzed a penny-shaped crack
with a plastic zone by solving an integral equation, Mura’s first paper con-
cerned with a crack (1963).

In 1963, Mura succeeded in expressing the elastic field of a curved disloca-
tion in a line integral, now known as Mura’s Formula (1963). The line integral
is along the dislocation and contains only the state quantities that character-
ize the dislocation. This solution was later extended by John R. Willis, who
gave the field of a dislocation segment in the form algebraic equations, wh-
cih equired the solution of sextic equation (1970). .... The paper in 1963 is
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also noteworthy for introducing the concept of a dislocation flux tensor, which
is yseful when the dynamic motion of dislocations is examined. The period,
during which Mura’s Formula was found, coincided with his promotion to As-
sociate Professor of Civil Engineering.

The dislocation density and flux tensors were applied to continuum plastic-
ity theory. Believing that a stress appearing within the framework of continuum
plasticity was the sum of external and dislocation stresses, Mura published a
series papers, in the late 1960s, along these lines that emphasized the distribu-
tion and stress of dislocation.

In 1967 Mura became Professor of Civil Engineering. At that time Mura
nad J. G. Kunag, his student, obtained the solutions for a pile-up of edge dis-
locations against the interfacial boundary between different materials.

The pioneering work of J. D. Eshelby, his beloved peer, appears to have
inspired and stimulated Mura, as seen in his studies of static and dynamic
fields of dislocations in anisotropic media and in dislocation pile-ups. As can
be inferred from the preface to his book, Micromechanics of Defectcs in solids,
Mura regards Eshelby’s work on inclusions and inhomogeneities as being the
most important and fundamental.

To Mura the evaluation of the disturbance in elastic fields due to elastic in-
homogeneities is the most interesting application of the theory of inclusions.
For example, Z. A. Moschovides and Mura solved the stress field caused by
two inhomogeneities by applying the equivalent inclusion method with poly-
nomial eigenstrains. A computer program, performing the numerical calcula-
tions, complained that the matrice involved for linear equations were singular.
Moschovides looked for the bugs that might have caused this complaint, but no
bugs were found. The linear equations were carefully examined analytically
and the cause of the complaint was found. There existed certain distributions
of eigenstrains that yields no elastic field. Rozo Furuhashi, a visiting scholar,
and Mura later generalized this finding and showed that impotent inclusions
exist in a general sense. The impotent inclusions have eigenstrains defined by
derivatives of a continuous vector (displacement) that vanished at the bound-
ary of the inclusions. This anecdote illustrates Mura'’s teachings: "study and
examine a specific subject carefully. If there is anything strange and exciting,
you can later generalize it in a broader sense.”

Mura also interacted with experimentalists, who eagerly sought his advice
and aid on issues of mathematics and mechanics. In particular, Morris E. Fine,
and his students in Northwestern’s Department of Materials Science and Engi-
neering, benefited from this interaction in their studies of the fatigue of alloys.
Mura also gained insight into material properties and structures by the interac-
tions with these materials scientists.
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In 1986, Mura was elected to membership in the National Academy of Engi-
neering, U.S.A. with the citation, ‘For initiating and promoting micromechnics
to bridge the gap between metal physics and engineering mechanics.” During
the same year, he was appointed Walter P. Murphy Professor in the Technolog-
ical Institute at Northwestern University.
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Chapter 11

MICROMECHANICS THEORY OF VOID GROWTH

Damage theory of void growth is central to failure mechanism of ductile ma-
terials. In late 1960's and early 1970’s, pioneer contribution have been made by
several authors, Mclintock [1968], Rice and Tracy [1969], and Gurson [1972],
using micro-mechanics techniques to develop damage theory in constitutive
modeling of ductile materials.

The homogenization result obtained by Gurson marks a significant mile-
stone in the development of micromechanics, because the outcome of the ho-
mogenization is foundamentally different from that of micro-elasticity theory.

In micro-elasticity theory, the homogenized consititutive relations are virtually
the same as the constitutive relation in micro-scale, i.e., linear elastic constitu-
tive relations or generalized Hook'’s law. The only differences in constitutive
laws at different scales are the magnitude and the spatial distribution of elastic
constants. Whereas, in the Gurson model, a completely new constititive rela-
tion at macro-level emerges from the homogenization, which represents a new
philosophy:

finding new physical laws and new mechanics by doing homogenization.
This notion is so attractive, and it has remained the very ideal and ultimate
objective of contemporary micromechanics and multiscale simulations.

11.1  Void Growth in Linear Viscous Solids
Consider a linear viscous RVE, whose constitutive behaviors at microscale
can be described as the following rate dependent expression,
oij = Cijktre
The viscous coefficients resemble to that of linear elastic tensor,
2nv

Cijie = m%ﬁu + n(0irdje + 0iedj)
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Figure 11.1. A spherical void in the middle of an RVE
In the case of incompressible viscous media,

Cijke = 21 E <5ik5j€ + 5i€5jk) - % g

Consider a spherical void), inside an RVE with a radiusR = a. A
uniform triaxial stress state is imposed at the remote boundary of the RVE, i.e.

(5ij5k4 + 510ij0ke

t; :U%an, Vo € 9V

whereo? = T'0;;.
Applying Eshelby’s equivalent eigenstrain principle, the stress inside the
void may be written as

. .d .
oij = Cijke (622 + € — 61?6)
200 [).. , 500 o1
Notg that_eij = Dwkf%z andDZ?kg = CZ.W.
Since inside the void, there is no stress = 0, we have
. .0 -d %
€ij = Eij + €y = eij

This means that eigenstrain rate should be the same as the actual strain rate,
which gives the physical meaning for eigenstrain rates. That is the prescribed
eigenstrain rate should be the expansion rate of the void.
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Moreover, one can find that
o5 = Cijre(éfe — éie)
By Eshelby’s single inclusion solution, one can write

d -
€ij = Sijke€ij

Therefore,
o=C:(1%) _8):¢.

Denote
Q:=C: (1% —5).

The remote stress can be related with volumetric strain rate of the void, i.e.

o5 = Qin1€]1 + Quiz2éso + Qiiz3€éss

Consider,
C = 2l+v+1—2EW 4 2yE?
S = SlE(l) + SQE(Q)
EY = 1, and EZ, =0,
1 2(4 —
wheres; = v andsy = &
3(1—v) 3(1—-v)

One may find that

(1+v)

Qiill = Qii22 = Qii33 = 8”@ :

By symmetry, it is easy to see that
€] = €39 = €33 = ¢
Consequently, we have

T_ 8n(l+ V)é
3 (1-v)
Since the volume of the void is,
A1 . )
V= ?ﬂas = V= 47ra2a,

The relative void growth rate will be

Vo a

— =3 =3¢

%4 a ¢
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whereé = g is the strain rate in radial direction.
Finally, we link the magnitude remote stress with the void growth rate,

r_8nd+n)V
9 1—-v V

The above solution was obtained by Budiansky et al in 1981, almost ten
years after publication of the McClintock solution and the Gurson model.

V=M+ QO

Figure 11.2. A solid with traction-free defect

11.1.1  Averaging theorems for soilds with traction-free
defects

Consider an RVEY/, containing a traction-free defeé?, That is the trac-
tion forcet; = o;;n; = 0, Vx € 052. Suppose that on the remote boundary
conditiondV the prescribed traction boundary condition is imposed

t; = 0N = Eijnj Vx € 9V

whereX;; is a contant tensor, and it is often denoted as the macro-stress tensor.
The following averagy theorems hold in the RVE,

1. <0 >v= Eij (ll.l)
2. <&y >v=Eyy + & (11.2)
a 1
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andFE;; = D; s, for the linear viscous solid.
Expressions (11.2) and (11.3) are called additional strain rate forrhulas
We first show (11.1),

1 1
<0y > = V/VO'ijdV:V/V(O'ipxj)de

1
= v </av OipnpxjdS — /69 OipnpxdS )
—_——

=0, because o;pnp=0, V€O
1
= = / Eipnpa:de = Zij
V Jov
We know that under the prescriber traction boundary condition,
< éij > EZJ

To prove the additional strain rate formula, we use the so-called reciprocal
theorem of virtual power. Consider two sets of traction boundary conditions
and the corresponding velocity fields on the same ilinear viscous RYEe
following equality holds,

/ tMalPas = P aMas
avJoa- v Jon-

Let the traction b.c. for the first state be
t) =n.6%, voeav| Joo
which yields the following trivial solution,
{fuM M oW} = {x. /K, IE, 6%}

wheredE = D : 6X.
Let the traction b.c. for the second state as

(2 — n-%, Vr e oV
- 0, Vo € 00~

and it correspondes to the real solution,

{u®,e®, 6™} = {u,¢ 60}

1A similar expression is hold for infinitesimal strain as well.
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The reciprocal theorem gives,

| dViPas [ dVias - (Wilas+ [ Pilas
ov o0~ oV o~ o0~

=0
/W(n.&:)udSJr/m(n.52).ud5: [ o) (xobyis

Notice the following facts:

1
1
n-52-1'1:52:§(1'1®n+n®1'1)

(n-%): (x0B) =62:D: (xon) %)

We then have

1
—0X:{/ D:(x®n) -XdS— n@udS— [ neudS}=0. (11.4)
Vv oV ov o9
Consider
1 1
D — . 2 = E 11.
(V/avx®nd5) : (11.5)
2 1
Sym/ n®1’1dS:/ edV =< é > (11.6)
v 1%
3

1 1
Sym/ n®1'1dS:—/ n ® udsS
V Joa- V' Joa

<n®u+u®n>ds (11.7)

Substitution (11.5)—(refeq:cond3) into (11.4) gives the following additional

formula for strain rate

where

1
-(add): . .
€ v /m<u®n+n®u)d5
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Figure 11.3. A cylindrical void in an inelastic RVE

11.2 The McClintock solution

The McClintock solution is the classic result of void growth in an inelastic
RVE, which has been served as the bench mark example in many homogeniza-
tions of inelastic solids.

The basic premises of McClintock solution are two: (1) at micro-level, the
RVE behaves as a rigid-plastic material, and (2) the RVE is incompressible.

Consider the following flow rule,

. 0
o =39S
K 8515
The yield surface is described by criterion (von Mises criterion),
Y?2 o1 y?
2
fZJ —?zisijsij—?:()
wheres;; is the deviatoric stress tensor,
1
Sij = 0ij — 30
One can then rewrite the flow rule as
.0 .

I 8sij
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where the proportionality\ can be determined by contracting the flow rule
with plastic strain rate, i.e.
1 1

.. 12 12
5 ijeij = A §sijsij = A

Y2
3

One can then solve for,

2Y

where

I, = —ée.e (11.9)
- 2
& = ﬁfz(efj) (11.10)
Therefore, the constitutive relation at micro-level are,
o _ 3
“ij = 2 YS”
In the cylindrical coordinate,
. 2 1/2
&= [S(@?+ @)+ @?)]

Consider the problem is axisymmetry and independentarordinate. The
equlibrium equation becomes,

do, o — 0y

=0. (11.11)

dr r

Assume that the velocity field is

ur = u(r), ug =0, and é, = é = constant .

Hence,
di
S 11.12
é - ( )
G = 2 (11.13)

,
The incompressible condition yields,
di U
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Rewrite the above expression as

r@+u+ré =0 = i(m) = —1¢é
dr 2 dr N z

Integrate over the radial direction from the surface of the void to the interior

of the RVE, i .
d{ pu(p)) = —/ pé-dp
J, o) == |

Note that variable is the dummy variable.
Considering, = é = const., we have

T 2 T
pu(p) - 5 € 0
Consequently,
. b (2 22 2
ra(r) —bb = (7“ b ) 5
< 7i iz 2 32
= ru=>bb+ 5 (r b )
Finally
_ Vb e\ ér
i(r) = = (5 + 5) - = (11.14)
Let,
1
o= g(ar—i—ag—i-az)
We have
S = Op—0O (11.15)
Sg = o0g—0 (11.16)
The components of the flow rule in an axisymmetric plane are
3 & 3 &
. _ op_3 € _ 3. €
ér & =355y Z(UT J)Y (11.17)
3 & 3 &
. _ p__ Y D _ s
6 = & =557y 2(09 J)Y (11.18)
(11.17) - (11.18) leads to
¢ — ér = g(ag - a,.)% (11.19)

Utilizing (11.19), it can be found that

og — Oy :gégfér
r 3r €&
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Therefore the equilibrium equation becomes

do, ~or—o0p do, 2V (é —ép)

dr r dr 3r é

Integrating over the radius direction,

1 [ 2 [ (ég—¢
/(m:/ o &) dp
Yb 3b € 1%
1

2

- o (éG - ér) dp
= flon(o0) —anit =3 [0S

Consider the traction boundary condition,
or(b) =0, and o,(c0) =™

We have

Yy 3
To integrate (11.22), one has to evaldfidirst. Since

op(00) 2 [ (& — ér)@
/b &€ p

i0-2G+9)-%

direct calculation gives

b di, bz(b e‘z) é

o~ 2 t2) 2
i w_bz(uéz)_éz
S AV 2

In cylindrical coordinate, the effective strain rate is

o= [P @rs@?)

1/2

- (GG G655

- A Gy )
Define

€T

BGRYE

_622(5+1)_fﬁ
bé, 2 42
where

o 5L

=0.

315

(11.20)

(11.21)

(11.22)

(11.23)

(11.24)

(11.25)

(11.26)
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Subsquently,
€& = éo(1 4 2212 (11.27)
and
. Vb€, 202 b 1 .
-t =255+ 5) = V(5 3)) = Vier (129
Since ) )
26 2 /b 1
dr = _Ti’)ﬁ<£ + 5)(17" —;xdr,
dr_ _1ldv
r 2z
Make change of variable,
b2
xr = Oéﬁ N

and
r=bx—a, r—o00, z—0.

We can then integrate (11.22)

0c 2/00 (ég — &) dp 2/°° V3éx  dr
b b

&€ p 3 eVitaZ T

Y 3

N -
V3Ja Vi+a? V3Jo V1+a?
= iarcsinhac ’a— Larcsinh(cu)
V3 0 V3
The inverse expression of the above result is
2 /b 1 o
(-2 4 1) = sinn [ V372)
V3 \bé, 2 Y

Based on uniaxial tension test, one can measure

(11.29)

_ Y
V3

We obtain the relationship between void growth rate and remote stress value,

T0 = Jé

o] 1.
_ V3, sinh[‘i} — e (11.30)
2 T0 2

| o

A few comments about the McClintock solution are as follows:



Micromechanics Theory of Void Growth 317

1 McClintock solution is the only (essential) exact solution available for void
growth in nonlinear viscous media;

2 McCintock solution reveals an exponential increase in the void growth rate
under the positive remote stress load.

To illustrate the fact, we consider a finite cylindrical void with a heifh,
and radiug. The volume of the cylinder is

O =7mb’H = Q=21bbH + 7b*H

Thereby,
Q b,
Q=% te
and hence - /3
Q 3. . 300
Q= 3¢ Slnh[ v } (11.31)
Compare (11.31) with Budiansky et al’s linear viscous void solution,
Q 9 1-v
e S
Q 8n(l+v)

One may appreciate the significant difference between the two.

3 At the remote boundary, € 9V,
1

€, = ¢, éT:égz—?‘
Hence the macro equivalent strain rate is

e = [26'.0%99} V2 E (%3 + %2 n e‘2>} e 1132

Bi-axial stress state is applied at the remote bound#ry,i.e.
1
Ei1 = Bo2 = 0o, Dy = Tyand Ty = 3 (250 + Dy )

The von Mises criterion becomes

3 1/2
Yeg = [ﬁzijzij}

5 1/2
- [5 <(211 = Zm)” + (Z22 = Tn)? + (Sas — Em)Qﬂ
= |¥33—-%1| <Y
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The yield surface i$X33 — X11| =Y.
Under such condition, we can rewrite the void growth rate equation as

Qo L VBose . V321
976. - \/§SIDh( % ) == ﬁSIDh(m) . (1133)

4 Let the total volume of the RVE be

V=0Q+ Vmatrix

and
ﬂ_v_@+dvmatrim _@
e dt e dt
because the matrix is incompressibﬁ%/,md‘;ﬂ =0.
Define the volume fraction of the void as
Q
f=5%-
Then
QO Q. Q/vV-Q
f= v -v(5)
0 Q
= Z(1=Ff=21f1-
= =5f01-1)

Finally, we can express the rate of volume fraction as

. VBfA—f) . V3Z1
F= ¢eq Smh<|233—2111>

11.3 The Gurson model

The significance of McClintock solution it that it links the remote stress, or
macro stress, with the void growth rate, and it reveals that in a perfectly plas-
tic RVE, the void growth rate is expenonetially related with the macro-stress.
Although, it can be argued that the notion representative volume element is em-
ployed in McClintock solution, it does provide new constitutive representation
at macro-level.

Not long after the publication of McClintock solution, a young scientist at
the time, A. L. Gurson, realized that there is more in the cylindrical void model
analyzied by McClinktock. In fact, one can derived the plastic potential at
macro-level by homogenized (meaning averaging in space) micro-stress distri-
bution. It was eaxctly what Gurson did his Ph.D. thesis, which has become one
of most cited papers in inelastic constitutive modeling and micromechanics.
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11.3.1  Gurson’s homogenization of cylindrical void in a
rigid perfectly-plastic RVE

H
o
[ |

=2

S~ |

b 52 E2;
v a -
R r X2

T e ™
LA

RVE (V=V_,+8Q)

Figure 11.4. A cylindrical void in a rigid-perfectly plastic von Mises RVE

The objective of the Gurson model is to find macroscopic yield potential
function in terms of macro-stress and volume fraction of void in an RVE, i.e.,
we are looking for

F(Xeq; Xm, f) =0

13 / 1
Eeq = iEijEij, Eij = Zij — Zm, and Zm = 32”

Again, the governing equations in the RVE are,

where

1 Equilibirum equations:

do, Orr — 099
+
dr r

2 von Mises flow rule:
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3 incompressible condition of the matrix:
€rr + €09 + €2, =0
Consider axisymetric remote (macro-stress) loading,

o11 ‘ = Y1, o2, =X, and X1 = X (11.34)
v v

= 3 11.35
on| = Tu (11.35)

Under axisymmetric loading condition,

1
Yeg = \/2 [(211 — Y92)2 + (X33 — X11)%2 + (X33 — z322)2}
= |¥33—2ul, (11.36)
1 1
Tm = 5(211 + Ygp + X33) = 3 (Eaa + E33>
1 1 1
= X1+ 3 (5333 - 211) = 520‘0‘ + gﬁeq (11.37)

1
whereX,, = Y11 + Yoo = 2311, Or X1 = Yog = §Ew. Therefore, we are
essentially looking for the yeilding effects dueXg; andX33 — 31;.

Consider the following axisymmetric kinemetic pattern,
= u(r), 1,(z) = F33z.
Strain rate components are

) du . U . .
ETT:$7 609:;7 €., = E33.

Since the matrix is incompressible,

du 1w .
érr+690+ézz:7+*+E33:07
dr r
one has )
. E A
/d(ru) = —/Eggrdr = u(r)= —%r + —
r

whereA is an unknown constant.

Subsequently,
. du_ Ej A
' E A
g = —=-—254 % (11.39)
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In fact, the constantl has a clear physical interpretation. Consider a cylin-
drical void with finite height,

QO =ma’H
The void growth rate and relative void growth rate are

ds)

o= 2raaH + ma’H (11.40)
Q a H
S 11.41
Q a+H ( )
Since,
H .

= &pp d —=F y

érr(a) an i 33

one may find that

Q Fs3 A 24
a=2% )t Ee=0
which leads to
a2
S 11.42
50 ( )

That is: A is proportional to the relative void growth rate.
Since the matrix is a rigid-perfectly plastic von-Mises material, it obeys the
following flow rule,
_ 20y,
S” = 3 éeq 6@]

where the effective strain rate can be explicitely expressed as
. 2. . \1/2 2/ .5 o 5 11/2
€eq = <76U€ij> = [7 (67’7‘ + € + Ezz}
3 3
27/Fs3  AN2  (Ez AN2
21(ks A B A )
3[( 2 +r2> +< 2 7"2) + R

(B3 + §§>1/2 = By (1+0? (j)4)1/2 (11.43)

where the parametet, is defined as

2 A _’Q‘ 1
1 Q

o= —=— - 11.44
V3 E3sa? V3E33 ( )
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Therefore, we can write,

s = 2 Ty e 2 Ty (E33
o . 4N1/27TT T g, 4N 1/2
Pea(irar(D)) T Che(ire(D))
r r
2 oy : 2 oy Es33
560 = 37 aNdn1/2%0 = 37 a\ 172 <+7
Bas(1+02(T) ) Baa(1+02(7) )
r r
2 oy . 2 oy
S22 = 37 4 1/2E33_7 N1/2
P (1+e2(7)) Hore())
r r
We can then find that
2 oy (A A)
Sp0 — Spr = —— L4048
00 — Srr 3 Es3(1 + a2(a/r)h) /2 \r2 " 72
_ 4 % (é)
3 Egg(1+ a2(a/r)t)1/2 \1r?
= 0pp — Opr
and
1 2 oy
s22 = gl Fs00) = S ET i)
12 Ty (—Es3)
23 Es3(1+ a2(a/r)4)1/2 %
Oy

(1+a(a/r) )PP

1
Ozz — 5(0'7"7“ + 099)
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A
R

)
)

A

r2

To this end, we are in a position to link the macro-stresses, X33 — 11,
and void volume fractionf, together in a macro yield potential.
We first link X1; and|X33 — X1 | with remote strain rateEZ-j.

Consider the traction boundary conditions on the surface of the void and the

surface of the RVE,

1

orr(a) =0, and o, (b) = Qzaa =Y

note that,, (b) = Xgg(b) =

1
1

1. Integrating equilibrium equation along the radius direction yields,

Y11 =0 (b) — opr(a) = /

b Aoy,
dr

009 — Orr
T

dr

b
dr:/

a
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Since,
000 — Orr _ 00 — Srr _ é Oy é
r r 3E33(1 + a2(a/r)4)1/2r3
we have ,
4 A d
S = ay/ : = (11.45)
37 Ja Es3(14a?(a/r))/2r
2. Consider the fact that; + 022 = 0, + 09, aNdT11 = Lo = 1504,
1 1
Yaz3— X1 = 33— *(211 + Xg0) = V/ (Uzz — —(0ga + oyy) )
1%
= v / 0y — =(opr + Ugg))dV
= / Syy — SM —|—S@9))dV
( 1( + ))dv
= S — S S
V Var 2z 2 rr 060
Recall that
1 o
Szz — 5(37’7’ + 399) - ya
(1 +a2<7> )L/2
,
anddV = rdrdfdz. We have
onH [P o
233 — 211 D) Y NG rdr
72
T (e (2))
T
9 b
2%y rdr (11.46)

()
Make change of variable,

xza(%)Q: x — |o, fa], when r — [a,b] .

a? Q
wheref = 2oV
Therefore,
2
de = —2a % dr = —4.7Adr = a= 24

rs V3E33r3  V/3E33a2
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and
A
Adr V3, (11.47)
E33r3 4
r a’a dz a?
. d
Reconsider (11.45) and4—r = —édaz,
E337'3 4
1 4 b 1 Adr
Yii = =Saa == §
M 2 3‘73’/,1 (1 + 22)1/2 frguy3
_ _<40>\/§ /f“dﬂf
B 3794 Ju V1ita?
Thereby,

Zaa_& “  dx
2 \/g foc\/1+l'2

We then find that the in-plane hydrostatic stress can be written as

(11.49)

é Zaa o log[ o+ \/1—|‘f.é2 ]
2 oy fa+ 1+ (fa)? (11.50)
2
Reconsider Eg. (11.46) andr = —%d%,
X
20y b rdr

Ygs— X = o L Gxa0ie

(222) (-2 /f“ d
62 2 a 1'2 V 1+ x2
fo /O‘ dx
o -
Y Jia 221 + 22
Carrying the integration, we have
233 — 211 = O'y|:\/ 1 +a2f2 — f\/ 1 -l—aQ}

We can then link the deriatoric macro-stress with macro-strain rate and void
volume fraction,

Yeg
=1+ f2a? — 1+ a?
ay Vit et =gy (11.51)
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Denote that

A = @ Yaa
2 oy
Ar = Yeq
Ty
A3 = a+V1+a?

Ay = fa+ 1+ f2a?

Then results (11.50) and (11.51) can be rewritten as

Ay = log é (11.52)
Ay
Ay = Ay— fA3 (11.53)

We want to connecti; and A by elminatingAs and Ay.
Rewrite (11.52) and (11.53) as

expA; = — (11.54)
Substituting (11.55) into (11.54) leads to an equatiord gf A5, and Az,

Ay
As + fA3

which expresseds in terms of A; and Ao,

expA; =

e — Az exp(Ay)
T 1 fexp(Ay) (11.56)

Substituting (11.57) back into (11.55) yields an equation améngAs,,
and Ay,

(1 — feXp(Al)AQ + fA2 exp(Al)
1 — fexp(A1)

A4:A2+fA3:

Solving this equation yields

Ay

A= T (A (11.57)
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Consider the identities,
A2 = (a+V1+a2)?=a’+2aV1+a+ (1+a?)
= 2a(a+V1i+a?)+1=2aA3+1

and

A3 = A(fa) =2fa(fa+\/1+ f2a2)+1=2faAs+1  (11.58)
We may find that

AZ -1

200 = " (11.59)
2 _

2fa = Ai-l (11.60)
Ay

Combining (11.59) and (11.60), we may find that the following expression,

2a:A§—1_AZ—1

Az fA (11.61)
Substituting
A = Agexp(Ay)
ST 1= Fexp(A)
A
A = 1 — fexp(41)

into (11.61), we obtain the following identity,
A3—1 A7-1 N A3exp(241) — (1 — fexp(A1))?  Asexp(4y)

Ag o fA4 A% — (1 — fexp(Al))2 fAQ
Rewrite the above equation,
fASexp(241) — f(1 — fexp(A1))?
= Ajexp(A;) — exp(A1)(1 — fexp(4;))?
= AZexp(A1)(1 — fexp(A1)) = (1 — f exp(A1))*(exp(A1) — f)

which leads to

A3 = (1— fexp(A1))(1 — fexp(Ar))
= 1+ f% = flexp(A1) + exp(—Ay)
= 1+ f2—2fcoshA4,;

We finally link A; and A5 in a single equation.
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Substituting the expressions df and A, into the above equation, we have
the desired result,

%2 V3%
F(Eeyzaaaf): eq+2fCOSh - _(1+f2):0'
! o ( 2 oy ) (11.62)

On the other hand, if we rewrite (11.50) as,

£2w ~ 1 [ oa++V1+a?
2 oy 5 foe—l—\/m
= Arcsinh(av/1+ a?2f2 — fa/1+ a?)

} = Arcsinh(«) — Arcsinh(fa)

Therefore,
Smh(\f o)~ a(y/14 fPa? — [V1+ o) (11.63)
Oy
Consider
QO 1
o = 21 11.64
Q\/3F;53 ( )
Y _ Ty Pa?— fVita? (11.65)
Oy

Eq. (11.63) can be rewritten as

Yoo 0 1 %
siuh (Y2 Zoe) | ) L e
2 oy Q2 \/§E33 Oy

or

| [ VB (2 ) s (2o

Considering the facf :‘ a ‘ f(1 = f), we recover the McClintock solution,

. . o . \f Ao
- () (3%

(11.66)
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11.3.2 Gurson-Tvergaard-Needleman model

o — (@ (11.67)

Oy

11.4 Exercise
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